Violence in Planet Formation Edward Wi Thommes University: Of Guelon

Exoplanets Rising Astronomy and Planetary Science at the Crossroads Kavilinstitute for Theoretical:Physics: UCO Santa Barbara, 2 April 2010
"The best way to deal with bereaucrats planets is with stealth and sudden violence:'

Butros Butros-Ghali; Former UN Secretary General

Cast

Collaborators:

- Sourav Chatterjee (Northwestern)
- Martin Duncan (Queen's)
- Natashatiolieque (Guelph now

UBC, M:SC:)

- Hal Levison (SwRI)
- Doug Lin (UCSC/KITP)

n So Soko Matsumura (Maryland
~. Makiko Nagasawa (Tokyo Tech)
- Fied Rásio (Northwestern)
afohn Russell (Guelph;M.SC)

(Guelph)

Cast

Collaborators:

* Sourav Chatterjee (Northwestern)
* Martin Duncan (Queen's)
n Natashà fiolages (Guelph; now
UBC, M.SC:
~ Hal Levison (SwRI)
a Doug Lin (UCSC/KITP)

-Soko Matsumura (Maryand)
- Makiko Nagasawa (Tokyo Tech)
a: Fred Rasio (Northwestern)
agohn Russell (Guelph M.Sc.)
natMarcivanincice (Guelph)

Special appearances by
\% Mortensen
a van Damme, ©
fonnerys
i:Asterix: \&belix
n:Thurman:
n: Willis; B.
n:Stallone, S.

- McDowell, M.

A history of violence

- Exoplanets orbits imply unruly history
- Solar System Average planetary system: or

gated community?
- Repeated theme of orderly evolution transitioning to chaos

A history of violence

gated community?

- Repeated theme of orderly evolution transitioning to chaos

Dynamical instability models

- Rasio \& Ford (1996) scattering among exoplanets may produce high eccentricities shortperiod orbits
- Subsequent work:
- Simple scatterng reproduces exoplanet edistribution qúte well (Uuric \& Temane 2008
Chatteree et al: 2008),
systems need only be "dynamicaly active"
- Nagasawa; Ida \& Bessho (2008): scattering + Kozai+tidal circularization=hot Jupiters

Juric \& Tremaine (2008)

Dynamical instability models

Dynamical instability models

- Rasio \& Ford (1996): scattering among exoplanets may produce high eccentricities; short-period orbits
- Subsequent work:
- Simple scattering reproduces exoplanet e distribution qúte well (Juric \& Tremaine 2008 , Chatteriee et al: 2008), systems need only be "dynamically active"
- Nagasawa Ida \& Bessho (2008): scattering + Kozai+ tidal circularization=hot Jupiters

Rasio

Juric \& Tremaine (2008)

Violence in the

- Scattering origin for Uranus and Neptune (Thommes, Duncañ: \& Levison, Natưre 1999)
- ice giants form in upipiter Saturnzone, simply fatiled cores" scattered out when Jupiter/Saturn accrete gás.
- dynamical friction with
planetesimal disk re circularizés scattered córes

4 addresses problem of prohibitive formation time at $20+\mathrm{AU}$

Violence in the

System?

* Scattering origin for Uranus and Neptune (Thommes; Duncan: \& Levison, Nature 1999)
x ice giants form in upiter Saturn zone, simply fatied cores" scattered out when Jupiter/Saturnaccrete gas
a dynamical friction with planetesimal diskre circularizes scattered cores
-adaresses problem of prohibitive formation time at $20+\mathrm{AU}$
$t=0.000 \mathrm{E}+00$

Thommes, Duncan \& Levison 1999

Violence in the

System?

* Scattering origin for Uranus and Neptune (Thommes; Duncan: \& Levison, Nature 1999)
x ice giants form in upiter Saturn zone, simply fatied cores" scattered out when Jupiter/Saturnaccrete gas
a dynamical friction with planetesimal diskre circularizes scattered cores
-adaresses problem of prohibitive formation time at $20+\mathrm{AU}$
$t=0.000 \mathrm{E}+00$

Thommes, Duncan \& Levison 1999

Violence in the Sola

System?

Violence in the

System?

