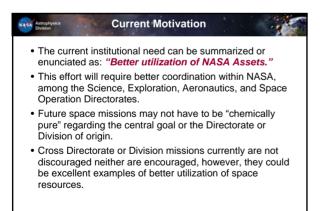
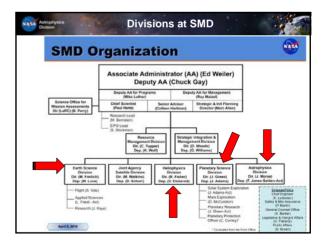


Astrophysics with Solar System Missions and The New Horizon Case


Mario R. Perez NASA Headquarters Astrophysics Division 05.19.2010


Exoplanet Science Measurements from Solar System Probes Workshop – Kavli Institute for Theoretical Physics - UCSB

- From the beginning, space flight has attempted to accomplish science objectives. These accomplishments were either serendipitous or had some modest goals.
 - Starting with 1962 rocket flights, gamma-ray and x-ray detectors observed the fluorescence of the Moon; detected x-ray background and Sco X-1.
 - In 1967-1973 the Vela satellites discovered gamma-ray bursts.
 - In 1967 OSO-3 discovered x-ray flares and background detection.
 - In the APOLLO era many discoveries: UV imaging, cosmic ray data, limits on violation of GR, etc. ("Man's Role in the National Space Program," Committee on Aeronautical and Space Sciences).
- See graphical topical review by Virginia Trimble, presented at the workshop "View from 5 AU" (UC Irvine, March 25/26, 2010 at http://www.physics.uci.edu/5AU/)
- The most successful and well-known results of planetary probes observing astronomical targets are from Voyager 1 and 2 (UVS: 500-1700 Å) of ultraviolet spectra of galactic sources.

2

Astrophysics Division Themes

Science Goals

- There are many new science objectives, which are being identified for investigations at large heliocentric distances, d > 5 - 40 AU
- These notional objectives map well into the three astrophysics science themes (examples):
 - Exoplanet Exploration
 - Nature, distribution and origin of the dust and exo-zodi in a HZ; transits, microlensing events, Kuiper belts objs
 - Cosmic Origins
 - · Study of diffuse light in our Galaxy
 - . Physics of the Cosmos
 - Detecting the signature of recombination via measurements of the extragalactic background

Astrophysics Activities

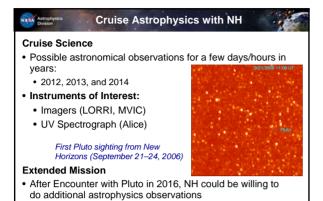
Recent Events

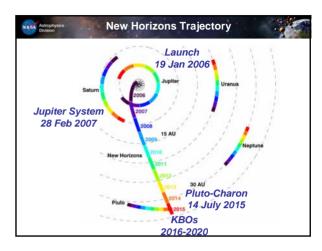
- EPOXI The extended mission of Deep Impact (Planetary Division; PI: Mike A'Hearn, UMd) has been dedicated to do astronomical measurements by doing remote sensing of exoplanets and of the Earth, as an exoplanet analog, Drake Deming, PI EPOCH, GSFC.
- Cassini NASA competed investigations to conduct astronomical observations. A PI team was awarded a grant to secure data and analyze parallax images of star fields.
- Rosetta ESA mission In September 2009, there was a request to NASA HQ to secure time critical observations of a "microlens parallax" event solicited by colleagues at OSU. Good reception by ESA but unsuccessful due to operational constraints of the mission.
- Focus Initiative. About a year ago, Jon Morse, Division Director, assigned a staff member in the Astrophysics Division (MRP) to investigate using planetary probes to conduct cruise science observations. Several missions have been contacted.

Planetary Missions

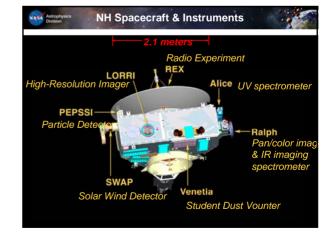
- Dawn PI will not consider doing any astrophysical observations.
- New Horizons PI was interested in exploring options (see next few viewgraphs).
- Juno Will be launched in August 2011. First PI mission that was selected invoking three Science Decadal Surveys (i.e., Astrophysics, Planetary and Heliophysics => High relevance for NASA). Juno is a joint mission between the Heliophysics and the Planetary Divisions.

New Horizons Possibilities


Pending Decisions After Many Negotiations


From NH:

- 1. The PI will form a group to more carefully assess the possibility of using NH for astrophysics objectives.
- NH Management and HQ will setup a meeting in the Sep-Nov 2010 timeframe, to discuss this topic further, after the group identified in (1) has completed its task.


