High Contrast Imaging

James R. Graham UC Berkeley KITP, March 30, 2010

Outline

- High contrast imaging for planet detection
 - Science motivation
- The two problems
 - Diffraction
 - Speckle noise
- Solutions
 - Coronagraphs & apodization
 - Wavefront control
 - Experimental methods
- State of the art and the future

Thanks to:

- M. Fitzgerald
- O. Guyon (HiCIAO/PICO)
- S. Hinkley (1640)
- P. Kalas
- M. Liu (NICI)
- B. Macintosh (GPI PI)
- M. Marley
- J. McBride

- D. Mouillet (SPHERE PS)
- B. Oppenheimer (1640)
- G. Serabyn
- M. Tamura (HiCIAO/SEEDS)

Recent Reviews

- B. Oppenheimer & S. Hinkley, (2009)
 "High-Contrast Observations in Optical and Infrared Astronomy" AARA, 47, 253
- W. Traub & B. Oppenheimer (2010)
 "Direct Imaging" in "Exoplanets" Ed. S. Seager, UofA press

Science Motivation

Why High Contrast Imaging?

- Exoplanet detection
 - Direct methods to explore beyond 5 AU
 - Spectroscopy of exoplanetary light
 - Thermal history & composition
- Circumstellar disks
 - Proto-planetary & debris disks
 - Relationship between planets & disk structures
- Fundamental stellar astrophysics
 - Large mass range main sequence binaries
 - Brown dwarfs & white dwarfs
- Mass transfer & loss
 - Cataclysmic variables, symbiotic stars & supergiants
- Solar system:
 - Jovian & Saturnian moons
 - Binary asteroids

Exoplanet Imaging

- Only about 5-10% of stars searched have planets
 - Why isn't it 50%?
- A diversity of exoplanets...
 - $\le 20\%$ of the Solar System's orbital phase space explored
 - Is the Solar System typical?
- Do A & early F stars have planets? M dwarfs?
 - Doppler is not ideal for early type stars
 - Photometric methods are not ideal for active stars
- How do planets form?
 - Core accretion vs. gravitational collapse
- New questions
 - What is the origin of dynamical diversity?

Druckmuller http://apod.nasa.gov

Reflected Starlight?

- Median contrast & angular separation for cataloged Doppler planets
 - -2×10^{-8}
 - $30 \text{ mas cf. } 3\lambda/D = 130 \text{ mas } @ H$
- 1/*r*² dimming of reflected light renders visible light coronagraphs insensitive to planets in Neptune orbits

From the ground—target selfluminous planets between 4–40 AU

Detection of Cooling Planets

- Contrast required to detect an exo-Jupiter in a 5 AU orbit in the visible is 2 × 10⁻⁹
- Near-IR contrast is 2-3 orders of magnitude more favorable
 - Radiation escapes in gaps in the CH₄ and H₂O opacity at *Y*, *J*, *H*, & *K*

Exoplanet Atmospheres

- Exoplanets occupy a unique location in (log g, T_{eff}) phase space
 - Over 4.5 Gyr a Jovian mass exoplanet traverses the locus of $H_2O \& NH_3$ cloud condensation
- "Last frontier" of classical stellar atmospheres

Solar System Imaging

- Fast alternative
 - Improved statistics
 - 4–40 AU vs. 0.4–4 AU
- Search for exoplanets > 4 AU
 - Uniqueness of solar system?
 - Sample beyond the snow line & explore outer disks
 - T Tauri disk radii are 50-80 AU
 - Do planets form by gravitational instability (30–100 AU)?
 - Traces of planetary migration
- Relation to debris disks
- Resolve *M* sin *i* ambiguity

CARMA/Isella et al. 2009

Thermal Evolution Reveals History

- Luminosity including the effects of core accretion
 - Planet is formed by 2 Myr
 - The gas accretion luminosity spike lasts about 0.04 Myr
 - The spike may be broader & dimmer due to slow accretion across the gap formed by the protoplanet
- The dashed line is a "hot start" cooling track

Where are the planets?

