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with stellar mass
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roughly linearly with the available mass, albeit for a fixed stellar
mass, and we independently found the same result for M? ¼
0:4 M". In fact, Kokubo et al. (2006) found a slightly stronger
than linear correlation,Mpl / M0:97#1:1

disk . Figure 2 shows that the
mean interplanetary spacing decreases somewhat for lower mass
stars and that there are slightly more planets for the lower mass
stars. We know that the total mass in the habitable zone,MHZ, is
equal to the number of planets,N, times the average planet mass,
Mpl. Our simulations suggest that N / M#0:1

HZ or so. Indeed, a
model with Mpl / M 1:1

HZ provides a fit that is comparable to the
one in Figure 2. However, for the remainder of the paper we as-
sume that Mpl / MHZ (eq. [2]). The reason for this assumption
has to do with the goals of the paper. We are attempting to con-
strain the locations inM?-h-f Z parameter space that might harbor
potentially habitable planets with Mpl $ 0:3 M%. To be conserva-
tive in our evaluations, we prefer to slightly overestimate, rather
than underestimate,Mpl. The difference between the two estimates
is negligible for larger stellar masses, but is as much as &40%
below 0.1 M".

The planet mass decreases monotonically with stellar mass for
all reasonable parameter values (eq. [2]; Fig. 3), with a scatter in
the details of a given system based on the stochastic nature of the
accretion process (e.g., Wetherill 1996). Only for very steep den-
sity profiles (! > 2) or reversed disk mass scalings (h< 0) can
the planet mass increase at lower stellar masses. These effects are
the result of the strong dependence of the HZ’s location on stel-
lar luminosity and therefore on stellar mass. For a given value of
f, Z, !, and h, there exists a stellar mass limit below which the
formation of a >0.3 M% planet in the HZ is unlikely. For ! ¼ 1
and h¼ 1, this limit ranges from 1M" for f Z < 0:3 to 0.74M"
for f Z ¼ 1 to 0.43M" for f Z ¼ 5. These limits clearly depend on
the critical mass for habitability; for instance, the limit is 0.53M"
for the f Z ¼ 1 case if the critical habitable mass is 0.1M%. Recall
that f Z represents a scaling of the disk mass, i.e., the disk’s rel-
ative mass f times the relative abundance of solids, assumed to
scale with the stellar metallicity Z.

Figure 4 shows the location in M?-f Z space where planets
>0.3 M% can form in the HZ, assuming ! ¼ 1. Each curve cor-
responds to a given value of h; planets >0.3M% form above and

to the right of each curve. More massive or metal-rich disks can
form habitable planets around lower mass stars. In addition, it is
easier to form >0.3M% planets in the HZ for more centrally con-
densed disks, i.e., for larger values of ! (not shown inFig. 4).Given
the large amount of variation in f Z and other uncertainties, we do
not consider these limits to be firm. However, given the large un-
certainties and expected variation in f and other parameters, we do
not consider these limits to be meaningful except in a statistical
sense. For an ensemble of disks, the fraction of >0.3M% planets
that form decreases significantly for low-mass stars. A probabilistic
version of the mass limit estimate is discussed further in x 4.

3.2. Formation Timescales and Planetary Water Contents

Figure 5 shows the mean formation timescales for HZ planets
in our simulations. Around 0.2M" stars, terrestrial planets in theHZ
form in a fewMyr. This increases to 20Y50Myr for Sun-like stars,

Fig. 3.—Mass of planets formed in the HZ as a function of stellar mass, for a
model with h¼ 1,! ¼ 1, and f Z ¼ 1:2 (so that the mean planet mass for a 1M"
star is 1 M%). Error bars represent the range of values for HZ planets. The solid
curve represents a model in which the HZ planet mass scales linearly with the total
annular mass in the HZ. The shaded region represents reasonable estimates of the
limiting planet mass for habitability (0.1Y0.5M%); our chosen value of 0.3M% is
indicated by the dashed line.

Fig. 4.—Regions ofM?-f Z space in which habitable planets more massive that
0.3M% can form, assuming ! ¼ 1, for three different values of h. Planets larger
than 0.3 M% can form above and to the right of each curve.

