Closing the entanglement gap: Quantum information, quantum
matter, and quantum fields @ Kavli KITP, June 1-5, 2015

Surface/State Correspondence as a
Generalized Holography

Tadashi Takayanagi

Yukawa Institute for Theoretical Physics (YITP), Kyoto University

JTYTP



Based on

1] arXiv:1412.6226 (to be published in JHEP) -> QE in Boundary state
2] arXiv:1503.08161 (to be published in PTEP)-> SS-duality proposal
3] arXiv:1506.01353 (appeared last night) -> SS-duality in cMERA

Collaborators:

YITP, Kyoto: Masamichi Miyaji [1,2,3], Tokiro Numasawa [3],
Noburo Shiba [3], Kento Watanabe [3],

lllinois, Urbana—Champaign: Shinsei Ryu [1] and Xueda Wen [1].

Thanks to discussions with Horacio Casini and Xiao-liang Qi



1) Introduction

The main purpose of this talk:
developing a little forward the fascinating idea of

emergent spacetimes from tensor-networks
[Swingle 2009,...; Vidal‘s overview, Czech’s talk, Preskill‘s talk,..]

“"guantum entanglement ~ a bit of spacetime”.

MERA [Vidal 2005,... |
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Our strategy

(1) Discrete lattice models of tensor networks seem
to have lattice artifacts, which are absent in CFTs.

= Take the continuum limit directly: cMERA .

(2) Structures of tensor networks are described by
Surface/State correspondence. This is useful in cMERA.

= Employ SS-correspondence as a fundamental
principle.



Surface/State Correspondence in Tensor Network
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Codim. two convex
surface in Gravity

“ ‘(D(Z)> e H,,

Note: this procedure is well-
defined in selected tensor

networks e.g.
[Pastawski-Yoshida-Harlow-Preskill 15]
[Thanks to Xiao-Liang Qi]

Coarse
-graining
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(2 Boundary States as Unentangled States and cMERA

(2-1) cMERA [Haegeman-Osborne-Verschelde-Verstraete 11; Vidal’s review;
reformulation and AdS/CFT interpretation: Nozaki-Ryu-TT 12]

The cMERA formulation is defined by

2 =P- exp(—zj dSK(S)) ‘Q>

e —
— 0 IR state

State at scale u U =
IR

K (u): (dis)entangler at length scale~ & - ™
‘Q> :unentangled IR state

— S, =0 forany 4. = Whatis this state
in general 2d CFTs ?



Relation to (discrete) MERA Z
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By adding dummy states |0> _*® , we keep the dimension
of Hilbert space for any u to be the same.
= We can formally describe the real space RG

by a unitary transformation.



(2-2) Boundary State as Gravity Dual of Point-like Space
[Miyaji-Ryu-Wen-TT 14]

Q. A general construction of the IR states |Q> in CFTs ?

Argument 1

We can realize disentangled states (IR states |(Q)>)
< Trivial (Point-like) spaces

by performing a (infinitely) massive deformation:

H =H_., +m'"% jdde(x),

— ‘Q> = the ground state of H .

m-—» 0



Now we apply the idea of quantum quenches.

= For t<0, we assume the ground state of the massive
Hamiltonian Hm. Then at t=0, we suddenly change the

Hamiltonian into HcFT as in [Calabrese-Cardy 05,
Gravity dual: Hartman-Maldacena 10].

In this setup, the state at t=0 is identified
with the boundary state(Cardy state):

W, (t=0))=|Q)=|B).

=k

We may introduce the UV cut off like

‘Qm> oce_H/m-‘B> .




Boundary states in CFTs (assume 2d CFT)

A boundary state (Ishibashi state) : |B>

= A state which gives a conformally invariant boundary condition:

L L, |B)=o0.

k

).

In terms of the Virasoro algebra: ‘B> = Z,; ];>R

where f = (k k,,.....) represent

£ () o)

= A maximally entangled state
between left and right moving sectors !

= But, the real space entanglement is quite suppressed !



Argument 2: Correlation functions of local operators

B |

Boundary

Boundary - -

<Q ‘O(x1)0(x2)"' O(x,)
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Q) T (O(x,)).
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= When (xi-xj)>>6, there is no correlations !

= Disentangled |



Argument 3: Direct calculation of EE

For the regularized IR state ‘Q> = e 1 ‘ B >,

we can compute the EE explicitly in free fermion CFTs:
[Ugajin-TT 10]

S, = glog é+ [Finite], (o — 0).
g

Thus we can set SA ~ 0 when O ~ ¢.

Note: Boundary states can still have non-zero finite
topological entanglement.



3 SS-correspondence in AdS/CFT

[Miyaji-Numasawa-Shiba-Watanabe-TT, 2015]

Let us focus on a AdS3/CFT2 setup. It is useful to
start with the symmetry of global AdS3 space:

ds” = R*(—cosh’ pdt’ +dp” +sinh” pd¢”),
whoseisometry SL(2,R)x SL(2,R)is generatedby

Ly=i8,, Ly=20_,
Fcostha 1

Ly, = ie**™ - o_TLa,|.
4 | sinh2p & sinh2p ~ %3 i k
: 1.~ |cosh2p 1 i ]

Ly, =ie™™ a_ — 0y F =0,] .
S | sinh 2p sinh 2p +3 2



In particular, we are interested in the SL(2,R) subgroup
which preserves the time slice t=0 (i.e. H2) of the AdS3.

They are generated by / = Z_n -L, (n=0,t1),
which annihilate the boundary states.