Assuming a semimajor axis distribution, dN/da (from Doppler) & a Euclidean space distribution dN/dr –

$$\frac{dN}{da} \propto a^{-\beta} \quad 0 < a < a_1$$
$$\frac{dN}{dr} \propto 4\pi r^2 \quad 0 < r < r_1$$

A Simple Example

• AO

- $-r_0 = 100 \text{ cm}$
- 2.5 kHz update rate
- 13 cm sub-apertures
 - R = 7 mag. limit
- Coronagraph
 - Ideal apodization
- Science camera
 - Broad band *H*
 - No speckle suppression
- Target sample
 - -R < 7 mag.
 - 1703 field stars (< 50 pc)

- Results
 - 110 exoplanets (~ 6% detection rate)
 - Semimajor axis distribution is complementary to Doppler exoplanets

A Simple Example

• AO

- $-r_0 = 100 \text{ cm}$
- 2.5 kHz update rate
- 13 cm sub-apertures
 - R = 7 mag. limit
- Coronagraph
 - Ideal apodization
- Science camera
 - Broad band *H*
 - No speckle suppression
- Target sample
 - -R < 7 mag.
 - 1703 field stars (< 50 pc)

- Results
 - 110 exoplanets (~ 6% detection rate)
 - Semimajor axis distribution is complementary to Doppler exoplanets

A Simple Example

Diffraction & Wavefront Errors

Diffraction

- The PSF drops off slowly with angle for a hard edged pupil
 - Airy function declines as θ^3 at large θ
- Basic consequence of Fourier optics
 - The smoother the pupil function, the more compact the PSF
- If a function & its first *n*-1 derivatives are continuous, its Fourier transform decreases at least as rapidly as 1/k⁽ⁿ⁺¹⁾ at large k
 - The top hat function II(x) is discontinuous (n = 0),
 - $FT[II(x)] = sinc(k) \rightarrow 1/k \text{ as } k \gg 1$
 - The triangle $\Lambda(x) = \Pi(x) * \Pi(x)$ is continuous, but its first derivative is discontinuous (*n*=1)
 - $FT[\Lambda(x)]=sinc^2(k) \rightarrow 1/k^2 \text{ as } k \gg 1$

Coronagraph Land

Pupil

Nullers

Wavefront errors

• A wavefront error, spatial frequency k, diffracts light according to the condition for constructive interference $\theta = k\lambda/2\pi$

Wavefront errors

Sivaramakrishnan et al. 2002

27

Dynamic & Static Phase Errors

PSF = dynamic atmosphere PSF (smooth) + static PSF (speckles)

Atmospheric speckles smooth out

 $10\,\mathrm{ms\,exposure}$

 $5\,\mathrm{s}\,\mathrm{exposure}$

- Atmospheric speckle lifetime ~0.5 $D_{\text{tel}}/v_{\text{wind}}$
- AO control does not modify this (even predictive...)
- WFS measurement speckles and pinned speckles have shorter lives but atmosphere speckles provide floor

Static errors do not average out

Mitigating Static Errors

- Differential imaging
 - Angular differential imaging (ADI)
 - Marois et al. 2006 (ADI)
 - Lafreniere et al. 2007 (LOCI)
 - Spectral differential imaging (SDI)
 - Sparks & Ford 2002
 - Polarization differential imaging (PDI)
 - Perrin et al. 2004
- Precision wavefront measurement & control

