Overview of radial velocity sitryeys and planets discoveries
 2

Michel Mayor Geneva University

- Radial velocity surveys :. an overview
- Planets around low mass stars
- An emerging population of low-mass planets
- the HARPS survey
- properties
- comparyon with giant plafets
- Perśpectives
-> Earth twin detection
- RV search: finding new Earths (limitation of RV method)

The HARPS Search for Southern Extra-Solar Planets The metal-deficient sample

PI: N. Santos Cols: M. Mayor, F. Bouchy, F. Pepe, D. Queloz, S. Udry, X. Dumusque, P. Figueira, C. Melo, S. Sousa

Sample:

~ 100 FGK dwarfs with $-0.5<[\mathrm{Fe} / \mathrm{H}]<-2.0$

Goal:

Study giant planet frequency in metal-poor domain

Results:

- 3 new giant planets in long period ($\mathrm{P}>1.5 \mathrm{yr}$) orbits (HDI7I028b, HDI8I720b, HDI90984b)
- Lower frequency rate than solar-metallicity stars
- Long period giant planets are not rare around moderately metal-poor stars?
- Still all planets in metal-rich tail of the sample

> Future (now):

- Extend study to incidence of Neptunes/Super-Earths around moderately metal-poor stars
- Further test planet formation models

The Keck/HIRES Metal-Poor Planet Search

Sozzetti, PI. Co-Is: Latham, Torres, Carney, Laird, Stefanik, Boss, Korzennik

SURVEY OUTLINE

1) 200 stars (Carney-Latham and Ryan samples), no close stellar companions, $2.0<[\mathrm{Fe} / \mathrm{H}]<-0.6$, Teff $<6000 \mathrm{~K}, \mathrm{~V}<12$
2) Reconnaissance for gas giant planets within $2 \mathbb{A U}$, to gauge the role of competing models of giant planet formation
3) Campaign duration: 3 years
4) Typical RV precision achieved: $\mathbf{5 - 1 0} \mathbf{~ m} / \mathrm{s}$

MAIN FINDINGS

A) No giant planets ($K>100 \mathrm{~m} / \mathrm{s}$) within 2 AU of metal-poor stars: confirmed and extended previous findings
B) Can say very little on low-mass ($\mathrm{K}<30 \mathrm{~m} / \mathrm{s}$) planets
C) $\sim 6 \%$ of the stars have long-period companions (follow-up with direct IR imaging to ascertain their nature)
D) Average giant planet frequency is $F_{p}<0.67 \%$ (1 σ)

Where to go from here?

E) $F_{p}(-1.0<[F e / H]<-0.5)$ a factor of several lower than $F_{p}([\mathrm{Fe} / \mathrm{H}]>0.0)$, but indistinguishable from $\mathrm{F}_{\mathrm{p}}(-0.5<[\mathrm{Fe} / \mathrm{H}]<0.0)$.
G.) $F_{p}([F e / F])$ appears bimodal, but no clear conclusion can be made. Need better statistics!

1) Expand the sample size;
2) Lower the mass sensitivity threshold;
3) Search at longer periods.

The HARPS Search for Southern Extra-Solar Planets The volume limited sample

PI: G. Lo Curto Cols:W. Benz, F. Bouchy, G. Hebrard, C. Lovis, M. Mayor, C. Moutou, D. Naef, F. Pepe, D. Queloz, N. C. Santos, D. Segransan, S. Udry

Sample

Non-active, slowly rotating dwarf stars, from F2V to M0V, within 57.5pc.

Strategy

Large survey, aiming to high detection rates with moderate RV precision. Fast observations, with a required SNR of 40 and a RV precision of $2-3 \mathrm{~m} / \mathrm{s}$.

Results

We have detected 32 extra-solar planets, 7 of them in multiple systems.

Many of our targets have yet insufficient measurements.

The survey is continuing...

Goal

Obtain high accuracy orbital elements of Jupitermass planets in a volume limited sample of the solar neighborhood.

