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Cubic code

“ (Ground state is degenerate

under periodic boundary conditions.
* No local operator is capable of lifting the degeneracy.
“ Topological Excitations are point-like and immobile.

* Immobility is robust against perturbations
[Isaac Kim, JH].

* Branching MERA description.



Degeneracy

Under periodic boundary conditions
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Entanglement 1s an Invariant
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* Entanglement = invariant under local unitaries.

* Schmidt coefficients = the complete set of invariants
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* Information, thermodynamic entropy



Many-body Entanglement

* Local entanglement is washed away by local unitaries.
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= Unentangled state

* What is the characterization? What are the representatives?



(). Circuits and Correlation
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Topological Order

* Long-range correlation = Deep Q. circuit required



Topological Charge

“ A set of states related by local operators,
not necessarily unitary.

* No symmetry constraint.

Looks identical to ground state.

*

Arbitrary operator

Irrelevant to define particle type in the disk



Recall Spin

+ Higenvalue of the

Ji+J;+J7 =350 +1)

Transformations

Operator in the center
of the operator algebra.

central operator
= Spin



Topological Charge

 Operator on grey that annihilates the state
Mat(D) @ AJN
o * Transtormations
Any local term of H should commute

* Find an operator in the
center of the operator
algebra.

Looks identical to ground state.

* Eigenvalue of the
central operator =
® particle type

Arbitrary operator




In any dimensions

N
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It is a trajectory of excitations.
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Topological Order/Entanglement Witness

If it is independent of thickness,

N is in fact independent of Hamiltonians*
A / is invariant under small-depth Q. circuit.

H' / Lattice version

of Verlinde algebra

* Derived S, T matrices are properties of a bulk patch.

Hamiltonian™ = commuting projectors, local TQO
JH, 1407.2926



Extracting Numbers

Ordinary product PQ Ordinary product QP

Twist Product

Well-defined as long as intersection is separated.



Good & Bad

« Simple definition — No need to go through TQFT

# S, T (analogues) matrices are properties of a bulk patch;
They can be computed very simply.

+ No false-positive answers for long-range entanglement (topological order).
Triangular lattice cluster state under prevalent numerics gives
a false-positive answer in topological entanglement entropy.

[JH, Zou, Senthil, unpublished]
« Easy to give an algorithm — Linear algebra on the space of matrices.
* Inefficient algorithm
* Rigorous scope is limited. (Commuting++)

 No error analysis w.r.t. perturbations / finite correlation length



c.g. Toric code
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“ 4-dimensional algebra
= 4-types of topological

A / N charge

Kitaev 1997



c.g. Cubic code
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Isolating a charge
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* Self-similar pyramids can be extended

* String can be arbitrarily extended. in a special way.

 Excitations can be moved arbitrarily * A single excitation cannot

r ition
Bravyi, JH, 11054159 be moved to a nearby positio



Immobile Excitations

(W1|OT™ 1) =0 n=>1

T is a translation along any direction.
O is supported on a ball that does not touch the boundary of the system

perhaps allowed

y
e d %
—_— \' AL

+ Interaction-driven localization [Kim, JH, 1505.01480]



Braiding of extended charges




Braiding of extended charges

“ A generalized notion of braiding; it
must fatten at some point.

* Non-trivial algebra,
hence long-range entangled /
topologically ordered.

« exp(R)-dimensional algebra.
Hamiltonian-independence proot
doesn’t apply.




Wave function
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Ground state is a condensate of “fractals” or “objects.”



Generating Circuit/ Entanglement RG

* RG = Coarse-graining by eliminating smallest loops

“ Entanglement RG = Disentangling then Discarding

Exactly solvable models of topological order have ground states
that are entanglement RG fixed-points

Aguado, Vidal; Gu, Levin, Swingle, Wen (2008)



MERA

Multi-scale Entanglement Renormalization Ansatz (Vidal 2006)

- Apply quantum circuit of constant depth
24" ’ <4 Expand the lattice

Apply quantum circuit of constant depth

' ' ' . '\Expand the lattice
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Entanglement RG

JH, 1310.4507
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is a ground state of J /
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Evenbly, Vidal(1310.8372)
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Branching MERA
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Apply quantum circuit of constant depth
y Expand the lattice

Apply quantum circuit of constant depth

—Expand the lattice
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Calculation

ZI/IZ ZZ/ZI XI/IX 7XI
| b= | Constraint Hamiltonian S|y) = |¢
C IX —XI

USUNU ) = Ul
Ufw = W = |¢ = Oz X wrest

a0 6800 800 ‘ann ® codeRCl.nd
~cNot~(3, 4, 1)~clot~{4, 3, 1)~cNot~(3, 4, 1)\

. ~colOp~({4, 3, 1)~cNot~(7, 6, 1) ~cNot~ (B, 6, 1)~cNot~ (6, B, 1) ~cNot~ (5, 6, 1)\
Chilc ~cNot~(5, 8, 1) ~cNot~(8, 5, 1) ~cNot~(5, 8, 1)\

~cNot~(7, 8, 1)~cNot~(8, 7, 1} ~cNot~ (7, 8, 1)\

~colOp~(6, 5, 1)~colop~ (5, 6, 1)\

’c°1°p'(7i 8, ”'Wlop’(ga 7. l)-¢°1°P~(7: 8, 1};
sigmaCubicB? // display2

X+2 1l+x 0 0 0 0 0 0
si l1+x 1+2 O 0 0 0 0 0
X-yl+y 0 0 0 0 0 0
ley lex O 0 0 0 0 0
0 0 x+2 1+x 0 0 0 0
0 0 l1+sx 1esz O 0 0 0
0 0 x+y 1+y 0 0 0 0
0 0 l+yl+x O 0 0 0
sy
0 0 0 0 1.1 1,1 0 0
( Yy = Y
{ 0 0 0 0 1+ 1+ 0 0
x Yy
: © 0 0 0 1.} .+t 0 0
0 0 0 0 1-11-: 0 0
si 0 0 0 0 0 0 1+% 3.t
Yy = Yy
0 0 0 0 0 0 1.:1.;
0 0 0 0 0 0 x.: “:
0 0 0 0 0 0 x.:x.i

The new model bifurcates into two copies of itself,
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Summary

» Topological charges are defined as irreps of an algebra,
and are manifestation of long-range entanglement.

* The cubic code model has many localized topological
charges, appearing at the tip of some fractal operator.

* Unlike usual topological models, its ground state
admits branching MERA (first, so far only example).