Fig. 5.—Formation times of HZ planets in our simulations. Different symbols
correspond to the time for a planet to reach a fraction (50%, 75%, or 90%) of its
final mass. Shaded regions show estimates for the formation time of the Earth,
derived fromHf /W isotopic measurements (e.g., Jacobsen 2005). The dotted line
corresponds to a simple estimate from Safronov (1969), assuming that the forma-
tion time scales inversely with the product of the orbital frequency and the local
surface density. The dashed line represents a different, simple model in which the
formation time scales inversely as the product of the orbital velocity and the local
surface density. Both estimates are referenced to 50 Myr for 1 M".
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Expectation: Habitable zone planets 
around M stars are small and dry

Raymond+ 2007, Lissauer 2007
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Planet occurrence decreases with 
effective temperature 

Howard+ 2012



Spectral type as proxy for Stellar Mass

Huber+ 2014, Dressing & Charbonneau 2013



Same spatial distribution: 
Low-mass stars have more planets!

Mulders et al. 2015a
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Low-mass stars have more sub-
Neptunes
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Figure 10. Planet occurrence rate as a function of stellar effective temperature for planets with orbital periods shorter than
10 days and radii between 0.5 and 2.5R⊕. The measurements from our Monte Carlo analysis are shown as box-and-whisker
plots (see Figure 9), where the blue line indicates the median value, the blue dots are the 16th and 84th percentiles of the
distributions, and the box width corresponds to the temperature uncertainty. The inset plot shows the planet occurrence rates
for M3V, M4V, and M5V, which show evidence for an increase of planet occurrence toward later M dwarfs.

We also note that Silburt et al. (2015) and Gaidos et al.
(2016b) caution placing planets into discrete radius and
period bins because it ignores information about the
underlying planet distribution and will underestimate
the planet occurrence rate. With a sample of only 13
planets, however, it is difficult to determine a practical
planet distribution without making some assumptions.
Additionally, accounting for small planet sample size
dominates the error budget for our occurrence rate cal-
culations.
From our Kepler planet occurrence rates, we can pre-

dict the number of planets in orbital periods less than
10 days around mid-type M dwarfs in the local neigh-

borhood. Stelzer et al. (2013) conducted a survey of UV
and X-ray activity of M dwarfs within 10 parsecs of the
Sun, in which they observed 159 M0V through M8V
stars, and estimated that their volume-limited M dwarf
sample was 90% complete. This sample includes 101
stars with spectral types between M3V and M5.5V,
which means there are potentially 120+71

−49 small, short
period planets around these nearby stars. So far, there
have been 20 planets found around 9 of these nearby
mid-type M dwarfs, all discovered via the radial velocity

Trend continues for mid-M dwarfs

Hardegree-Ullmann+ 2019
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How to explain elevated occurrence 
rate for M dwarfs planets

• Detection biases X


• Spatial or size distribution X


• Trade-off with giant planets?


• Binaries?


• Planet Formation?



Heavy Elements Mass, P<50 days 
(mass-radius relation)

Mulders et al. 2015b



Heavy Elements Mass, P<50 days 
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Mulders et al. 2015b



Comparison with disk solids

Mulders 2018,  Handbook of Exoplanets
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Planet Mass Dependence?
Pascucci+ 2018, Wu 2019

2 Pascucci et al.

1. INTRODUCTION

The past decade has seen an exponential increase in
the number of discovered exoplanets (e.g., Fischer et al.
2014). Yet, our knowledge of the exoplanet population
is rather sparse, especially at a few au from the star.
This radial distance is of particular interest as it is close
to the so-called snowline in a protoplanetary disk (e.g.,
Mulders et al. 2015a), the location beyond which water
vapor condenses onto ice. At the snowline the surface
density in solids increases by a factor of a few to several
(e.g., Min et al. 2011), thus promoting the formation
of larger planetary cores while the gaseous disk is still
present. As a consequence, a zeroth order expectation
of in-situ planet formation models is that planets inside
the snowline would have lower masses than those formed
beyond, an expectation that is fulfilled in the Solar Sys-
tem.
The Kepler survey is the most unbiased survey for ex-