Searching for Planets around Evolved Intermediate-Mass (1.5-5M ${ }_{\odot}$) Stars

■Okayama 1.88m, Japan (B. Sato et al.)
■300 GK giants (V<6), since 2001
$\square 10$ planets and 1 brown dwarf
■Xinglong 2.16m, China (Y.-J. Liu et al.)
-100 GK giants (V~6), since 20051 planet and 1 brown dwarf
■Bohyunsan 1.8m, Korea (I. Han et al.)
-190 GK giants (V<6.5), since 2005
-1 brown dwarf
■Subaru 8.2 m , Japan (B. Sato et al.)
$\square>200$ GK giants ($6.5<\mathrm{V}<7$), since 2006
-Tens of candidates
■RTT 1.5 m , Turkey (S. Selam et al.)
-50 GK giants (V~6.5), since 2008

Understanding properties of planets (frequency, mass, orbit, etc.) as a function of stellar properties (mass, evolutionary stage, etc.)

SOPHIE EXOPLANETS CONSORTIUM

Search for northern extrasolar planets

F. Bouchy, S. Udry, G. Hébrard, X. Delfosse, A.M. Lagrange, D. Queloz,

L. Arnold, I. Boisse, X. Bonfils, R. Diaz, A. Eggenberger, Di. Ehrenreich, T. Forveille,
C. Lovis, C. Moutou, F. Pepe, C. Perrier, A. Santerne, N. Santos, D. Ségransan, A. Vidal Madjar

1.93 m OHP telescope + SOPHIE spectrograph

 60-80 nights / semester since 2007- High precision search for super-Earths [200*]

HD43691b
HD132406b
HD45652b
θ Cygnib
HD16760b
HD147F06 $\times \mathrm{O}-3 \mathrm{r}$ HD189 5
HD80606D
HD9446b

- Giant planets survey on a volume-limited sample [2000*]
- Search for exoplanets around M-dwarfs [180*].
- Search for exoplanets around early-type M.S. stars [300*]
- Long-term follow-up of ELODIE long periods [40*] .

Bouchy et al., 2009, A\&A, 505, 853

The SDSS-III MARVELS Exoplanet Survey, 2008-2014 PI: Jian Ge (Univ. of Florida)

- A large-scale planet survey using multi-object Doppler instruments (60 objects in 08-10, 120 objects in 10-14)
-To monitor a total of $11,000 \mathrm{~V}=7.6-12$ FGK dwarfs, subgiants \& giants with minimal metallicity and age biases for detecting and characterizing ~ 150 new giant planets

Florida IR Silicon immersion grating spectromeTeter (FIRST) \& IR Exoplanet Tracker (IRET), Jian Ge (UF) \& Steve Osterman (Colorado)

IR laser comb spectral lines measured in the NIST lab, 2009

-FIRST mode with R=55,000, 1.4-1.8 um simultaneously with 2 kx 2 k H2RG
-IRET mode, $\mathrm{R}=25,000$ with a dispersed fixed delay interferometer, 0.8-1.35 um simultaneously with 2 kx 2 k H2RG
-Commissioning in Fall 2010, ~2 m/s for a H~8 M5V dwarf in 20 min
-Primary targets: M dwarfs and young stars

The Penn State - Toruń Centre for Astronomy Planet Search (PTPS)

Current PTPS collaboration:

- Penn State: A. Wolszczan, S. Gettel
- TCfA: A. Niedzielski, M. Adamów, G. Nowak, P. Zieliński

Goal: A search of ~ 1000 GK-giants for substellar companions Instrumentation:

- 9.2-m Hobby-Eberly Telescope (HET)
- High Resolution Spectrograph (HRS, R=60,000), I I2-cell Highlights:
- the most compact planet orbit around a giant (0.6 AU)
- two brown dwarf - mass companions to a giant

The NASA-UC Eta-Earth Survey for Low-mass Planets From Keck Observatory

Andrew Howard \& Geoff Marcy

- RV survey of 230 nearby GKM dwarfs
- Search for low-mass planets (Msini = 3-30 MEarth)
- Constrain population of low-mass planets and planet formation theory

Next Talk...

