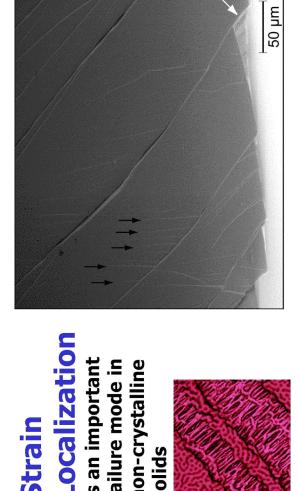
Localization and Percolation The Relationship Between Simulated Systems

Yunfeng Shi Michael L. Falk

University of Michigan Materials Science and Engineering



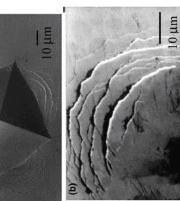
s an important ailure mode in non-crystalline

Strain

SEM Image of Shear Bands Formed in Bending Metallic Glass, Hufnagel, El-Deiry, Vinci (2000)

Craze in a block copolymer (PCHE/PE) film, Veeco NanoTheatre(2004)

Response Indentation for Characterizing Mechanical Metallic Glass



Mat. Sci. Eng. A (2005) A.L. Greer., A. Castellero, S.V. Madge, I Walker, J.R. Wilde

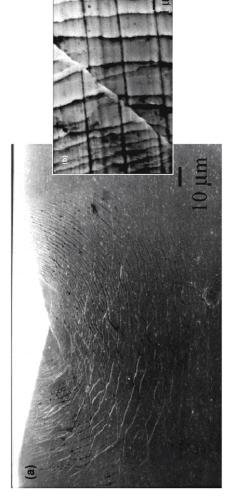
metallic alloys"

"Hardness and plastic deformation in a bulk metallic glass" Acta Materialia (2005)

U. Ramamurty, S. Jana, Y. Kawamura, K. Chattopadhyay

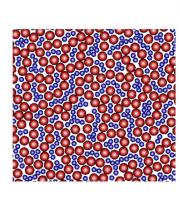
Michigan Engineering

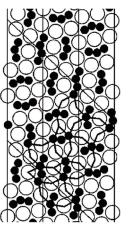
Metallic Glass Mechanical Response Indentation for Characterizing



"Hardness and plastic deformation in a bulk metallic glass" Acta Materialia (2005)
U. Ramamurty, S. Jana, Y. Kawamura, K. Chattopadhyay

D Simulation System



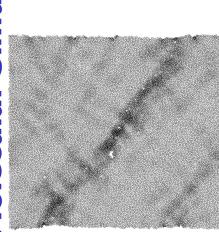


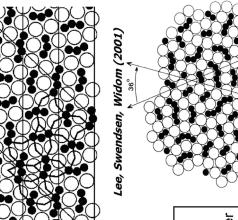
Binary system with quasi-crystalline packing (Lancon et al, Europhys. Lett, 198)

45:55 composition, 20° 000 atoms $^{\bullet}$ T_{MCT} \approx 0.325

Michigan **Engineering**

Widom, Strandburg, Swendsen (19





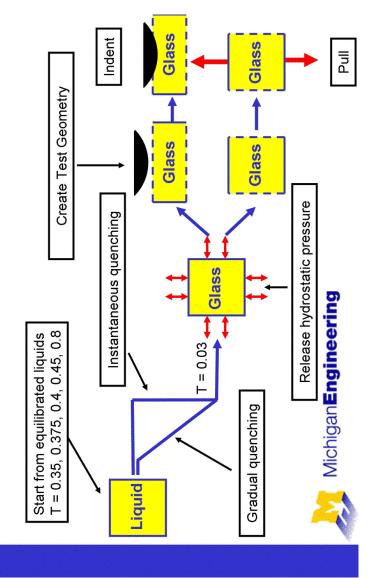
systems can be studied at a larger

Simple system that exhibits shear localization

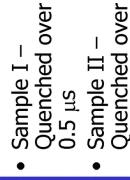
Michigan**Engineering** и

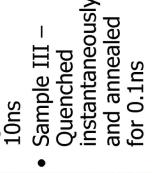
Widom, Strandburg, Swendsen (1987)