The SL(2,R) action which maps p=0
to the point (po,@) is given by

B([ _J )
: 1~
lﬂoe 2

g(p,9)=e

U0

a’s,zj,2 = R*(dp” +sinh’ pd¢”)



cMERA for the ground state of CFT2 is formulated as:

‘O> = Pexp(— ij_o ]%(u)duj‘ Bo>-<—- boundary (Ishibashi) state

for the identity sector

If we act the SL(2,R) transformation g( 0, @) we find
0
0)=Pex| ~if K, wdu ],

where K, , () =g(p,9) - K(u) g(p,$)".
0)

u=0

AdS Boundary (u=0)



More generally, we can describe the diffeomorphism
-L, (|n|=23,.):

n~~/

by taking into account | =L,

—n

0)=Pexf ~i[’ K, (du)B,)

R, ()= g)R )3 ()" +0,8(u) g(u)",
where g(u)=exp>. & )], | with &(0)=0

We can define a dual state ‘CD(Zu)>

for any surface Zu as

[D(2,))=P expL— ij_: K, (s)dsj\BO )

= An evidence for SS-correspondence




How to describe the bulk excitation ?

We argue the following identification:

¥, (0.9) [0),..
Bulk loc;ﬁ operator
0 A
< ‘\Pa(p,¢)>CFT=Pexp(—ij_wK(p,¢)(S)dS) B,)
Ishib?si?iéate
for primary o

This is because the local operator
insertion does not change the bulk
metric (= entanglement).



We argue this state is evaluated as

2 (Lg +ZJo )

‘\POC('O’¢)>CFT zg(p,¢)-ez .Some%_\;%toff. @

SL(2,R)
IshibashiState

This satisfies the correct EOM:
AdS?)‘ \IIOC (p9 ¢? t)>CFT — O'

We can compute the information metric:

(¥, (p.0) ¥, (p+0p.p+50)) |=1- G, dx"d",

ds’ :LZ( p° +sinh” pdg”).

~c¢” (asin AdS/CFT) by choosinge ~ ¢ .



@ Surface/State Correspondence [Miyaji-TT 15]
We propose SS-correspondence for general gravity theories.

(4-1) Basic Principle
Consider Einstein gravity on a d+2 dim. spacetime M.
We argue the following correspondence:

2 : an d dim. convex space-like surface in M
t which is closed and homologically trivial

D(X))eH,

A pure state




More generally,
the quantum state dual to a convex surface 2 is

a mixed state p(2)

if 2 is open or topologically non-trivial.

Md+2

2

On the other hand, the zero size limit of Z corresponds to
the trivial state | Q> with no real space entanglement.



(4-2) Entanglement Entropy

We can naturally generalize HEE for our setup :

Hy=H,®Hy, p;=Tr[pZ)],

Area( yi )
4G,

= §;=

2A
>=xAU2JB




(4-3) Effective Entropy

By dividing the surface 2 into infinitesimally small
pieces 2=UAi , we easily find:

Area(X)
4G,

Seﬁ‘(z)EZSi —

!

We interpret this as the log of effective dim. for 2
. eﬁf
log[dimH ;" ]

This is because Pi is expected to be maximally entangled
(except the dummy states).

[cf. Differential entropy: Balasubramanian-Chowdhury-Czech-deBoer-Heller 13]



(4-4) Inner Products and Information Metric

Another intriguing physical quantity is an inner product

(Z|=') between two surfaces.
o> 2 u+du

ds® = R’du® + g, (x,u)dx"dx". @

Here focus on the two surfaces separated infinitesimally.
= Consider an information distance between them

The information metric is defined as

1= D )| ® (u+du))| = (du)’ -G



If the metric is x-independent, we have

1 Vanish
(B) _ d 2 _, Vanishes on
Guu G Lu dx \/g (x) (Ku ) . extremal surfaces
N

Example 1: a flat spacetime = G '7) = 0.
[u-Translational inv. = |® (u + du)) = |® (u))]

Example 2: an AdS spacetime [Nozaki-Ryu-TT 12]:

Vy

G =N, —&-e™ = Agrees with cMERA for CFT,,,

deg .



®B) Conclusions

CFT states with no real space entanglement are
given by boundary states. =cMERA formulation

cMERA can be generalized so that we have the
surface/state correspondence. This SS-duality looks
more general than AdS/CFT and even more general
than holography.

A bulk local operators is described by the cMERA
network starting from the boundary state (Ishibashi
state) for the corresponding primary.

[cf. Recent paper by Verlinde 2015, maybe connected via

the tensor network renormalization by Evenbly-Vidal 2015]



The SS-duality argues
Top. trivial convex surface < a pure state
Top. non-trivial surface < a mixed state

Zero size surface < boundary state
Area of surface = |og[Eff. Dimension]
(Extrinsic curvature)? = Information metric

Future problems

* Derivation of Einstein eq.

* AdS black holes
» Spacetimes without (T-like) boundary: de-Sitter spaces.

* Analysis of compact directions e.g. S5 in AdS5 X S5.



Quantum Estimation Theory

A quantum version of Cramer-Rao bound argues

((6u)*) > :

G (B) °
Mean square error uu

In the case of AdS/CFT, this leads to

2 ne Gy 1
<7>_<(5M) >2Area(2) log[dim H ] N

In the large N limit, this error is highly suppressed.
= Locality of the bulk in the large N limit ?
= Some uncertainty principle of surfaces in QG ?
<(5Area(2))2> > G, -Area(X)

[Helstrom 76]




