Time-dependence and optimal control of quantum transport

E.K.U. Gross

Max-Planck Institute for Microstructure Physics

web: http://users.physik.fu-berlin.de/~ag-gross

Broader context of topic:

Experiments shift from static to time-resolved probes

<u>Traditionally:</u>

- optical spectrum, photo-electron spectrum, oscillator strengths,....
- ionisation rates
- steady-state current in nano-scale junctions

Recently:

- time-resolved spectroscopy
- pump-probe experiments
- time-dependence of current through nano-scale junctions

Time-resolved photo-absorption experiment: Frank Willig (HMI Berlin) Much richer information, important in the design of photo-voltaic materials

• TD many-body perturbation theory (Kadanoff-Baym equation)

• TD denstity-functional theory (TD Kohn-Sham equation)

• TD wave-function approaches (TD many-body Schrödinger equation)

- TD many-body perturbation theory (Kadanoff-Baym equation)
 --theory straightforward
 --numerically difficult
- TD denstity-functional theory (TD Kohn-Sham equation)

• TD wave-function approaches (TD many-body Schrödinger equation)

- TD many-body perturbation theory (Kadanoff-Baym equation)
 --theory straightforward
 --numerically difficult
- TD denstity-functional theory (TD Kohn-Sham equation)
 --theory complicated (xc functional)
 --numerically simple
- TD wave-function approaches (TD many-body Schrödinger equation)

- TD many-body perturbation theory (Kadanoff-Baym equation)
 --theory straightforward
 --numerically difficult
- TD density-functional theory (TD Kohn-Sham equation)
 --theory complicated (xc functional)
 --numerically simple
- TD wave-function approaches (TD many-body Schrödinger equation)
 --theory known
 - --numerically very difficult
 - --most accurate of all (when feasible)

- TD many-body perturbation theory (Kadanoff-Baym equation)
 --theory straightforward
 -numerically difficult
- TD denstity-functional theory (TD Kohn-Sham equation)
 --theory complicated (xc functional)
 --numerically simple
- TD wave-function approaches (TD many-body Schrödinger equation) --theory known
 - --numerically very difficult
 - --most accurate of all (when feasible)

OUTLINE

- TDDFT approach to electron transport through nano-scale junctions
 - -- electron pumps
 - -- bound-state oscillations
 - -- TD picture of Coulomb blockade

THANKS

Stefan Kurth Gianluca Stefanucci Claudio Verdozzi Elham Khosravi Angelica Zacarias Danilo Nitsche

- Optimal control of
 - -- currents
 - -- path of wave packet in real space

Jan Werschnik Ioana Serban Esa Räsänen Alberto Castro Kevin Krieger

Angel Rubio

<u>Dream</u>: Use single molecules as basic units (transistors, diodes, ...) of electronic devices

<u>Dream</u>: Use single molecules as basic units (transistors, diodes, ...) of electronic devices

Bias between L and R is turned on: U(t) → V for large t A steady current, I, may develop as a result.

<u>Dream</u>: Use single molecules as basic units (transistors, diodes, ...) of electronic devices

Bias between L and R is turned on: $U(t) \longrightarrow V$ for large t A steady current, I, may develop as a result.

Goal 1: Calculate current-voltage characteristics I(V)

<u>Dream</u>: Use single molecules as basic units (transistors, diodes, ...) of electronic devices

Bias between L and R is turned on: $U(t) \longrightarrow V$ for large t

A steady current, I, may develop as a result.

<u>Goal 1:</u> Calculate current-voltage characteristics I(V) <u>Goal 2:</u> Analyze how steady state is reached, determine if there is steady state at all and if it is unique

<u>Dream</u>: Use single molecules as basic units (transistors, diodes, ...) of electronic devices

Bias between L and R is turned on: $U(t) \longrightarrow V$ for large t

A steady current, I, may develop as a result.