- Scattering origin for Uranus and Neptune (Thommes, Duncan \& Levison, Nature 1999)
* ice giants form in JupiterSaturn zone, simply ffailed cores" scattered out when Jupiter/Saturn accrete gas
* dynamical friction with
planetesimal disk recircularizes scattered cores
- addresses problem of prohibitive formation time at $20+A U$

Thommes, Duncan \& Levison 1999

Solar System violence II: The Late Heavy Bombardment

^ "Nice" model: Gomes et al., Nature 2005)

1. start with initially-compact Solar System of Thommes et al (1999)
2.2....make it remain compact for 700 Myrs
2. \%. and have it blow apart when Jupiter and Saturn divergently cross their 2:1 resonance (Peale 1986, Chiang, Fischer \& Thommes 2002)

3:-Problem: 2 needs significant fine tuning
-. Fix: lock everything into stabilizing mean: motion resonances (Morbidelli et al: 2007 Thommes et al: 2008)
**?: still difficult to assemble; but at least 700 Myr stability becomes plausible
*: generalized version of mechanism may break MMRs, produce high eccentricities at late times in exoplanetary systems

Gomes et al. 1999 (Thommes et al. 2008)

Solar System violence II: The Late Heavy Bombardment

^ "Nice" model: Gomes et al., Nature 2005)

1. start with initially-compact Solar System of Thommes et al (1999)
2.2....make it remain compact for 700 Myrs
2. \%. and have it blow apart when Jupiter and Saturn divergently cross their 2:1 resonance (Peale 1986, Chiang, Fischer \& Thommes 2002)

3:-Problem: 2 needs significant fine tuning
-. Fix: lock everything into stabilizing mean: motion resonances (Morbidelli et al: 2007 Thommes et al: 2008)
**?: still difficult to assemble; but at least 700 Myr stability becomes plausible
*: generalized version of mechanism may break MMRs, produce high eccentricities at late times in exoplanetary systems

Gomes et al. 1999 (Thommes et al. 2008)

Solar Systen violence II: The Late Heavy Bombardment

" "Nice" model: Gomes et al., Nature 2005)

1. start with initially-compact Solar System
of Thommes et al (1999)
2.2....make it remain compact for 700 Myrs
2. -...and have it blow apart when Jupiter and Saturn divergently cross their 2:1 resonance (Peale 1986, Chiang, Fischer \& Thommes 2002)

Y:3: Problem: 2 needs significant fine-tuning
\#.Fix: lock everything into stabilizing meanmotion resonances (Morbidelli et al: 2007
Thommes et al: 2008)

- 3 itill difficult to assemble, but at least 700 Myr stability becomes plausible
- .\%.generalized version of mechanism may
 break MMRs, produce high eccentricities at late times in exoplanetary systems (Thommes et al. 2008)

Solar System violence III: Terrestrial planets by "dynamical shakeup"

- Nagasawa, Lin \& Thommes (2005), Thommes, Nagasawa \& Lin (2008)
* V_{5} secular resonance of exterior gas giant sweeps inward as gas disk dissipates
- Eccentricities of terrestrial protoplanets excited
a mergers happen rapidly
- 5 :inward migration as eccentricities damped
a The "giant impact" stage of terrestrial planet formation can play out in just a few 10s of Myrs (vs several 100 Myrs in: standard model)

Solar System violence III: Terrestrial planets by "dynamical shakeup"

- Nagasawa, Lin \& Thommes (2005), Thommes, Nagasawa \& Lin (2008)
- $\quad \mathbf{V}_{5}$ secular resonance of exterior gas giant sweeps inward as gas disk dissipates
- Eccentricities of terrestrial protoplanets excited
* mergers happen rapidly
* : in ward migration as eccentricities
damped
- -The "giant impact" stage of terrestrial planet formation can play out in just a few 10s of Myrs (vs several 100 Myrs in standard model)
*:Type l effects of remnant gas produce low, Solar System-ike eccentricities

Giant planet violence: Runaway cores

- Latest semianalytic oligarchic growth model successfully produces cores (Chambers 2008).
* But N-body study (Levison, Thommes \& Duncan 2010) shows new wrinkles:
* major planetesimal
redistribution by embryos;
smooth plsml disk assumption
oversimplified
- cores grow in rapid drunaway migration" modes
* mode seem to require embro size distribution
- fragmentation usually bad, unless fragment size $\in[3 \mathrm{~m}, 30 \mathrm{~m}]$

Levison; Thommes \& Duncan 2010

Giant planet violence:

Runaway cores

* Latest semianalytic oligarchic growth model successfully produces cores (Chambers 2008).
* But N-body study (Levison, Thommes \& Duncan 2010) shows new wrinkles:
* major planetesimal
redistribution by embryos;
smooth plsml disk assumption
oversimplified
a cores grow in rapid runaway migration" modes
* mode seem to require embro size distribution
* fragmentation usually bad, unless fragment size $\in[3 \mathrm{~m}, 30 \mathrm{~m}]$

Levison, Thommes \& Duncan 2010

Giant planet violence:

Runaway cores

* Latest semianalytic oligarchic growth model successfully produces cores (Chambers 2008)
* But N-body study (Levison, Thommes \& Duncan 2010) shows new wrinkles:
- major planetesimal redistribution by embryos; smooth plsml disk assumption oversimplified
- cores grow in rapid "runaway migration" modes
* mode seem to require embro size distribution
* fragmentation usually bad, unless fragment size $\in[3 \mathrm{~m}, 30 \mathrm{~m}]$

Levison, Thommes \& Duncan 2010

Simulating planetary system

 formation in general
Simulating planetary system

formation in general

- Full 2d/3d hydrodynamic simulations: è.g. Artymowicz, Bryden, Edgar, Klahr, Kley, Lin; Lubow, Masset, Nelson, Papaloizou, Quillen, Rice, Tanigawa; Varnière, Watanabe.
*. all the physics, but high computational cost; only short "snapshots": possible:
n. N -body with simple "disk forces"
- Early stages Kokubo \& Idaz2002:Thommes, Duncan \& Levison 2003 (gas drag only; type lilinot incl.)
Y. type ll regime e.g. Lee \& Peale 2002; Adams \& Laughlin 2003; Thommes \& Lissauer 2003 Moorhead \& Adams 2005 Lee; Thommes \& Rasio 2008, MH Lee \& Thommes 2009
3.: Monte Carlo calculations of a planet in a disk
*:Early stages (cores, type I migration): Alibert et al. (2005), Thommes \& Murray (2006), Thommes, Nilsson \& Mürray (2007)
- From beginning to end: Ida \& Lin (2004a, b, 2005, 2008), Mordasini et al. (2009)

Mordasini, Alibert et al.

Ida \& Lin

Thommes, Matsumura \& Rasio (Science 2008): A hybrid N-body + gas disk code:

- Further development of Thommes (2005) code
- N-body part: SyMBA symplecticintegrator (Duncan Levison \& Lee 1998)
- Gas disk: 1-d alpha viscosity
- Planet-disk torques

- Linear regime (type I) migration rate fromTanakatakeuch \& Ward (2002)

2 Nonlinear regime (type II): planet disk torque density (Goldreich \& Tremaine 1980, Ward 1997)

$$
\frac{\partial \Sigma_{\mathrm{gas}}}{\partial t}=\frac{1}{r} \frac{\partial}{\partial r}\left[3 r^{1 / 2} \frac{\partial}{\partial r}\left(\nu \Sigma_{\mathrm{gas}} r^{1 / 2}\right)-\frac{r^{1 / 2}}{\pi \sqrt{G M_{*}}}\right.
$$

where $\partial T / \partial r$ is the torque density experienced by the disk
mass $M=\mu M_{*}$ and orbital radius r_{p} :

$$
\frac{\partial T}{\partial r}=\operatorname{sgn}\left(r-r_{p}\right) \frac{2 \mu^{2} \Sigma_{\mathrm{gas}} r_{p}^{4} \Omega_{p}^{4}}{r\left(1+4 \xi^{2}\right) \kappa^{2}} m^{4} \psi^{2}
$$

-Early core accretion fit to Pollack et al. (1996), like Bryden et al. (2000)
2. Later: fit to hydro simulations (Tanigawa \& Watanabe 2002). See Machida et al. (2010) for latest..:
D. Solids accretion Oligarchic growth (Kokubo \& Ida 1998) with gasenvelope enhancement, scaled to Chambers (2006)
[... x Can model life of a typical protostellar disk in 1-2 weeks.