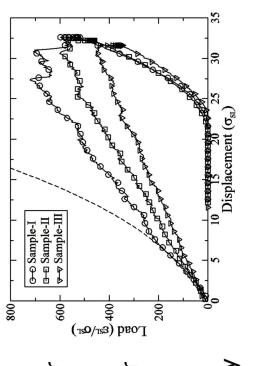
Preparation of Glasses



Glasses Nanoindentation of Three





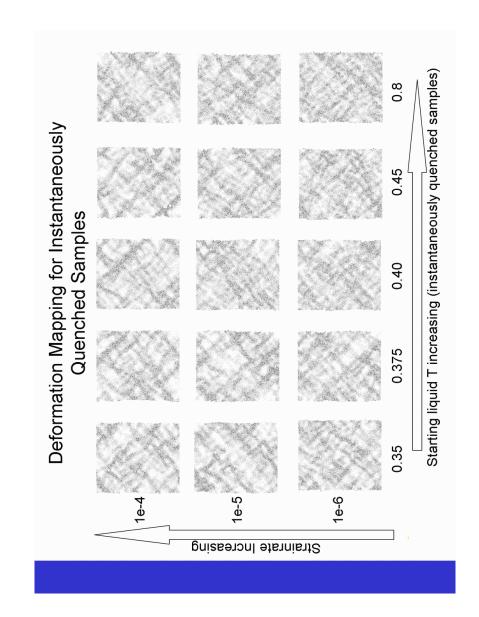


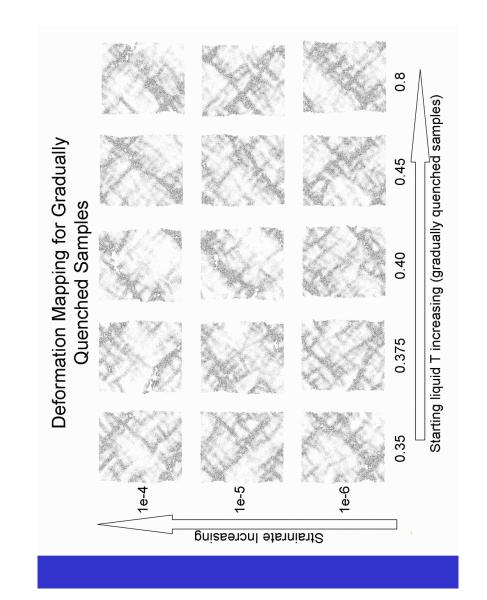
25 nm Glasses 0.1ns Anneal Sample III **Shear Strain** -2.5 Nanoindentation of Three **Color Denotes Deviatoric** 10ns Quench Sample II Michigan **Engineering** 0.5µs Quench Sample I

Glasses 11.5 Nanoindentation of Three 11.5

Michigan **Engineering**

– 25 nm





Potential Energy per Atom (ε_{SL})

Quantification of Shear Localization

Participation Ratio

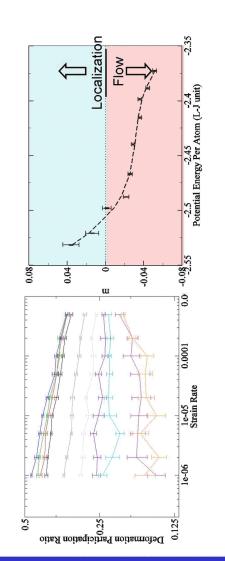
than the nominal strain Participation Ratio: Percentage of material with a local shear strain larger

favors homogenous quenched samples Low strain rate instantaneously deformation in

 2×10^{-3} $= 2 \times 10^{-}$

> favors inhomogeneous gradually quenched Low strain rate deformation in samples.