<u>Goal 1:</u> Calculate current-voltage characteristics I(V) <u>Goal 2:</u> Analyze how steady state is reached, determine if there is steady state at all and if it is unique <u>Goal 3:</u> Control path of current through molecule by laser

Control the path of the current with laser

left lead

right lead

Control the path of the current with laser

left lead

right lead

Control the path of the current with laser

<u>Necessary</u>: Algorithm to calculate shape of optimal laser pulse

Standard approach: Landauer formalism plus static DFT

$$I(V) = \frac{e}{h} \int dE T(E, V) \left[f(E - \mu_1) - f(E - \mu_2) \right]$$

Transmission function T(E,V) calculated from <u>static (ground-state) DFT</u>

$$\mu_{1,2} = E_F \mp \frac{eV}{2}$$

Chrysazine

OH

Relative Total Energies and HOMO-LUMO Gaps

OH

Chrysazine (a) 0.0 eV 3.35 eV

Chrysazine (b) 0.54 eV 3.41 eV

Chrysazine (c) 1.19 eV 3.77 eV

Motivation to develop a time-dependent approach:

Two conceptual issues:

Assumption that upon switching-on the bias a steady state is reached

Motivation to develop a time-dependent approach:

Two conceptual issues:

Assumption that upon switching-on the bias a steady state is reached

Steady state is treated with ground-state DFT

Motivation to develop a time-dependent approach:

Two conceptual issues:

Assumption that upon switching-on the bias a steady state is reached

Steady state is treated with ground-state DFT

One practical issue:

TD external fields, AC bias, laser control, etc, cannot be treated within the static approach

Molecular Electronics with TDDFT

TDKS equation (E. Runge, EKUG, PRL **52**, 997 (1984))

$$i\hbar \frac{\partial}{\partial t} \varphi_{j}(\mathbf{r}t) = \left(-\frac{\hbar^{2} \nabla^{2}}{2m} + v_{\kappa s}[\rho](\mathbf{r}t)\right) \varphi_{j}(\mathbf{r}t)$$
$$v_{\kappa s}[\rho(\mathbf{r}'t')](\mathbf{r}t) = v(\mathbf{r}t) + \int d^{3}r' \frac{\rho(\mathbf{r}'t)}{|\mathbf{r} - \mathbf{r}'|} + v_{\kappa s}[\rho(\mathbf{r}'t')](\mathbf{r}t)$$

Molecular Electronics with TDDFT

TDKS equation

$$i\frac{\partial}{\partial t}\begin{pmatrix}\phi_{L}(t)\\\phi_{C}(t)\\\phi_{R}(t)\end{pmatrix} = \begin{pmatrix}H_{LL}(t) & H_{LC}(t) & H_{LR}(t)\\H_{CL}(t) & H_{CC}(t) & H_{CR}(t)\\H_{RL}(t) & H_{RC}(t) & H_{RR}(t)\end{pmatrix}\begin{pmatrix}\phi_{L}(t)\\\phi_{C}(t)\\\phi_{R}(t)\end{pmatrix}$$

Effective TDKS Equation for the central (molecular) region

S. Kurth, G. Stefanucci, C.O. Almbladh, A. Rubio, E.K.U.G., Phys. Rev. B 72, 035308 (2005)

$$i\frac{\partial}{\partial t}\varphi_{C}(t) = H_{CC}(t)\varphi_{C}(t)$$

$$+\int_{0}^{t} dt' [H_{CL}G_{L}(t,t')H_{LC} + H_{CR}G_{R}(t,t')H_{RC}]\varphi_{C}(t')$$

$$+iH_{CL}G_{L}(t,0)\varphi_{L}(0) + iH_{CR}G_{R}(t,0)\varphi_{R}(0)$$
source term: $L \to C$ and $R \to C$ charge injection
memory term: $C \to L \to C$ and $C \to R \to C$ hopping

Numerical examples for non-interacting electrons

Recovering the Landauer steady state

Time evolution of current in response to bias switched on at time t = 0, Fermi energy $\varepsilon_F = 0.3$ a.u. Steady state coincides with Landauer formula and is reached after a few femtoseconds

ELECTRON PUMP

Device which generates a net current between two electrodes (with <u>no</u> static bias) by applying a timedependent potential in the device region

Recent experimental realization : Pumping through carbon nanotube by surface acoustic waves on piezoelectric surface (Leek et al, PRL <u>95</u>, 256802 (2005))

Experimental result:

Current goes in direction opposite to the external field !!

