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Broader context of topic:  
Experiments shift from static to  time-resolved probes  

Traditionally:
• optical spectrum, photo-electron spectrum, oscillator strengths,….
• ionisation rates
• steady-state current in nano-scale junctions

Recently:
• time-resolved spectroscopy
• pump-probe experiments
• time-dependence of current through nano-scale junctions 
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Time-resolved photo-absorption experiment: Frank Willig
 

(HMI Berlin)
Much richer information, important in the design of photo-voltaic materials
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OUTLINE

• TDDFT approach to electron transport
through nano-scale junctions
--

 
electron

 
pumps

--
 

bound-state
 

oscillations
--

 
TD picture

 
of Coulomb

 
blockade

• Optimal control of 
--

 
currents 

--
 

path of wave packet in real space 
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left lead L central 
region C right lead R

Bias between L and R is turned on: U(t) V  for large t

A steady current, I, may develop as a result.

Goal 1:
 

Calculate current-voltage characteristics  I(V)
Goal 2:

 
Analyze how steady state is reached, 
determine if there is steady state at all and if it is unique

Goal 3:
 

Control path of current through molecule by laser

Dream: Use single molecules as basic units (transistors, 
diodes, …) of electronic devices
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Molecular Electronics

left lead right
 

lead

Control the path of the current with laser

Necessary: Algorithm to calculate shape of optimal laser pulse 



Standard approach: Landauer
 

formalism plus static DFT

left lead L central region C right lead R

( ) ( ) ( )[ ]∫ μ−−μ−=  EE V,ET dE 
h
e  )V(I 21 ff

Transmission function T(E,V) calculated
from static (ground-state) DFT
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Relative Total Energies and HOMO-LUMO Gaps
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Possible use: Optical switch

A.G. Zacarias, E.K.U. Gross, TCAC (Jan 2010)
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Two conceptual issues:
Assumption that upon switching-on the bias 
a steady state is reached

Steady state is treated with ground-state DFT

One practical issue:
TD external fields, AC bias, laser control, etc, cannot
be treated within the static approach

Motivation to develop
 

a time-dependent
 

approach:



Molecular Electronics with TDDFT

left lead L central 
region C right lead R

TDKS equation (E. Runge, EKUG, PRL 52, 997 (1984))
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Molecular Electronics with TDDFT

left lead L central 
region C right lead R

TDKS equation



Effective TDKS Equation for the central (molecular) region
S. Kurth, G. Stefanucci, C.O. Almbladh, A. Rubio, E.K.U.G., 
Phys. Rev. B 72, 035308 (2005)
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source term:   L → C  and  R → C  charge injection

memory term:   C → L → C
 

and  C → R → C hopping

( ) ( ) ( ) ( )00,tGiH00,tGiH RRCRLLCL ϕ+ϕ+   

( ) ( )[ ] ( )∫ ϕ++
t

0
CRCRCRLCLCL 'tH't,tGHH't,tGH'dt  

Note: So far, no approximation has been made. 
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left lead right leadcentral region

Numerical examples for non-interacting electrons

Recovering the Landauer steady state

Time evolution of current in response to bias switched on at time t = 0, 
Fermi energy  εF = 0.3 a.u.
Steady state coincides with Landauer formula 
and is reached after a few femtoseconds

U



ELECTRON PUMP

Device which generates a net current between two 
electrodes (with no

 
static bias) by applying a time-

 dependent potential in the device region  

Recent experimental realization : Pumping through 
carbon nanotube

 
by surface acoustic waves on 

piezoelectric surface (Leek et al, PRL 95, 256802 (2005)) 
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Pumping through a square barrier 
(of height 0.5 a.u.) using a 
travelling wave in device region
U(x,t) = Uo sin(kx-wt)
(k = 1.6 a.u., w = 0.2 a.u.
Fermi energy = 0.3 a.u.)

Patent: Archimedes (250 b.c.)



Experimental result:

Current flows in direction opposite to sound wave 



Current goes in direction opposite to the external field !!



