Many-body Entanglement Witness & Branching MERA

Jeongwan Haah, MIT

3 June 2015 KITP, UCSB

Cubic code

$$\begin{split} H &= -J \sum_{i \in \Lambda} \left(\sigma_{i,1}^x \sigma_{i,2}^x \sigma_{i+\hat{x},1}^x \sigma_{i+\hat{y},1}^x \sigma_{i+\hat{z},1}^x \sigma_{i+\hat{y}+\hat{z},2}^x \sigma_{i+\hat{z}+\hat{x},2}^x \sigma_{i+\hat{x}+\hat{y},2}^x \right. \\ &+ \sigma_{i,1}^z \sigma_{i,2}^z \sigma_{i-\hat{x},2}^z \sigma_{i-\hat{y},2}^z \sigma_{i-\hat{z},2}^z \sigma_{i-\hat{y}-\hat{z},1}^z \sigma_{i-\hat{z}-\hat{x},1}^z \sigma_{i-\hat{x}-\hat{y},1}^z \right) \end{split}$$

JH, 1101.1962

Cubic code

- Ground state is degenerate under periodic boundary conditions.
- * No local operator is capable of lifting the degeneracy.
- * **Topological Excitations** are point-like and immobile.
- Immobility is robust against perturbations
 [Isaac Kim, JH].
- * Branching MERA description.

Under **periodic** boundary conditions

Degeneracy

 $2^k = degeneracy$

Entanglement is an Invariant

$$|\psi\rangle = \sum_{r} \sqrt{\lambda_{r}} |\phi_{r}^{A}\rangle |\phi_{r}^{B}\rangle$$

- * Entanglement = invariant under local unitaries.
- Schmidt coefficients = the complete set of invariants

$$S = -\sum_{r} \lambda_r \log \lambda_r$$

Information, thermodynamic entropy

Many-body Entanglement

* Local entanglement is washed away by local unitaries.

* What is the characterization? What are the representatives?

Q. Circuits and Correlation

 $Cor_{|\psi\rangle}(O_1, O_2) \sim 0$ $\Leftrightarrow Cor_{W|\psi\rangle}(O_1, O_2) \sim 0$

Topological Order

* Long-range correlation \Rightarrow Deep Q. circuit required

Topological Charge

- A set of states related by local operators, not necessarily unitary.
- * No symmetry constraint.

Arbitrary operator

Looks identical to ground state.

Irrelevant to define particle type in the disk

Recall Spin

- Transformations
- Operator in the center of the operator algebra.
- Eigenvalue of the central operator
 = Spin

Topological Charge

Any local term of H should commute

 $Mat(D) \otimes \mathcal{A}/\mathcal{N}$

Transformations

Operator on grey that annihilates the state

- Find an operator in the center of the operator algebra.
- Eigenvalue of the central operator = particle type

In any dimensions

It is a trajectory of excitations.

Sphere with Wall

Topological Order/Entanglement Witness

If it is independent of thickness,

is in fact independent of Hamiltonians*

is invariant under small-depth Q. circuit.

* Derived S, T matrices are properties of a **bulk** patch.

Hamiltonian^{*} = commuting projectors, local TQO

JH, 1407.2926

Extracting Numbers

Well-defined as long as intersection is separated.

Good & Bad

- * Simple definition No need to go through TQFT
- S, T (analogues) matrices are properties of a bulk patch; They can be computed very simply.
- No false-positive answers for long-range entanglement (topological order).
 Triangular lattice cluster state under prevalent numerics gives

 a false-positive answer in topological entanglement entropy.
 [JH, Zou, Senthil, unpublished]
- * Easy to give an algorithm Linear algebra on the space of matrices.
- Inefficient algorithm
- Rigorous scope is limited. (Commuting++)
- No error analysis w.r.t. perturbations / finite correlation length

e.g. Toric code

4-dimensional algebra
 = 4-types of topological charge

e.g. Cubic code

 $H = -J \sum_{i \in \Lambda} \left(\sigma_{i,1}^{x} \sigma_{i,2}^{x} \sigma_{i+\hat{x},1}^{x} \sigma_{i+\hat{y},1}^{x} \sigma_{i+\hat{z},1}^{x} \sigma_{i+\hat{y}+\hat{z},2}^{x} \sigma_{i+\hat{z}+\hat{x},2}^{x} \sigma_{i+\hat{x}+\hat{y},2}^{x} \right. \\ \left. + \sigma_{i,1}^{z} \sigma_{i,2}^{z} \sigma_{i-\hat{x},2}^{z} \sigma_{i-\hat{y},2}^{z} \sigma_{i-\hat{z},2}^{z} \sigma_{i-\hat{y}-\hat{z},1}^{z} \sigma_{i-\hat{z}-\hat{x},1}^{z} \sigma_{i-\hat{x}-\hat{y},1}^{z} \right)$