From HQ:

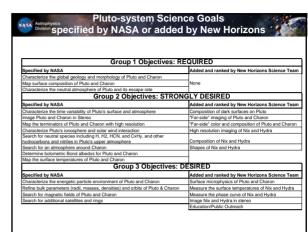
1. Depending on the availability of funds (research grants and NH operations), a decision will be made regarding competing some limited cruise science as a ROSES element.

Alice	UV Spectrometer	> 46.5-188.0 nm, 0.3 nm resolution		
Alice	Multispectral Visible Imaging Camera (pan/color imager)	> FOV 4" x 0.1" "slot" and 2" x 2" "box", 5 mrad/pixel > airglow & occultation capabilities > Panchromatic (350-850 mm) & 4-color (Blue, Red, CH ₄ , Near-II > FOV 5.7" x 0.15" or 5.7" x scan length, 20 microrad		
Ralph/ MVIC				
Ralph/ LEISA	Linear Etalon Imaging Spectral Array (IR Imaging spectrometer)	FOV 0.9° x 0.9° (scanned), 62 microrad/pixel		
LORRI	LOng-Range Reconnaissance Imager (High-Resolution Imager)	> Panchromatic (350-850 nm) > FOV 0.29° x 0.29° , 5 microrad/pixel > 1024 x 1024 CCD, 12 bit, texp = 1ms − 30s in 1ms steps > S/N=7 for V=12 in 100ms and for V=17.5 in 10s (4x4 rebin)		
REX	Radio science EXperiment (Uplink, Radiometery)	Part of telecommunications systems, with 2.1 m antenna X-band (7.182 GHz uplink, 8.438 GHz downlink)		
SWAP	Solar WInd at Pluto (solar wind detector)	> 0.25-7.5 KeV. RPA: 0.5V (<1.5 keV), ESA: ΔΕ/E=0.4 (>1.4 keV) > FOV 200° x 10°		
PEPSSI	Pluto Energetic Particle Spectrometer Science Investigation (particle detector)	> e~: 25-500 KeV, Protons: 40-500 KeV, CNO: 150-1000 KeV > FOC 160° x 12° , 25° x 12° resolution		
SDC	In Situ Dust Counter	> 0.10 m² active area, > Threshold Mass ~10 ⁻¹² gram (~1 micron)		

Constraints for "Astrophysics Support"

- NH has small Ops Team (~10 FTE) with hands full already running NH, planning and executing ACOs, and planning and testing the Pluto Encounter activities
 - Astrophysics objectives would require additional MOPS support (money)
- · Certain resources are limited and must be managed:
 - Thruster cycles (need to maintain enough margin for Pluto and KBOs)
 - Fuel (hydrazine needed for Pluto activities, for TCMs to target KBOs)
 - Data downlink (max downlink rate is ~2 kbps and DSN time is limited)
- Operating the imagers (LORRI and/or Ralph) or the UV spectrograph (Alice) before the Pluto Encounter may increase the risk that they may fail or have reduced performance (e.g., less sensitivity)
 - Alice Team is already concerned about too many counts from photocathode
- After the Pluto Encounter, there should be more flexibility for performing Astrophysics objectives during the Extended Mission
 - Cruise Science must still fit within the available resources and risk posture, as set by NASA's Planetary Science Division

Distance (pc)	Domain	Ground Telescopes	Purposes	Missions
0-25	Solar neighborhood (galactic arm)	~ 6m	Characterization of exoplanets. About ~ 1,000 targets	TPF, SIM, TES JWST
120-160	Star formation regions (Taurus, Auriga, Ophiucus, Lupus, etc)	~ 30-42m	Understanding of planet formation	Plato (ESA)
500-1,000	Distant star formation regions (Cygnus, Lyrae)	~ 30-42m (Keck 10m)	Statistical studies of $\eta_{\rm Earth}$ and planet frequency	Kepler
				18



- - · Joint Keck/IRTF Mission Operations and Working Group (MOWG).
 - · Keck is funded and operated by Astrophysics Division but Solar Physics and Planetary observations are permitted and encouraged.
 - IRTF is funded and operated by Planetary Division and Astrophysical observations are permitted and tolerated.
 - · R&A Programs Collaborations:
 - Origins of the Solar System (Planetary and Astrophysics)
 - · Planetary Atmospheres (Planetary with large Astrophysics
 - Explorer Program, Rocket and Balloon Programs:
 - · Collaborations between Heliophysics and Astrophysics

- · Upcoming Opportunities: Discovery, New Frontiers, Explorer
- Example: Program "Characterizing the Earth as an Exoplanet"
 - Potential Divisions involved: Heliophysics (Living with a Star), Earth Sciences, Planetary & Astrophysics
- Missions of Opportunities within Astrophysics
 - To fund and support instrumentation for NASA and ESA Planetary Probes
- What about DOE and DoD space missions?
 - Dual Science and Global Situational Awareness
- Get the science drivers for astrophysics at d > 5-40 AU, enunciated by a panel of the National Academy of Sciences