The HARPS Search for Southern Extra-Solar Planets The M-dwarf sample

PI: X. Bonfils Cols: Bouchy, Delfosse, Forveille, Gillon, Lovis, Mayor, Pepe, Santos, Udry, Queloz,

Sample:

~ 400 brightest M dwarfs <20 pc
Results:

- I I planets (7 hosts)
- 9/I0 of M-dwarfs planets w/ m sin $i<20$ Mearth
- lowest-mass planets (GJ 58 le ; $m \sin i=1.9$ Mearth)
- first prototype of an habitable planet (GJ 58I d)
- statistical results :
- few Jupiter-mass planets
- super-Earth are common (>30\%)

Future (now):

- 300/400 M dwarfs are screened for
- short-period (P<15 d)
- low-mass planets (>3 Mearth)
- Further test planet formation models

Goals :

Probe the dependance on stellar mass Detect low-mass \& habitable planets

GJ 58i

Bonfils et al. (2007)

2-planet Keplerian model

Parameters		GJ 674 b	Spot
P	(day)	4.7	35
e		0.2	0.2
w	(deg.)	143	113
K	(m/s)	8.7	5.06
m2 sin i	(M $\oplus)$	11.1	12.6
a	(AU)	0.039	0.147

- all planets

Around M dwarfs:

- radial velocity (Keck/Lick/AAT)
- radiar
- μ-len

Sample distributions : Masses \& Magnitudes

Signature of formation or selection bias ?
Bonfils et al. (2010, in prep.)

The HARPS search for low-mass planets

- Sample of ~ 400 slowly-rotating, nearby FGK dwarfs from the CORALIE planet-search survey

ESO-3.6m @ La Silla

- HARPS $\log \left(R^{\prime} _H K\right)=>~ ~ 250$ good targets
- Observations ongoing since 2004
- Focus on low-amplitude RV variations
=> about 50\% of HARPS GTO time

HARPS

Ida \& Lin 2008

Fig. 3.- The mass and semimajor axis distribution of extrasolar planets. Units of the mass (M_{p}) and semimajor axis (a) are earth mass $\left(M_{\oplus}\right)$ and AU . (a) The results in disks without the Σ_{g} bump due to the coupling effect of MRI activity and the ice line, (b) those with the bump in Σ_{g} but without the Σ_{d} enhancement, and (c) those with both the effects. The top panels are observational data of extrasolar planets (based on data in http://exoplanet.eu/) around stars with $M_{*}=0.8-1.25 M_{\odot}$ that were detected by the radial velocity surveys. The determined $M_{p} \sin i$ is multiplied by $1 /\langle\sin i\rangle=4 / \pi \simeq 1.27$, assuming random orientation of planetary orbital planes. The other nanels are theoretical nredictions with $M_{\omega}=0.8-1.25 \mathrm{M}$ for various values of C_{1}. The

HD 69830: A trio of Neptunes

$P 1=8.67$ days	$a=0.078 \mathrm{AU}$	M sini $=10.2 \mathrm{M}_{\text {Earth }}$
P2 $=31.6$ days	$\mathrm{a}=0.186 \mathrm{AU}$	M sini $=11.8 \mathrm{M}_{\text {Earth }}$
P3 $=197$ days	$\mathrm{a}=0.63 \mathrm{AU}$	M sini $=18.1 \mathrm{M}_{\text {Earth }}$

HARPS@3.6-m telescope, ESO La Silla

Lovis et al., Nature 2006

An emerging population of Hot Neptunes and Super-Earths

Bouchy et al. A\&A 2009

$P_{1}=1024$ days
$\mathrm{e}_{1}=0.23$
$m_{1} \operatorname{sini}=0.72 \mathrm{M}_{\text {Jup }}$
$P_{2}=9.37$ days
$\mathrm{e}_{2}=0.40$
$m_{2} \operatorname{sini}=7.5 \mathrm{M}_{\oplus}$

HD 181433
K3 IV
$\mathrm{d}=26 \mathrm{pc}$
$\mathrm{m}=8.4$
$[\mathrm{Fe} / \mathrm{H}]=+0.33$