0.3 Deformation Participation Ratio Sensitivity of DPR Strain-rate



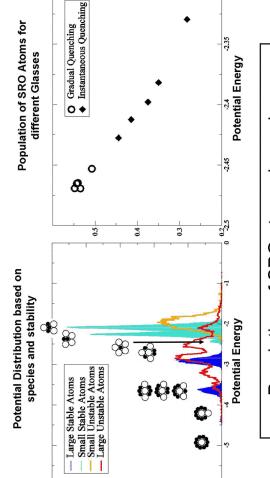
Е MichiganEngineering

m < 0: homogenous deformation → 0 and system size → For &

0: localized deformation

MichiganEngineering

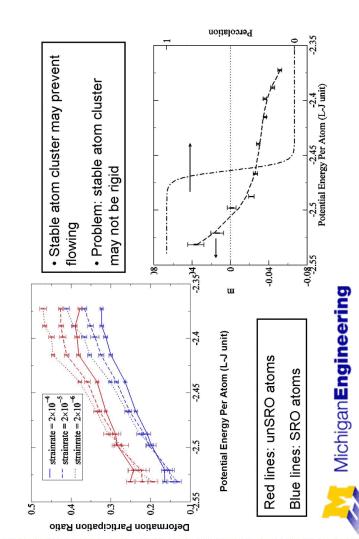
Local Structural Analysis



108

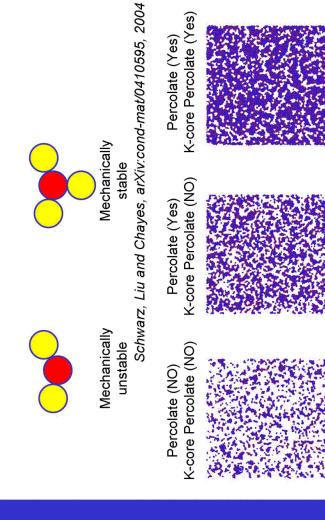
Population of SRO atoms depends on the thermal history of the glassy system.

Nanoindentation Sample-II Sample-] Structural Signature of Michigan Engineering Sample-II Sample-I

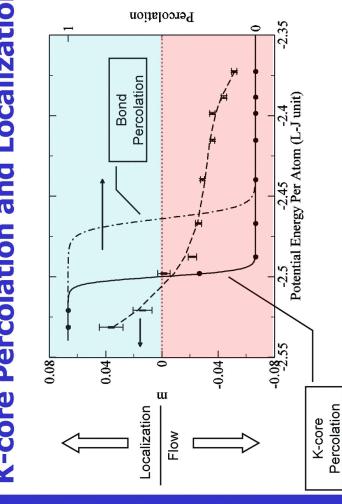


Michigan Engineering

K-core Percolation of SRO

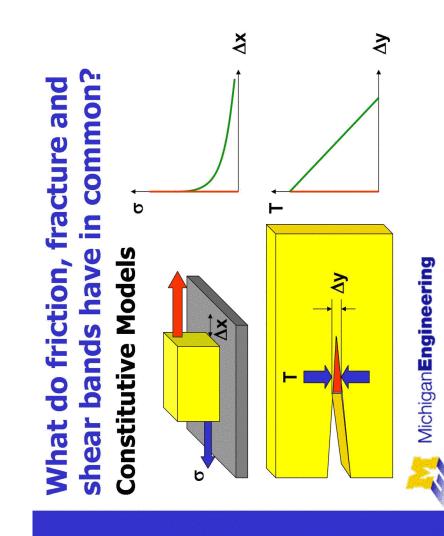


K-core Percolation and Localization

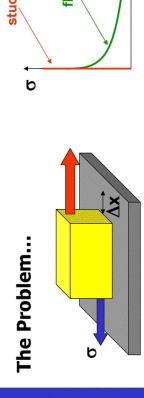


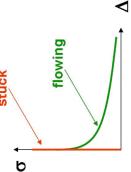
Summary

- Simulated glasses with higher degrees of SRO demonstrated a stronger tendency toward localization.
- In more rapidly quenched samples localization appears to decrease at lower strain rates
 - slowly quenched samples localization appears to increase at lower strain rates. In more
- stable backbone of material with quasi-crystal-The transition from homogeneous to localized K-core Percolation of a deformation in the quasi-static limit ike short range order. corresponds to the



Constitutive Models

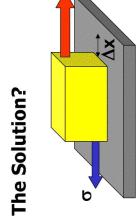


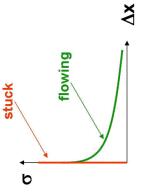


- Most of these systems involve a "stuck" or "jammed" state and a "flowing" or "slipping" state.
- Simple constitutive laws often include discontinuities.
- properties that can sensitively depend on the dynamic This complicates the analysis of instabilities and other transition between jammed and flowing states.

Michigan Engineering

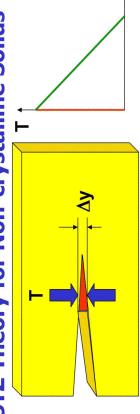
Formulations Rate and State

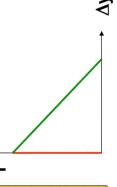




- freedom not represented in, e.g. Coulomb Friction Law These transitions arise due to internal degrees of
- essential physics of these hidden degrees of freedom. Rate and State formulations attempt to capture the
 - Examples: Dieterich (1978), Rice and Ruina (1983).
- What do these new degrees of (e.g. contact area in Dieterich) Michigan Engineering But the issue arises: freedom represent?