Bound state oscillations and memory effects

<u>Analytical</u>: G. Stefanucci, Phys. Rev. B, 195115 (2007)) <u>Numerical</u>: E. Khosravi, S. Kurth, G. Stefanucci, E.K.U.G., Appl. Phys. A**93**, 355 (2008)

If Hamiltonian of a (non-interacting) biased system in the long-time limit supports two or more bound states then current has steady, $I^{(S)}$, and dynamical, $I^{(D)}$, parts:

$$\mathbf{I}(t \to \infty) = \mathbf{I}^{(S)} + \mathbf{I}^{(D)}(t)$$

$$I^{(D)}(t) = \sum_{b,b'} \Lambda_{bb'} \sin[(\varepsilon_b - \varepsilon_{b'})t]$$

Sum over bound states of biased Hamiltonian

<u>Note</u>: - Λ_{bb} , depends on history of TD Hamiltonian (memory!)

<u>Questions</u>: -- How large is I^(D) vs I^(S)? -- How pronounced is history dependence?

History dependence of undamped oscillations

1-D model:

start with flat potential, switch on constant bias, wait until transients die out, switch on gate potential with different switching times to create two bound states

So far: systems without e-e interaction

<u>Next step</u>: TDKS, i.e. inclusion of e-e- interaction via approximate xc potential

time-dependent picture of Coulomb blockade

Model system

$$\hat{H}(t) = \hat{H}_{QD} + \sum_{\alpha=L,R} \hat{H}_{\alpha} + \hat{H}_{T} + \hat{H}_{bias}(t)$$

$$\hat{H}_{QD} = v_{ext} \sum_{\sigma} \hat{n}_{0\sigma} + U \hat{n}_{0\uparrow} \hat{n}_{0\downarrow}$$

$$\hat{H}_{\alpha}(t) = -\sum_{\sigma} \sum_{i=1}^{\infty} \left(V \hat{c}_{i+1\alpha,\sigma} \hat{c}_{i\alpha,\sigma} + h.c. \right)$$
$$\hat{H}_{\tau} = -\sum_{\sigma} \sum_{i=1}^{\infty} \left(V_{ii\alpha} \hat{c}_{i\alpha,\sigma}^{\dagger} + h.c. \right)$$

$$\mathbf{H}_{\mathrm{T}} = -\sum_{\alpha,\sigma} \sum_{i=1}^{\infty} \left(\mathbf{V}_{\mathrm{link}} \mathbf{C}_{1\alpha,\sigma}^{\dagger} \mathbf{C}_{0\sigma}^{\dagger} + \mathrm{h.c.} \right)$$

$$\hat{H}_{\text{bias}}(t) = -\sum_{\alpha,\sigma} \sum_{i=1}^{\infty} W_{\alpha}(t) \hat{n}_{i\alpha,\sigma}$$

Solve TDKS equations (instead of fully interacting problem):

$$\hat{H}_{KS}(t) = \hat{H}_{QD,KS}(t) + \sum_{\alpha=L,R} \hat{H}_{\alpha} + \hat{H}_{T} + \hat{H}_{bias}(t)$$

$$\hat{H}_{QD,KS}(t) = \sum_{\sigma} v_{KS} \left[n_0(t) \right] \hat{n}_{0\sigma}$$

$$\mathbf{n}_{0}(t) = \sum_{\sigma} \mathbf{n}_{0\sigma}(t)$$

$$\mathbf{v}_{\mathrm{KS}}\left[n_{0}\left(t\right)\right] = \mathbf{v}_{\mathrm{ext}} + \frac{1}{2}\mathbf{U}n_{0}\left(t\right) + \mathbf{v}_{\mathrm{xc}}\left[n_{0}\left(t\right)\right]$$

LDA functional for v_{xc} is available from exact Bethe-ansatz solution of the 1D Hubbard model.