A system with a Saturn and a Hot Neptune

A system with 3 Super-Earths

$P_{1}=4.31$ days
$\mathrm{e}_{1}=0.02$
$m_{1} \operatorname{sini}=4.3 M_{\oplus}$
$P_{2}=9.62$ days $\mathrm{e}_{2}=0.03$
$m_{2} \operatorname{sini}=6.9 M_{\oplus}$
$P_{3}=20.5$ days
$\mathrm{e}_{3}=0.04$
m_{3} sini $=9.7 M_{\oplus}$

HD 40307
K2 V
Dist 12.8 pc
[Fe/H] = -0.31
O-C $=0.85 \mathrm{~m} / \mathrm{s}$
135 observations

+ drift $=0.5 \mathrm{~m} / \mathrm{s} / \mathrm{y}$

Observations:

small mass planets everywhere?

Difficulty/Strategy to detect this population ?

- Multi-planet systems very common -> complex RV curves
- Widely different timescales involved (3 orders of magnitude in period)
- Optimal data sampling a priori unknown
- Stellar low-frequency noise varies from star to star ($\sim 0.5-2 \mathrm{~m} / \mathrm{s}$)

-> Best strategy: perform high-cadence measurements (7-10 consecutive nights)
-> Less stars, but more measurements per star
\rightarrow High frequency series of observations for >250 stars

The quest for the low-mass population

Ida \& Lin 2008
Mordasini et al. 2009
Core-accretion models predict a significant increase in population below $20-30 \mathrm{M}_{\oplus}$

Are we detecting this population ?

Are we detecting this population?

Yes!

Are we detecting this population ?

Yes !

Number of candidates with :

1) m sini $<30 \mathrm{M}_{\oplus}$
2) $\mathrm{P}<50-70$ days

Significance of periodogram peaks, F-test

Some Candidates overview (2)

$\mathrm{e}_{1}=0.16$
$m_{1} \operatorname{sini}=5.4 M_{\oplus}$
$e_{2}=0.09$
$m_{2} \operatorname{sini}=18.5 M_{\oplus}$
$e_{3}=0.27$
$m_{3} \operatorname{sini}=15.9 M_{\oplus}$

A 3-planet system with
2 Neptunes +1 super-Earth

55 observations
$\mathrm{O}-\mathrm{C}=0.8 \mathrm{~m} / \mathrm{s}$

Some Candidates overview (4): 2 planet systems

$P_{1}=44.1$ days $\mathrm{e}_{1}=0.34$
$m_{2} \operatorname{sini}=13.2 M_{\oplus}$
$P_{2}=86.9$ days
$e_{2}=0.61$
$m_{2} \operatorname{sini}=22.5 M_{\oplus}$
$P_{1}=7.44$ days $\mathrm{e}_{1}=0.65$ $m_{2} \operatorname{sini}=10.4 \mathrm{M}_{\oplus}$
$P_{2}=45.5$ days
$\mathrm{e}_{2}=0.23$
$m_{2} \operatorname{sini}=20.0 M_{\oplus}$
$P_{1}=14.07$ days
$\mathrm{e}_{1}=0.45$
$m_{2} \operatorname{sini}=15.6 M_{\oplus}$
$P_{2}=96.4$ days
$\mathrm{e}_{2}=0.23$
$m_{2} \operatorname{sini}=20.0 M_{\oplus}$

Some Candidates overview (5)

single planets

$P_{1}=39.6$ days
$\mathrm{e}_{1}=0.5$
m_{2} sini $=9.7 M_{\oplus}$

$P_{1}=38.9$ days
$\mathrm{e}_{1}=0.1$
$m_{2} \operatorname{sini}=23.1 M_{\odot}$

Some Candidates overview (6)

$P=2.34$ days
$e=0-0.2$
m sini $=5.8 \quad M_{\oplus}$

single-planet system
$P_{1}=51.59$ days
$e_{1}=0.235$
$m_{2} \operatorname{sini}=8.4 M_{\oplus}$