JH, 1101.1962

Isolating a charge

- String can be arbitrarily extended.
- Excitations can be moved arbitrarily

- Self-similar pyramids can be extended in a special way.
- A single excitation cannot
 be moved to a nearby position

Bravyi, JH, 1105.4159

Immobile Excitations

$$\langle \psi_1 | OT^n | \psi_1 \rangle = 0 \quad n \ge 1$$

T is a translation along any direction. O is supported on a ball that does not touch the boundary of the system

* Interaction-driven localization [Kim, JH, 1505.01480]

Braiding of extended charges

Braiding of extended charges

 A generalized notion of braiding; it must fatten at some point.

 Non-trivial algebra, hence long-range entangled / topologically ordered.

 exp(R)-dimensional algebra.
 Hamiltonian-independence proof doesn't apply.

Wave function

Ground state is a condensate of "fractals" or "objects."

Generating Circuit/Entanglement RG

- * RG = Coarse-graining by eliminating smallest loops
- Entanglement RG = Disentangling then Discarding

Exactly solvable models of topological order have ground states that are entanglement RG fixed-points

Aguado, Vidal; Gu, Levin, Swingle, Wen (2008)

MERA

Multi-scale Entanglement Renormalization Ansatz (Vidal 2006)

Entanglement RG fixed point

XIIIIXII · is a ground state of , IIXIXXXX H =XXXI XIIXIZZI, ZIZZZIII - ZZZZZZII - IZIZC IIZIIIIZ

Branching MERA

Calculation

0.0	00		00								code	eRG2.nb
	_			~ cN	ot ~ (3, 4,	1)~c	Not ~ {4	1, 3, 1)	- cNo	t~{3,4	4, 1)\
		Child		~ CO	10p ~	{4, 3,	1)~	cNot - {	7, 6, 3	l } ~ cN	ot ~ {8,	6, 1)~cNot~{6, 8, 1}~cNot~{5, 6, 1}\
				~ CN	ot ~ {	5, 8,	1}~c	lot ~ {8	3, 5, 1)	- cNo	t~{5, 8	8, 1}\
				- CN	ot ~ {	7, 8,	1}~c	lot ~ {8	3, 7, 1	- cNo	t~{7,8	8, 1}\
				- 00	10p -	{6, 5,	1}~	co10p-	{5, 6,	1}\		
				~ CO	10p -	{7, 8	1}~	co10p-	{8, 7,	1}~0	o10p ~ {'	7,8,1};
	sigmaCubicB7 // display2											
				(X + 2	1 + x	0	0	0	0	0	0	
		si		1 + x	1 + z	0	0	0	0	0	0	
				x + y	1 + y	0	0	0	0	0	0	
				1 + y	1 + x	0	0	0	0	0	0	
				0	0	X + 2	1 + x	0	0	0	0	
				0	0	1 + x	1 + z	0	0	0	0	
				0	0	х + у	1 + y	0	0	0	0	
		sv		0	0	1 + y	1 + x	0	0	0	0	
				0	0	0	0	1 + 1	1+1	0	0	
		1			0	0	0	1.1	1 . 1	0		
				U.S.				×	Y Y			
				0	0	0	0	$1 + \frac{1}{4}$	1+1	0	0	
		((0	0	0	0	1+1	1 + 1	0	0	
		- 1			-	-	-		×			
				0	0	0	0	0	0	1+ 7	* + y	
				0	0	0	0	0	0	$1 + \frac{1}{2}$	$1 + \frac{1}{2}$	
										. 1	y 1	
					0	0	0	0	0	1 + <u>-</u>	x * 2	
				0	0	0	0	0	0	1 + 1	1 + 1	
										•		
	The new model bifurcates into two copies of itself.											
												1500 1

Summary

- * Topological charges are defined as irreps of an algebra, and are manifestation of long-range entanglement.
- * The cubic code model has many localized topological charges, appearing at the tip of some fractal operator.
- Unlike usual topological models, its ground state admits branching MERA (first, so far only example).