N.A. Lima, M.F. Silva, L.N. Oliveira, K. Capelle, PRL 90, 146402 (2003)

$$\mathbf{v}_{xc}^{\text{LDA}}\left[n\right] = \theta\left(1-n\right)\mathbf{v}_{xc}^{(1)}\left[n\right] - \theta\left(n-1\right)\mathbf{v}_{xc}^{(1)}\left[2-n\right]$$
$$\mathbf{v}_{xc}^{(1)}\left[n\right] = -\frac{1}{2}Un - 2V_{\text{link}}\left[\cos\left(\frac{\pi n}{2}\right) - \cos\left(\frac{\pi n}{\beta}\right)\right]$$

We use this functional as Adiabatic LDA (ALDA) in the TD simulations.

Note:
$$V_{xc}^{LDA}[n]$$
 has a discontinuity at $n = 1$

Is this Coulomb blockade??

Is this Coulomb blockade??

Steady-state equation has no solution in this parameter regime (if v_{KS} has sharp discontinuity) !!

Steady-state density as function of applied bias for KS potential with smoothened discontinuity

Optimal Control Theory (OCT)

Normal question:

What happens if a system is exposed to a <u>given</u> laser pulse?

Inverse question (solved by OCT):

Which is the laser pulse that achieves a prescribed goal?

possible goals: a) system should end up in a given final state ϕ_f at the end of the pulse

b) density should follow a <u>given</u> classical trajectory r(t)

For <u>given</u> target state Φ_{f} , maximize the functional: $J_{1} = \left| \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \right|^{2} = \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \left\langle \Phi_{f} \middle| \Psi(T) \right\rangle = \left\langle \Psi(T) \middle| \hat{O} \middle| \Psi(T) \right\rangle$

For <u>given</u> target state Φ_f , maximize the functional: $J_1 = \left| \left\langle \Psi(T) \middle| \Phi_f \right\rangle \right|^2 = \left\langle \Psi(T) \middle| \Phi_f \right\rangle \left\langle \Phi_f \middle| \Psi(T) \right\rangle = \left\langle \Psi(T) \middle| \hat{O} \middle| \Psi(T) \right\rangle$ \hat{O}

For given target state Φ_f , maximize the functional:

$$\mathbf{J}_{1} = \left| \left\langle \Psi(\mathbf{T}) \middle| \Phi_{f} \right\rangle \right|^{2} = \left\langle \Psi(\mathbf{T}) \middle| \Phi_{f} \right\rangle \left\langle \Phi_{f} \right\rangle \Psi(\mathbf{T}) \right\rangle = \left\langle \Psi(\mathbf{T}) \middle| \hat{\mathbf{O}} \middle| \Psi(\mathbf{T}) \right\rangle$$

$$\hat{\mathbf{O}}$$

with the constraints:

$$\mathbf{J}_{2} = -\alpha \left[\int_{0}^{T} dt \, \varepsilon^{2}(t) - \mathbf{E}_{0} \right] \qquad \mathbf{E}_{0}$$

For given target state Φ_f , maximize the functional:

$$J_{1} = \left| \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \right|^{2} = \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \left\langle \Phi_{f} \right\rangle \Psi(T) \right\rangle = \left\langle \Psi(T) \middle| \hat{O} \middle| \Psi(T) \right\rangle$$

$$\hat{O}$$

with the constraints:

$$J_{2} = -\alpha \left[\int_{0}^{T} dt \varepsilon^{2}(t) - E_{0} \right] \qquad E_{0} = \underline{given} \text{ fluence}$$
$$J_{3}[\varepsilon, \Psi, \chi] = -2 \operatorname{Im} \int_{0}^{T} dt \left\langle \chi(t) \middle| - i\partial_{t} - \left[\hat{T} + \hat{V} - \mu \varepsilon(t) \right] \middle| \Psi(t) \right\rangle$$

For given target state $\Phi_{\rm f}\,$, maximize the functional:

$$\mathbf{J}_{1} = \left| \left\langle \Psi(\mathbf{T}) \middle| \Phi_{f} \right\rangle \right|^{2} = \left\langle \Psi(\mathbf{T}) \middle| \Phi_{f} \right\rangle \left\langle \Phi_{f} \right\rangle \Psi(\mathbf{T}) \right\rangle = \left\langle \Psi(\mathbf{T}) \middle| \hat{\mathbf{O}} \middle| \Psi(\mathbf{T}) \right\rangle$$

with the constraints:

$$J_{2} = -\alpha \left[\int_{0}^{T} dt \varepsilon^{2}(t) - E_{0} \right] \qquad E_{0} = \underline{given} \text{ fluence}$$
$$J_{3}[\varepsilon, \Psi, \chi] = -2 \operatorname{Im} \int_{0}^{T} dt \left\langle \chi(t) \middle| - i\partial_{t} - \left[\hat{T} + \hat{V} - \mu\varepsilon(t) \right] \middle| \Psi(t) \right\rangle$$