+ a drift

Some properties of close-in low-mass planets

3) eccentricity

- High eccentricities seem common, as for gas giants

Warning: Highly uncertain

- System with several giant planets: many resonances

Correia et al. 2008
Marcy et al. 2001

$$
\mathrm{P} 1=226 \mathrm{~d} \quad \mathrm{P} 2=334 \mathrm{~d}
$$

2:1

- Planetary multiplicity for systems with at least one Neptune/Super-Earth

Systems with Neptunes and super-Earths

 An emerging new population

Some properties of close-in low-mass planets

1) Mass distribution

Some properties of close-in low-mass planets

 1) Mass distribution- Mass distribution grows towards lower masses, as predicted by core accretion

Some properties of close-in low-mass planets

1) Mass distribution

- Mass distribution grows towards lower masses, as predicted by core accretion ()

Some properties of close-in low-mass planets

2) Period distribution

Some properties of close-in low-mass planets

2) Period distribution

- For small-mass planets, no peak at ~ 3 days. Rise to >10 days? different formation mechanism?

No host star metallicity correlation for low-mass planets ?

CORALIE giant planets

No host star metallicity correlation for low-mass planets ?

CORALIE giant planets

HARPS low-mass planets

No host star metallicity correlation for low-mass planets ?

CORALIE giant planets

HARPS low-mass planets

No host star metallicity correlation for low-mass planets ?

CORALIE giant planets

HARPS low-mass planets

Observed (M2sini - a) distribution

HARPS survey : Preliminary results

Systematic search for planets in a sample of nonactive stars .
S / N and integration time choosen to decrease photon noise and acoustic noise to a global error smaller than about $0.5 \mathrm{~m} / \mathrm{s}$

June 2009

HARPS survey: Preliminary M2sini-a distribution A not too biased view below 0.2 AU

Synthetic planet population

Nominal Model: alpha $=7 \times 10^{-3}, \mathrm{f}_{1}=0.001, \mathrm{M}=1 \mathrm{M} \odot$

The variation of the initial conditions within the observed limits (protoplanetary disk properties) produces synthetic planets of a very large diversity.

- Mass: More than four orders of magnitude
- Distance: More than two orders of magnitude.

Harps: expforation of small-mass domain.

"Completness" ($\mathrm{P}<100 \mathrm{~d}$)

Normalization
(factor 8)

Detection of Earth twins in the HZ of solar-type stars?

Pulsation noise on α Cen B and other stars

図p-modes average well on time > ~1 characteristic timescale

Pulsation noise on α Cen B and other stars

Granulation？

図Other sources of noise at lower frequencies
［図requires simulations
［㤊 Granulation（ τ～ 6 min） ［図 Mesogranulation（ $\tau \sim 3 h$ ）図 Supergranulation（ $\tau \sim 1$ day）
［函Active regions（ $\tau \sim 10$ days）

Encouraging results....

Binning effect calculated on several HARPS stars

Warning: observation strategy not optimum + instrumental effect + photon noise

- only 1 observation per night
- sparse sampling (not every night)

Dumusque et al. 2010

Dumusque et al. 2010

Dumusque et al. 2010

The HARPS Search for Southern Extra-Solar Planets

 Search for Earth-analogs around nearby stars
PI: F. Pepe Cols:W. Benz, F. Bouchy, C. Lovis, M. Mayor, D. Queloz, N. C. Santos, S. Udry

Sample

IO nearby, quiet, non-rotating, stars

Goal

Find a planet similar to the Earth in m and P

Strategy

- Observe with high time sampling ($3 x$ per night) and long exposures (15 min .) to average oscillations and granulation
- Obtain at least 50 data points per season
- Observe at least 2 - 3 seasons

High expected and measured frequency of low-mass planets

Detectability

Detectable minimum planetary mass assuming $\epsilon=0$ and aiming at $\mathrm{K} / \mathrm{rms}>2.5$ (for varying stellar magnitude and activity):

Planet discovered by Doppler spectroscopy

Planet discovered by Doppler spectroscopy