oplanets inside the snowline (e.g., Borucki 2017). The
planet period and planet-to-star radius are the param-
eters that are best determined by the transiting tech-
nique used by Kepler. Among the many interesting
discoveries, Kepler has identified a large population of
Super-Earths and many compact multi-planet systems
(e.g., Winn & Fabrycky 2015). It has also established
that small planets (< 3R�) are more abundant around
smaller M dwarf stars (e.g., Mulders et al. 2015b).
Microlensing is currently the most sensitive technique

to a range of planetary masses, well below Neptune’s
mass, close to and beyond the snowline (e.g., Gould et
al. 2014, Shvartzvald et al. 2017). The planet-to-star
mass ratio (hereafter, q) is well determined with this
technique while the host-star mass remains often un-
known. Recently, Suzuki et al. (2016) found that the
exoplanet occurrence rate vs q can be well described by
a broken power law with a break at ⇠ 2 ⇥ 10�4 which
corresponds to ⇠40M� for the median host-star mass
of ⇠ 0.6M�.
Here, we apply a ”microlensing point of view” to the

Kepler exoplanets by quantifying their occurrence rate
vs q rather than planet mass or radius. We find that
the occurrence rate has a break at ⇠ 2.5 ⇥ 10�5 inde-
pendent of host type for hosts below 1M� (Section 2),
which points to an almost universal mass-ratio function.
Next, we compare our results to those from microlensing
(Section 3) for which the overwhelming majority satis-
fies the Mhost < 1M� criterion. We find that the break
in q is an order of magnitude higher for microlensing
planets, which are located outside the snow line, com-
pared to Kepler planets, which are inside. We discuss
the implications of both of these results in Section 4.

2. THE KEPLER MASS-RATIO FUNCTION

We start from the new DR25 Kepler catalogue
(Thompson et al. 2017) and select dwarfs following
Huber et al. (2016), see their eq. 9. First, we compute
planet occurrence rates as a function of planet radius
and per spectral type as in Mulders et al. (2015b) and
include only the most reliable planet candidates in our
analysis (Robovetter score > 0.9). Then, we convert
planet radii into planet masses using the probabilistic
mass-radius relation by Chen & Kipping (2017). As in
the microlensing studies, we choose a spacing in planet
mass that is constant in base-10 logarithm (hereafter,
log) and compute q by dividing the planet mass at the
center of each bin by the median stellar mass in each
spectral type group (0.48, 0.75, 0.93, 1.1M� for M, K,
G, F dwarfs respectively). As uncertainty we take the
planet occurrence rate divided by the square root of the
number of planet candidates per mass bin.

Figure 1. Planet occurrence rate as a function of planet-
to-star mass ratio (q), for spectral types M-F. Dashed lines
indicate the best broken power law fits to the data. Colored
diamonds at the top of the figure show the corresponding q
for an Earth- and a Neptune-mass planet.

Figure 1 shows the occurrence rate vs q for planets
with a period <100 days1 color-coded by stellar spec-
tral type. We limit the plot and following analysis to
q ⇠ (0.5 � 8) ⇥ 10�5, planet radii ⇠ 1 � 6R�, due to
incompleteness in the Kepler survey at the lower end
and degeneracy between planet mass and radius at the
upper end. Both issues are mitigated when using EPOS
an all Kepler exoplanet candidates (see Section 3).

1 There are very few exoplanet candidates around M dwarfs
with a period longer than 100 days. In addition, this period ex-
cludes the region beyond the snowline even for the median Kepler
M star (e.g., Mulders et al. 2015a).
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Fig. 10.— Constraining the radial dependence of core mass. Here, we compare di↵erent best-fit models (left: � = 1/4; middle: � = 1/2;
and right: � = 1), against the observations (shown as grey contours). The last model shows a upturn that is too steep to be compatible
with current data, while other models produce acceptable resemblance to the observations, including the � = 0 model (4th panel in Fig.
9). Visually, the � = 1/2 model produces the closest resemblance to data.
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Fig. 11.— Contours of planet occurrences in the stellar mass - planet radius plane. The orange one shows that of the GKS, an upward
trend is clearly seen. This very trend appears to extend to late M-dwarfs as low in mass as 0.2M�, as is shown by the blue contours and
points (data from Newton et al. 2015; Dressing et al. 2017). Planets around late M-dwarfs also exhibit a radius gap that results from

photoevaporation. The dotted green lines portray the Rp / M
1/4
⇤ scalings (which corresponds to Mp / M⇤), while the dashed red lines

that of Mp / M
11/8
⇤ (eq. (11)). Both are compatible with data.