Theory for Non-crystalline Solids Rate and State Plastici

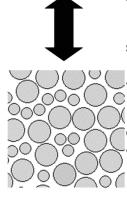




- A number of such models exist in the context of plastic deformation primarily aimed at modeling crystals.
- Crystal deformation is difficult to relate to microscopics because of the nature of the defect (D-2 object)
- some simplifying assumptions, e.g. that the defect is STZ theory attempts this for non-crystals by making D=0 and has zero mobility.

Michigan Engineering

Spaepen) Zones **Shear Transformation**

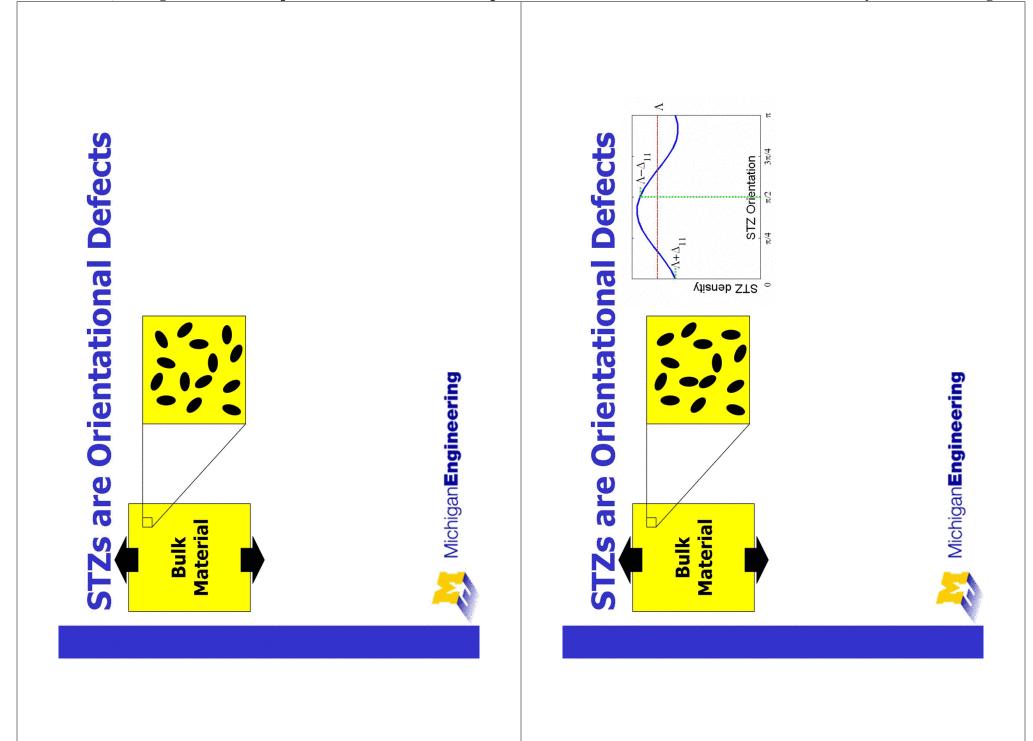


- Region may reverse its rearrangement if stress is reversed shortly thereafter
- Stress in opposite direction produces deformation amount of additional rearrangement

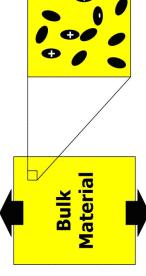
Deformation becomes permanent after some

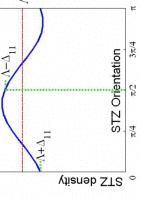
Michigan Engineering

in different regions



Orientational Defects are





Simplifying to shear only along x and y principal axes:

$$n_{\scriptscriptstyle +} = \frac{n_{\scriptscriptstyle \infty}}{2} \left(\Lambda + \Delta_{11} \right)$$

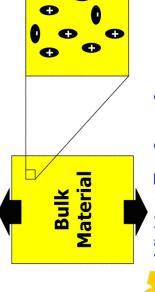
$$oldsymbol{n}_{+}=rac{n}{2}\left(\Lambda+\Delta_{11}
ight)$$
 $oldsymbol{n}_{-}=rac{n_{\infty}}{2}\Big(\Lambda+\Delta_{22}\Big)=rac{n_{\infty}}{2}\Big(\Lambda-\Delta_{11}\Big)$