Bound state oscillations and memory effects
Analytical: G. Stefanucci, Phys. Rev. B, 195115 (2007))
Numerical: E. Khosravi, S. Kurth, G. Stefanucci, E.K.U.G., 

Appl. Phys. A93, 355 (2008)

If Hamiltonian of a (non-interacting) biased system in the long-time 
limit supports two or more bound states then current has steady, I(S), 

and dynamical, I(D), parts:

)t(II)t(I )D()S( +=∞→

(D)
bb' b b '

b,b '
I (t) sin[( )t]= Λ ε − ε∑

Note: - Λbb’ depends on history of TD Hamiltonian (memory!)

Questions:   -- How large is  I(D)  vs I(S)?
-- How pronounced is history dependence?

Sum over bound states of biased Hamiltonian



1-D model:
start with flat potential, switch on constant bias, wait until transients die out, switch 
on gate potential with different switching times to create two bound states

note: amplitude of bound-state
oscillations may not be small 
compared to steady-state current

History dependence of undamped
 

oscillations



So far:  systems
 

without
 

e-e interaction

Next
 

step: TDKS, i.e. inclusion
 

of e-e-
 

interaction
via approximate

 
xc

 
potential

time-dependent
 

picture
 

of Coulomb
 

blockade



Model system
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Solve TDKS equations (instead of fully interacting problem):

LDA functional for vxc

 

is available from exact Bethe-ansatz
 

solution of 
the 1D Hubbard model.

N.A. Lima, M.F. Silva, L.N. Oliveira, K. Capelle, PRL 90, 146402 (2003)  



[ ] ( ) ( ) [ ] ( ) ( ) [ ]1 1LDA
xc xc xcv n 1 n v n n 1 v 2 n= θ − −θ − −

( ) [ ]1
xc link

1 n nv n Un 2V cos cos
2 2

⎡ ⎤⎛ ⎞π π⎛ ⎞= − − −⎢ ⎥⎜ ⎟⎜ ⎟ β⎝ ⎠ ⎝ ⎠⎣ ⎦

We use this functional as Adiabatic LDA (ALDA) in the TD simulations.  

[ ]LDA
xcv n has a discontinuity at n = 1  Note:  





Is this Coulomb blockade??



Is this Coulomb blockade??

Steady-state equation has no solution in this 
parameter regime (if vKS

 

has sharp discontinuity)
 

!!



Steady-state density as function of applied bias for KS potential with smoothened discontinuity 
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Normal question:

What happens if a system is exposed to a given
 

laser pulse?

Inverse question (solved by OCT):

Which is the laser pulse that achieves a prescribed goal?

Optimal Control Theory (OCT)

possible goals: a)
 

system should end up in a given
 

final state φf

 at the end of the pulse
b)

 
density should  follow a given

 
classical 

trajectory r(t)
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= given
 

fluence

with the constraints:

For given target state Φf  , maximize the functional: 
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GOAL:  Maximize  J = J1

 

+  J2

 

+  J3



Control
 

equations
1. Schrödinger equation with initial condition:

2. Schrödinger equation with final condition:

3. Field equation:

ˆ( ) ( ) ( ), (0)ti t H t tψ ψ ψ φ∂ = =
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0Jχδ = →

0Jψδ = →

0Jεδ = →

Set the total variation of  J = J1 + J2 + J3 equal to zero:
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Set the total variation of  J = J1 + J2 + J3 equal to zero:

Algorithm

Forward propagation

Backward propagation

New laser field

Algorithm monotonically convergent: W. Zhu, J. Botina, H. Rabitz,
J. Chem. Phys. 108, 1953 (1998))

Time-dependent targets: I. Serban, J. Werschnik, E.K.U.G. Phys. Rev. A 71,
053810 (2005)



Quantum ring: Control of circular current

TD-SE:

30 nm

1

1.04

1.12

1.24



Control of currents
|ψ(t)|

l = -1 l = 1

l = 0

|ψ(t)|2 j (t)j and

I ~ μA

E. Räsänen, A. Castro, J. Werschnik, A. Rubio, E.K.U.G., PRL 98, 157404 (2007)



SUMMARY

• Standard static DFT + Landauer
 

approach: Chrysazine
 

as optical switch

• TDDFT approach to transport properties

--
 

Electron pumping

--
 

Persistent current oscillations from transitions between bound states

--
 

Memory effect: amplitude of oscillations depends on history 

--
 

TD picture of Coulomb blockade

--
 

Discontiuity
 

of xc
 

potential of crucial importance

• Optimal laser control of

--
 

Chirality
 

of current in quantum rings
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