TDSE

For given target state $\Phi_f\,$, maximize the functional:

$$J_{1} = \left| \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \right|^{2} = \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \left\langle \Phi_{f} \right\rangle \Psi(T) \right\rangle = \left\langle \Psi(T) \middle| \hat{O} \middle| \Psi(T) \right\rangle$$

with the constraints:

GC

$$J_{2} = -\alpha \left[\int_{0}^{T} dt \varepsilon^{2}(t) - E_{0} \right] \qquad E_{0} = \underline{given} \text{ fluence}$$

$$J_{3}[\varepsilon, \Psi, \chi] = -2 \operatorname{Im} \int_{0}^{T} dt \left\langle \chi(t) \right| - i \partial_{t} - \left[\hat{T} + \hat{V} - \mu \varepsilon(t) \right] \left| \Psi(t) \right\rangle$$

$$PAL: \text{ Maximize } J = J_{1} + J_{2} + J_{3} \qquad TDSE$$

Set the total variation of $J = J_1 + J_2 + J_3$ equal to zero: **Control equations**

1. Schrödinger equation with initial condition:

$$\delta_{\chi}J = 0 \rightarrow i\partial_t \psi(t) = \hat{H}(t)\psi(t), \quad \psi(0) = \phi$$

2. Schrödinger equation with final condition:

$$\delta_{\psi}J = 0 \rightarrow [i\partial_t \chi(t) = \hat{H}(t)\chi(t), \quad \chi(T) = \hat{O}\psi(T)]$$

3. Field equation:

$$\delta_{\varepsilon} J = 0 \rightarrow \left[\varepsilon(t) = \frac{1}{\alpha} \operatorname{Im} \left\langle \chi(t) \left| \hat{\mu} \right| \psi(t) \right\rangle \right]$$

Set the total variation of $J = J_1 + J_2 + J_3$ equal to zero: Algorithm **Control equations** 1. Schrödinger equation with initial condition: $\delta_{\chi}J = 0 \rightarrow \left[i\partial_{t}\psi(t) = \hat{H}(t)\psi(t), \quad \psi(0) = \phi \right]$ **Forward propagation** 2. Schrödinger equation with final condition: $\delta_{\psi}J = 0 \rightarrow \left| i\partial_{t}\chi(t) = \hat{H}(t)\chi(t), \quad \chi(T) = \hat{O}\psi(T) \right|$ **Backward propagation** 3. Field equation: $\delta_{\varepsilon} J = 0 \rightarrow \left| \varepsilon(t) = \frac{1}{\alpha} \operatorname{Im} \left\langle \chi(t) \left| \hat{\mu} \right| \psi(t) \right\rangle \right|$

Algorithm monotonically convergent: W. Zhu, J. Botina, H. Rabitz, J. Chem. Phys. 108, 1953 (1998)) Time-dependent targets: I. Serban, J. Werschnik, E.K.U.G. Phys. Rev. A <u>71</u>, 053810 (2005)

Quantum ring: Control of circular current

Control of currents

E. Räsänen, A. Castro, J. Werschnik, A. Rubio, E.K.U.G., PRL 98, 157404 (2007)

SUMMARY

- **<u>Standard static DFT + Landauer approach</u>**: Chrysazine as optical switch
- **TDDFT approach to transport properties**
 - -- Electron pumping
 - -- Persistent current oscillations from transitions between bound states
 - -- Memory effect: amplitude of oscillations depends on history
 - -- TD picture of Coulomb blockade
 - -- Discontiuity of xc potential of crucial importance
- Optimal laser control of
 - -- Chirality of current in quantum rings

Thanks

Deutsche Forschungsgemeinschaft DFG

> SFB 450 SFB 658 SPP 1145