Michigan **Engineering**

The STZ Model

 ϵ_0/n_∞ = volume per STZ Plastic Strain Rate Proportional to Flips $\left(egin{aligned} \left(egin{aligned} s \end{array}
ight) n_{_{-}} - R_{_{+}} \left(s
ight) n_{_{+}} \end{aligned} \end{aligned}
ight]$ R ි ද П





O

Plastic Strain Rate Proportional to Flips

Master Equation for Densities
$$\dot{n}_{\pm}=R_{\mp}n_{\mp}-R_{\pm}n_{\pm}+\left[\Gamma\left(s,n_{\pm}\right)+
ho(T)\right]\left[\frac{1}{2}n_{\infty}-n_{\pm}n_{\pm}\right]$$

Michigan Engineering

The STZ Model

Plastic Strain Rate Proportional to Flips

$$\dot{\mathcal{E}}^{pl} = \frac{\mathcal{E}_0}{n_{\infty}} \left[R_{-}(s) n_{-} - R_{+}(s) n_{+} \right]$$

 ε_0/n_∞ = volume per STZ

Master Equation for Densities

$$\dot{n}_{\scriptscriptstyle \pm} = R_{\scriptscriptstyle \mp} n_{\scriptscriptstyle \mp} - R_{\scriptscriptstyle \pm} n_{\scriptscriptstyle \pm} + \left[\overline{\Gammaig(s,n_{\scriptscriptstyle \pm}ig)} + oldsymbol{
ho}(T)
ight] \left[rac{1}{2} \, n_{\scriptscriptstyle \infty} - n_{\scriptscriptstyle \pm}
ight]$$

For the state of the system to depend only upon the strain history in the low T, low rate limit, the same rate function must control both annihilation and creation

The STZ Model

Plastic Strain Rate Proportional to Flips

$$\dot{\mathcal{E}}^{pl} = rac{\mathcal{E}_0}{n_{_{\! \infty}}} igg[R_{_{\! -}}ig(sig) n_{_{\! -}} - R_{_{\! +}}ig(sig) n_{_{\! +}} igg] \quad rac{arepsilon_o n_{_{\! \infty}}}{n_{_{\! \infty}}} = ext{volume per STZ}$$

Master Equation for Densities

$$\dot{n}_{_{\pm}} = R_{_{\mp}}n_{_{\mp}} - R_{_{\pm}}n_{_{\pm}} + \left[\left[\Gamma\left(s,n_{_{\pm}}
ight) +
ho(T)
ight] \left[rac{1}{2}n_{_{\infty}} - n_{_{\pm}}
ight]$$

This provides a closure for Γ assuming that the First Law of Thermodynamics is obeyed and that Γ is proportional to the rate of dissipation.

Michigan

L. Pechenik (2003)

The STZ Model

Plastic Strain Rate Proportional to Flips

$$\dot{\mathcal{E}}^{pl} = rac{\mathcal{E}_0}{n_{_{\! \infty}}} igg[R_{_{\! -}}ig(sig) n_{_{\! -}} - R_{_{\! +}}ig(sig) n_{_{\! +}} igg] \quad _{\! \epsilon_0 n_{_{\! \infty}}} = ext{volume per STZ}$$

Master Equation for Densities

$$\dot{n}_{\scriptscriptstyle \pm} = R_{\scriptscriptstyle \mp} n_{\scriptscriptstyle \mp} - R_{\scriptscriptstyle \pm} n_{\scriptscriptstyle \pm} + \left[\Gamma\left(s, n_{\scriptscriptstyle \pm}
ight) +
ho\left(T
ight)
ight]\left[rac{1}{2}n_{\scriptscriptstyle \infty}
ight] - n_{\scriptscriptstyle \pm}$$

This is identified with the "Granular Temperature" χ The n_{∞} parameter is the ratio of annihilation to creation and sets the equilibrium defect density.

Langer (2004)

The STZ Model

Plastic Strain Rate Proportional to Flips

Master Equation for Densities

$$\dot{n}_{\scriptscriptstyle \pm} = R_{\scriptscriptstyle \mp} n_{\scriptscriptstyle \mp} - R_{\scriptscriptstyle \pm} n_{\scriptscriptstyle \pm} + \left[\Gamma \left(s, n_{\scriptscriptstyle \pm}
ight) +
ho \left(T
ight)
ight] \left[rac{1}{2} e^{-1/art arkappa} - n_{\scriptscriptstyle \pm}
ight] .$$

The n_{∞} parameter is the ratio of annihilation to creation and sets the equilibrium defect density.

