Many-body Entanglement Witness

Jeongwan Haah, MIT

3 June 2015
KITP, UCSB

Cubic code

$$
\begin{aligned}
& H=-J \sum_{i \in \Lambda}\left(\sigma_{i, 1}^{x} \sigma_{i, 2}^{x} \sigma_{i+\hat{x}, 1}^{x} \sigma_{i+\hat{y}, 1}^{x} \sigma_{i+\hat{z}, 1}^{x} \sigma_{i+\hat{y}+\hat{z}, 2}^{x} \sigma_{i+\hat{z}+\hat{x}, 2}^{x} \sigma_{i+\hat{x}+\hat{y}, 2}^{x}\right. \\
& \left.+\sigma_{i, 1}^{z} \sigma_{i, 2}^{z} \sigma_{i-\hat{x}, 2}^{z} \sigma_{i-\hat{y}, 2}^{z} \sigma_{i-\hat{z}, 2}^{z} \sigma_{i-\hat{y}-\hat{z}, 1}^{z} \sigma_{i-\hat{z}-\hat{x}, 1}^{z} \sigma_{i-\hat{x}-\hat{y}, 1}^{z}\right)
\end{aligned}
$$

Cubic code

* Ground state is degenerate under periodic boundary conditions.
* No local operator is capable of lifting the degeneracy.
* Topological Excitations are point-like and immobile.
- Immobility is robust against perturbations [Isaac Kim, JH].
* Branching MERA description.

Degeneracy

Under periodic boundary conditions
$2^{k}=$ degeneracy

Entanglement is an Invariant

$$
|\psi\rangle=\sum_{r} \sqrt{\lambda_{r}}\left|\phi_{r}^{A}\right\rangle\left|\phi_{r}^{B}\right\rangle
$$

* Entanglement = invariant under local unitaries.
* Schmidt coefficients $=$ the complete set of invariants

$$
S=-\sum_{r} \lambda_{r} \log \lambda_{r}
$$

* Information, thermodynamic entropy

Many-body Entanglement

* Local entanglement is washed away by local unitaries.

$=$ Unentangled state
*What is the characterization? What are the representatives?

Q. Circuits and Correlation

Topological Charge

* A set of states related by local operators, not necessarily unitary.
* No symmetry constraint.

Recall Spin

$$
\left[J_{x}, J_{y}\right]=i J_{z}+\begin{aligned}
& \text { Transformations } \\
& \text { Operator in the center } \\
& \text { of the operator algebra. }
\end{aligned} \begin{aligned}
& \text { Eigenvalue of the } \\
& \text { central operator } \\
& =\text { Spin }
\end{aligned}
$$

Topological Charge

$$
\operatorname{Mat}(D) \otimes \mathcal{A} / \mathcal{N}^{\text {Operator on grey that annihilates the state }}
$$

Any local term of H should commute

Looks identical to ground state.

Arbitrary operator

* Find an operator in the center of the operator algebra.
* Eigenvalue of the central operator = particle type

In any dimensions

It is a trajectory of excitations.

Topological Order/Entanglement Witness

If it is independent of thickness,
is in fact independent of Hamiltonians*
is invariant under small-depth Q. circuit.

* Derived S, T matrices are properties of a bulk patch.

Hamiltonian* = commuting projectors, local TQO

Extracting Numbers

Ordinary product PQ

Ordinary product QP

Well-defined as long as intersection is separated.

Good \& Bad

* Simple definition - No need to go through TQFT
* S, T (analogues) matrices are properties of a bulk patch;

They can be computed very simply.

* No false-positive answers for long-range entanglement (topological order).

Triangular lattice cluster state under prevalent numerics gives
a false-positive answer in topological entanglement entropy.
[JH, Zou, Senthil, unpublished]

* Easy to give an algorithm - Linear algebra on the space of matrices.
- Inefficient algorithm
- Rigorous scope is limited. (Commuting++)
- No error analysis w.r.t. perturbations / finite correlation length

e.g. Toric code

* 4-dimensional algebra
= 4-types of topological charge

e.g. Cubic code

$$
\begin{aligned}
& H=-J \sum_{i \in \Lambda}\left(\sigma_{i, 1}^{x} \sigma_{i, 2}^{x} \sigma_{i+\hat{x}, 1}^{x} \sigma_{i+\hat{y}, 1}^{x} \sigma_{i+\hat{z}, 1}^{x} \sigma_{i+\hat{y}+\hat{z}, 2}^{x} \sigma_{i+\hat{z}+\hat{x}, 2}^{x} \sigma_{i+\hat{x}+\hat{y}, 2}^{x}\right. \\
& \left.\quad+\sigma_{i, 1}^{z} \sigma_{i, 2}^{z} \sigma_{i-\hat{x}, 2}^{z} \sigma_{i-\hat{y}, 2}^{z} \sigma_{i-\hat{z}, 2}^{z} \sigma_{i-\hat{y}-\hat{z}, 1}^{z} \sigma_{i-\hat{z}-\hat{x}, 1}^{z} \sigma_{i-\hat{x}-\hat{y}, 1}^{z}\right)
\end{aligned}
$$

JH, 1101.1962

Isolating a charge

$$
\begin{aligned}
-\sum_{p} & \sigma_{\sigma^{z}}^{\sigma^{\sigma^{z}} z} \\
& -\sum_{s} \sigma^{x} \sigma_{\sigma^{x}}^{x}
\end{aligned}
$$

- String can be arbitrarily extended.
- Excitations can be moved arbitrarily

- Self-similar pyramids can be extended in a special way.
- A single excitation cannot be moved to a nearby position

Immobile Excitations

$$
\left\langle\psi_{1}\right| O T^{n}\left|\psi_{1}\right\rangle=0 \quad n \geq 1
$$

T is a translation along any direction.
O is supported on a ball that does not touch the boundary of the system

* Interaction-driven localization [Kim, JH, 1505.01480]

Braiding of extended charges

Braiding of extended charges

$\mathcal{A} / \mathcal{N}$

* A generalized notion of braiding; it must fatten at some point.
* Non-trivial algebra, hence long-range entangled/ topologically ordered.
- $\exp (\mathrm{R})$-dimensional algebra. Hamiltonian-independence proof doesn't apply.

Wave function

$$
\begin{aligned}
& \sigma^{x}=+ \\
& \sigma^{x}=-
\end{aligned}
$$

Ground state is a condensate of "fractals" or "objects."

Generating Circuit/Entanglement RG

* $\mathrm{RG}=$ Coarse-graining by eliminating smallest loops
* Entanglement RG = Disentangling then Discarding

Exactly solvable models of topological order have ground states that are entanglement RG fixed-points

MERA

Multi-scale Entanglement Renormalization Ansatz (Vidal 2006)

Entanglement RG

JH, 1310.4507

Entanglement RG fixed point

is a ground state of

Branching MERA

$\mathrm{D}+2$

Calculation

$$
\begin{gathered}
-\sum_{c}=-\sum_{c} \text { Constraint Hamiltonian } S|\psi\rangle=|\psi\rangle \\
\left(U S U^{\dagger}\right) U|\psi\rangle=U|\psi\rangle \\
\sigma_{i}^{z}|\psi\rangle=|\psi\rangle \Longrightarrow|\psi\rangle=\left|0_{i}\right\rangle \otimes\left|\psi_{\text {rest }}\right\rangle
\end{gathered}
$$

Summary

* Topological charges are defined as irreps of an algebra, and are manifestation of long-range entanglement.
* The cubic code model has many localized topological charges, appearing at the tip of some fractal operator.
* Unlike usual topological models, its ground state admits branching MERA (first, so far only example).