0 Myrs
e; i (rad) i (deg)

Thommes et al, Science '08

0 Myrs
e; i (rad) i (deg)

Thommes et al, Science ‘08

0 Myrs
e; i (rad) i (deg)

Thommes et al, Science ‘08

- Of order 10\% Solar System analogues (cf. Scott Gaudi's talk)
- Compositional evidence for late formation of Jupiter (Guillot \& Hueso 2006)

- Of order 10\% Solar System analogues (cf. Scott Gaudi's talk)
- Compositional evidence for late formation of Jupiter (Guillot \& Hueso 2006)

Distant giant planets

- Fomalhaut b:
- Kalas et al. (2008): companion at ~115 AU
- <3 Mup (Marengo et al. 2000, Chiang et al. 2009)
- low eccentricity, e~0.1

- HR 8799: Marois et al. (2008)
- d: $24 \mathrm{AU}, 10 \mathrm{Mjup}_{\mathrm{jup}}$
- c: 38 AU, $10 \mathrm{M}_{\text {jup }}$
- b: 68 AU, 7 M jup $^{\text {up }}$
- ...and all e <0.4
- 1RXS J160929.1-210524

- Lafreniere et al. (2008): 330 AU, ~8 Mjup

How the \$\#@\& do you grow something like this?!?

- in-situ core accretion? : Not beyond 35 AU (DodsonRobinson et al. 2009)
- post-formation outward migration...?
- ...by planetesimal scattering (Hahn \& Malhotra 1999 Gomes et al. 2005)? © Not enough plsml mass
- ...by type III? :() Too short-range (Peplinski et al. 2008), anyway not applicable for $\mathrm{M}>\mathrm{M}_{\text {jup }}$
- ...of 2 planets sharing a gap (Masset \& Snellgrove 2001, Crida et al. 2009)? (2 Requires non-accreting planets
- post-formation scattering? © Stable orbits unlikely (Dodson-Robinson et al. 2009)
- direct gravitational instability? Easier at large r but still problematic (cf. Lucio Mayer's talk)

Alfernative: (i) scatter cores (ii) cores accrete gas

- "Underappreciated" Neptunes (cf. David Stevenson's talk) to the rescue!
- Advantages:
- Cores easily scattered
- At large radius, core's planetesimal accretion choked off \rightarrow facilitates runaway gas accretion (Pollack et al. 1996, Ikoma et al. 2000)

Alfernative: (i) scatter cores (ii) cores accrete gas

- "Underappreciated" Neptunes (cf. David Stevenson's talk) to the rescue!
- Advantages:
- Cores easily scattered
- At large radius, core's planetesimal accretion choked off \rightarrow facilitates runaway gas accretion (Pollack et al. 1996, Ikoma et al. 2000)

An HR 8799 analogue

Thommes, Russell \& Holmes
D. FARGO 2-D planet-disk hydrocode (Masset 2000, http://fargo.in2p3.fr/)

- Accretion scheme modified for core accretion (initially much slower!)
- Initial conditions: 1.5 Msun star, cores of $10-20$ Merrh, one with head start, 300 AU radius disk, total mass ~ 0.03 Msuriv $\alpha=0.01$

An HR 8799 analogue

Thommes, Russell \& Holmes
-.FARGO 2-D planet-disk hydrocode (Masset 2000, http://fargo.in2p3.fr/)
-Accretion scheme modified for core accretion (initially much slower!)
-. Initial conditions: 1.5 M sun star, cores of $10-20 \mathrm{M}$ Earth, one with head start, 300 AU radius disk, total mass $\sim 0.03 \mathrm{M}_{\text {sun }} \alpha=0.01$

- Initial conditions: 2 M sunstar, single $15 \mathrm{M}_{\text {Earth }}$ core with peri=10 AU, apo $=1000 \mathrm{AU}$ (post-scattering), 300 AU radius disk, total mass $\sim 0.01 \mathrm{M}$ sun, $\alpha=0.01$

...and Fomalhaut b

Thommes, Russell \& Holmes

- Initial conditions: 2 Msun star single 15 M Earth core with peri=10 AU, apo $=1000 \mathrm{AU}$ (post-scattering) 300 AU radius disk, total mass $\sim 0.01 \mathrm{M}$ sun, $\alpha=0.01$

...and Fomalhaut b

Summary

This work supported by NSERC, SHARCNET, Spitzer Theoretical Research Program, NSF

Summary

This work supported by NSERC, SHARCNET, Spitzer Theoretical Research Program, NSF

How we plot the output: Example "movie frame"

Gas disk surface density
"Afterimage" of planets removed at inner edge (label: Earth masses, total)

Planetary gas envelope (label: Earth masses)

Planetary solid core (label: Earth masses)

> ore ses)