Marois et al 2006

HR 8799 HST/NICMOS

Raw HST

HST roll subtraction

Lafreniere et al. 2009

LOCI with PSF library

 $\sim 10 \times$ better PSF subtraction

High Contrast Campaigns

- Gemini-South/NICI (M. Liu)
 - 85 element AO curvature-based system
 - Dual channel imager/Lyot coronagraph/ADI
 - 50 nights of observing time/300 stars
 - $-\Delta H = 15$ mag. at 1"
- Palomar/Project 1640 (Oppenheimer/Hinkley/Dekaney)
 - PALAO 241 actuator SH system
 - J+H integral field spectrograph/APLC
 - Upgrade to PALM-3000
 - 100 night campaign
- Subaru/HiCIAO/SEEDS (M. Tamura)
 - AO188: Curvature-sensing AO with 188 elements
 - SCExAO1024 upgrade
 - Lyot coronagraph, PDI, SDI
 - 120 night/5-year strategic survey

High Contrast Campaigns

- VLT/SPHERE (J.-L. Beuzit)
 - High-order AO/APLC/4QPM
 - 41×41 actuator DM
 - IFS/IRDIS/ZIMPOL instruments
 - $\Delta H \approx 15.5 17.5$ mag. at 0.15-1"
 - First light 2nd half 2011
 - ~ 200 night campaign
- Gemini South (B. Macintosh)
 - High-order AO/APLC
 - 64×64 actuator MEMS DM
 - Integral field spectrometer
 - Precision interferometric wavefront control
 - $\Delta H \approx 14.5$ -18 mag. at 0.2-1"
 - First light March 2011
 - Campaign TBD

NICI Campaign: Status

- Dec 2008 Apr 2009: monthly science runs
 - 132 stars observed
- Dec 2009 May 2010: Year-2 observing
 - Observe new targets
 - Obtain 2nd epoch confirmation (or not) of candidate companions.
 - Follow-up imaging + spectra of confirmed exoplanets.

Subaru & HiCIAO

- PI: Motohide Tamura (NAOJ)
 - Co-PIs: Tomonori Usuda, Hideki Takami (NAOJ)
 - 94 scientists/24 institutes (including Princeton, UH, MPIA)
- AO, Coronagraph, Science camera: HiCIAO
 - Curvature-sensing AO with 188 elements (SCExAO1024 upgrade)
 - 20" FoV, Lyot coronagraph, PDI, SDI available.
- Commissioned 2009 (including Princeton/MPIA for angular differential imaging)
- 120 night/5-year strategic survey "SEEDS" for planets and disks now launched
- Direct imaging and census of giant planets around solartype and massive stars in the outer regions (a few - 40 AU)
- Exploring protoplanetary disks and debris disks for origin of their diversity and evolution at the same radial regions
- Links between planets and protoplanetary disks

VLT/SPHERE

Requirements for High-Contrast

- Advanced AO for good control of dynamic aberrations + external static aberrations
- Coronagraph to control diffraction to target contrast level
- Non-common-path error control
- Differential imaging
 - ADI: Cassegrain focus on Al/Az telescope
 - SDI: Integral field spectrograph
- Amplitude errors must be small (or controlled...)
- Stability

Example: Gemini Planet Imager

- 1800-actuator AO system
- Strehl ratio ~ 0.9 at *H*
- Superpolished optics & precision calibration
- APLC coronagraph
- Integral field spectrograph + polarimeter

LLNL: Project lead + AO AMNH:Coronagraph masks HIA: Optomechanical + software JPL: Interferometer WFS UCB: Project scientist UCLA: IR spectrograph UdM: Data pipeline UCSC: Final integration & test

Interferometer Measures Science Wavefront

APLC Optimized for Obscured Pupil

- *H*-band optimized
 - Additional mask for Z, J, & K
- Achromatic
 - Contrast < 10^{-7} for $1.5 1.8 \mu$ m
- Inner working angle 0.2 arc sec

Chromaticity & scintillation

- Integral field spectrograph minimizes differential chromatic errors
- Super polished optics minimize internal beam-walk and Fresnel effects (4 nm RMS, 1 nm RMS mid frequency)
- Optics maintained to CL = 300
- Transmissive optics minimized
- Atmospheric dispersion corrected early in the system

