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Evolution ary Cell Biology

Å Evolutionary biology is not simply comparative biology, but will require 

comparative studies at both the within- and among-species levels 

ïunicellular species, prokaryotes and eukaryotes.  

Å Potential for developing a mechanistic, integrative understanding of evolution:

Biophysics ----- Population Genetics ----- Biochemistry

Å Evolution is not a simple matter of natural selection ïhow much of cellular 

evolution is driven by nonadaptive processes? 

Å The origin of all aspects of biodiversity ultimately resides at the cellular level.  

Å To what extent do the internal workings of cells constrain the evolution of 

ñexternalò phenotypes? Are there enough degrees of freedom that the 

cellular details donôt matter?

ÅWhat are cell biologyôs scaling laws, and how do we explain them? 
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Prokaryotes:Prokaryotes:

Eukaryotes:

The Origin of Gene-structure Complexity by Nonadaptive Mechanisms

ÅNearly all embellishments to gene structure impose weak mutational disadvantages. While these can be 

efficiently removed by selection in prokaryotes with large effective population sizes, they can accumulate

in an effectively neutral fashion in eukaryotes experiencing relatively high levels of random genetic drift. 

Can these general principles help explain structural features of proteins and cellular diversity?  
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The Cellular Environment
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Three Vingettes:

Å Some cell biological scaling features.

ÅIntraspecific diversity in cellular features explained by variation in the

power of random genetic drift.

ÅUnsolved issues on the higher-order structure of proteins. 



Was the Increase in Energy Produced by Mitochondria a Pre-requisite for the Evolution of Complex Cells?

Nature, 2010

Å Unclear why the appropriate total currency

is the energetic cost of running a gene.

Å Genes can be selectively promoted for

reasons that have nothing to do with

energy acquisition.

Å Need for baseline information on the

lifetime energetic requirements of a cell,

and the contributions from various cellular

features.

Å Need for an evolutionarily meaningful cost measure.



Three Levels for the Cost of a Gene:

1) Chromosome: synthesis of nucleotides for replication, and 

amino acids for nucleosomes.

2) Transcription: synthesis of ribonucleotides for steady-state 

number of transcripts.

2) Protein: synthesis of amino acids for steady-state number.

Å All measured relative to the total energy budget of the cell in units of ATP hydrolyses. 

Evolutionary consequences:

Total baseline cost: sc = sDNA + sRNA + sPRO

Net selective advantage: sn = spïsc

Å If |si| < 1/Ne (Ne = the effective population size), selection is unable to eradicate or 

promote the feature ïeffective neutrality. 

Georgi Marinov



Lifetime Energy Requirement of a Cell

Cell Volume ( m3)
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Å Scaling is nearly isometric.

Å Scaling is continuous across

the prokaryote-eukaryote divide.

Å Total ATP consumption / cell division: CT = CG + tCM, where t = cell division time (hours).

If t < 69V0.09 hours (20 C), contribution from cell growth dominates.

Å It takes ~27 x 109 ATP hydrolyses 

to build 1 µm3 of cell volume 

(an E. coli cell).

Å What dictates the slopes and

intercepts of these functions?



Cell Volume ( m
3
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Scaling of Cell-division Time With Cell Size

Equal expenditure on maintenance 

and parts replacement

Lower limit to cell division times,

tminå 0.5V
0.2 hours (at 20 C)

Å Bacterial growth rates scale

negatively with cell size, despite

having larger numbers of genes.

Å What defines the growth-rate 

speed limit?

Å What dictates the scaling of the 

speed limit with cell size?



Number of Proteins / Cell
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Number of mRNAs / Cell
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Scaling of Steady-state Numbers of mRNAs and Proteins With Cell Volume



Distribution of the Costs for All Genes in Four Species

drift barrier

Å Bacteria ïcosts are visible to natural selection at all three levels.

Å Multicellular eukaryotes ïcosts are often one to two orders of magnitude higher than in 

bacteria, but at the DNA and RNA levels are often still too small to be perceived by selection.



Costs for Average Genes in 44 Species: continuity of negative scaling between

bacteria and eukaryotes.