This is identified with the "Granular Temperature" χ

Langer (2004)

TWICH INSULE INSTITUTE OF THE

The STZ Model

Plastic Strain Rate Proportional to Flips

$$\dot{\mathcal{E}}^{pl} = rac{\mathcal{E}_0}{n_{_{\! \infty}}} \Big[R_{_{\! -}}ig(sig) n_{_{\! -}} - R_{_{\! +}}ig(sig) n_{_{\! +}} \Big] \quad _{\! \epsilon_0 n_{_{\! \infty}}} = ext{volume per STZ}$$

Master Equation for Densities

$$\dot{n}_{\scriptscriptstyle \pm} = R_{\scriptscriptstyle \mp} n_{\scriptscriptstyle \mp} - R_{\scriptscriptstyle \pm} n_{\scriptscriptstyle \pm} + \left[\Gamma\left(s, n_{\scriptscriptstyle \pm}\right) + \rho\left(T\right)\right]\left[rac{1}{2}e^{-1/\chi} - n_{\scriptscriptstyle \pm}\right]$$

 χ has its own dynamics. Shear drives it to a high value (χ_{∞}) while thermal fluctuations drive it to a low value $(\chi_T = kT/E_{STZ})$

Langer (2004)

The STZ Model

Plastic Strain Rate Proportional to Flips

$$\dot{\mathcal{E}}^{pl} = rac{\mathcal{E}_0}{n_\omega} igg[R_{_-}ig(s ig) n_{_-} - R_{_+}ig(s ig) n_{_+} igg] \quad rac{\epsilon_0 n_\omega}{\epsilon_0 n_\omega} = ext{volume per STZ}$$

Master Equation for Densities

Master Equation for Densities
$$\dot{n}_{\pm}=R_{\mp}n_{\mp}-R_{\pm}n_{\pm}+\Big[\Gammaig(s,n_{\pm}ig)+ig
hoig(Tig)\Big]\Big[rac{1}{2}e^{-1/\chi}-n_{\pm}\Big]$$

$$rac{ au_0 c_0}{arepsilon_0} \, \dot{\chi} = e^{-1/arkpi} \Gamma ig(\chi_\infty - \chi ig) + \kappa oldsymbol{
ho}ig(T ig) e^{-eta/arkpi} ig(\chi_T - \chi ig)$$

 $+\ell^2\nabla^2\chi$

by the diffusion of the granular temperature.

Michigan **Engineering**

Langer (2004)

Dynamic Transition from

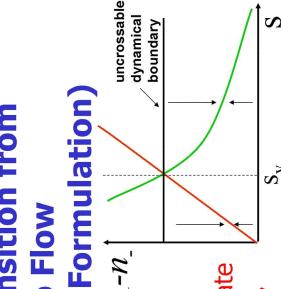
(Quasilinear Formulation) Hardening to Flow

Jammed steady state $n_{+}-n_{-}=(n_{+}+n_{-}) s/s_{y}$

Michigan **Engineering**

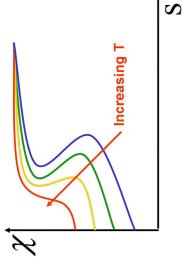
 $n_{+}-n_{-}=S_{V}/S, n_{+}+n_{-}=n_{\infty}$

Flowing steady state



(Quasilinear Formulation) **Dynamic Transition from** FIOW Hardening to

At low T, granular temperature, χ , is double valued as a function of stress implying the possibility of 2 phase coexistence between jamming (creep) and flow.

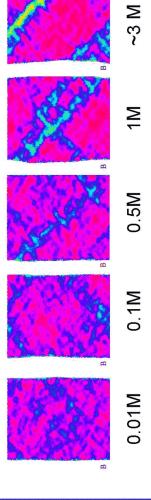


Michigan **Engineering**

Current Investigations

- Is this a good model for the observed localization?
- Is this a unique or optimal model?
- Does \(\chi\) map directly onto %SRO?
- Can this model help quantify the role of internal degrees of freedom in the softening process?
- Does this have any bearing on localization in other (e.g., granular) materials?

How does this vary with dimensionality?



Repeated in 3D binary LJ glass using 50:50

Wahnstrom potential

Strain rate $1 \times 10^{-5} t_0^{-1}$

Shown, Quench time: 3.33 T_{MCT} to 0.1 T_{MCT} .