ÅThe Drift Barrier to Achieving Adaptive Perfection: Once the

selective advantage of improving a trait is less than the power 

of drift, 1/(2Ne), no further improvement in fitness can be

sustained. 

How far can natural selection drive an adaptation?

ÅDo cellular adaptations hit the Biophysics Barrier ïthe absolute

limits of molecular perfection?



Allelic Series (n)
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Å Selective disadvantage of a mutator = increase in genome-wide deleterious mutation rate 

Excess number of

mutations at 

equilibrium = ȹU / s 

X

Effect / mutation = s 

Total effect on 

fitness = ȹU 

s, rate of removal 

by selection

ȹU, increase in 

genome-wide rate

of deleterious

mutation

The Magnitude of Selection Operating to Improve Replication Fidelity
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DRIFT BARRIER

ÅEquilibrium mutation rate is inversely proportional to the

effective population size.

Mutation-rate classes

Population size = 105
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Analysis of Genome Stability with a Mutation-accumulation Experiment:

ÅStarting with a single stem cell, sublines are maintained by single-progeny descent, 

preventing selection from removing spontaneous mutations. 

ÅContinue for thousands of cell divisions.

ÅCharacterize by whole-genome sequencing.



Adineta                               Caenorhabditis

Chlamydomonas        Phaeodactylum               Dictyostelium

Daphnia                           Drosophila 

Rhodotorula              Ichthyosporean              Naegleria                     Paramecium

Arabidopsis Saccharomyces

Recent and Current Eukaryotic Targets of Study



Mutation-accumulation Studies in Prokaryotes

* = concurrent study with mismatch-repair deficient lines

Bacteria:

     Acidobacteria      Acidobacterium capsulatum 4.1 61.0 1328 6/1/2015

     Actinobacteria      Kineococcus radiotolerans 5.0 74.2 5000 completed

     Actinobacteria      Mycobacterium smegmatis 7.2 65.2 2340 6/1/2015

     Actinobacteria      Mycobacterium sp. 7.2 65.2 1 6/1/2015

     Alpha-proteobacteria      Agrobacterium tumefaciens 5.7 59.0 5000 completed

     Alpha-proteobacteria      Caulobacter crescentus 4.0 67.2 5000 completed

     Alpha-proteobacteria      Rhodobacter sphaeroides 4.5 68.2 4200 completed

     Beta-proteobacteria      Burkolderia cenocepacia 7.8 66.8 5000 completed

     Beta-proteobacteria      Janthinobacterium sp. 6.0 61.1 1 6/1/2015

     Gamma-proteobacteria      Photorhabdus luminescens 5.7 42.8 2000 sequencing

     Gamma-proteobacteria      Pseudomonas fluorescens* 7.1 63.3 5000 sequencing

     Gamma-proteobacteria      Shewanella putrefaciens 4.7 44.5 4000 completed

     Gamma-proteobacteria      Teredinibacter turnerae 5.2 50.9 3000 completed

     Gamma-proteobacteria      Vibrio cholerae* 4.1 47.5 5000 completed

     Gamma-proteobacteria      Vibrio fischeri* 4.3 38.3 5000 completed

     Cyanobacteria      Synechococcus elongatus 2.7 55.5 300 6/1/2015

     Deino-Thermus      Deinococcus radiodurans* 3.2 66.6 5000 completed

     Firmicute      Bacillus subtilis* 4.2 43.5 5080 completed

     Firmicute      Staphylococcus epidermidis 2.6 32.0 7000 completed

     Flavobacteria      Flavobacterium sp. 6.1 34.1 1 6/1/2015

     Lactobacillale      Lactobacillus sp. 2.9 46.4 1 6/1/2015

     Planctomycete      Gemmata obscuriglobus 9.2 67.2 500 6/1/2015

     Tenericute      Mesoplasma florum 0.8 27.0 2350 completed

Archaea:

     Euryarchaeota      Haloferax volcanii 4.0 65.5 2000 12/1/2014

Group                  Species
Genome    G/C

Size (Mb)    %        Gens.      Status
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