KIC planet radii.5. Using a mass-radius relation that is
not motivated physically6, they argued that planet mass
function has a break at µ ⇠ 3 ⇥ 10�5. This is simi-
lar to the position of the ’peak’ (not ’break’) that we
find here, relying on updated radii and a physical model.
Our agreement, despite the very discrepant methodology,
probably reflects the robustness of such a conclusion –
technical details matter, but the truth is already shining
in the raw data.

4.3. Why the universal scaling?

So it appears that, despite the drastically di↵erent en-
vironments around stars from late M-dwarfs to early F-
dwarfs, super-Earths are formed with a universal scaling
(eq. 7). Why is this so? The spread around the uni-
versal scaling is also tight. Our best fit solution gives

5 These have been shown to be much less accurate and may
contain systematic errors(Fulton et al. 2017)

6 And actually wrong – planets at the upper peak and lower
peak have identical mass, despite a factor of 2 di↵erence in their
sizes.

a Gaussian width of �M = 0.3 (in logarithm), or, the
FWHM of the mass distribution runs from µ = 10�5 to
µ = 5.3 ⇥ 10�5 (corresponding to 3.5 and 17.8M� for
a a sun-like host). This is a strikingly narrow range.7

Compare this to the following dynamic ranges: 2.3 for
the stellar mass in the GKS; a factor of 30 in stellar lu-
minosity; a factor of ⇠ 10 in stellar metallicity; a factor
of 10 � 100 in mass of proto-planetary disks...

These likely suggest a single formation channel for
these planets, in which stellar mass is the dominant
variable (together with perhaps the orbital separation).
Planet mass being independent of stellar metallicity (or,
in association, the disk mass) likely indicates that the
disk environments where these planets form do not have
the same dust-to-gas ratio as that of a primordial disk.
Lastly, there is a threshold below which planets will con-
tinue to grow, and above which growth is stalled.

In the following, I suggest that the simplest explana-

7 The narrowness can also be intuited from the 1D radius dis-
tribution. If the mass function has been a factor of 2 broader, the
radius dip would have been wiped out.
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Homogenous planet search & detection efficiency



Which planet formation processes has 
right stellar mass dependence?
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Which planet formation processes has 
right stellar mass dependence?
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differences could be due solely to optical depth effects, we use
a model with a uniform mix of small and large grains
throughout the entire disk. Three other models then simul-
ate grain growth, fragmentation, and radial drift by setting the
maximum grain size as a function of radial distance from the
host star based on fragmentation and radial drift limits with
a = - - -10 , 10 , 10visc

2 3 4.
Using the same curve-of-growth method as described

in Section 5.1 to measure disk radii, we find that
»R R 1.5gas dust for the model with uniform grain sizes, and
»R R 3.0gas dust for the models including grain growth and

radial drift. Therefore, based on these models, optical depth
effects could explain the lower range of the measured
R Rgas dust values in Lupus, but grain growth and radial drift
may also be needed to explain the higher values of R Rgas dust
seen in the data. We caution that these models only consider
the collisional growth and fragmentation of the dust grains
and do not include their kinematics within the disk, which
could increase the differences in the modeled gas and dust
radii. Moreover, the models currently do not include

simulated observational noise, which can affect the measured
radii, especially for the gas due to low S/N in the outer disk.
Additionally, Figure 8 (lower left panel) shows a tentative

correlation between Rgas and F1.33 mm, analogous to the
continuum size–luminosity relations seen previously in young
disk populations (Tazzari et al. 2017; Tripathi et al. 2017). The
Bayesian linear regression method of Kelly (2007) gives the
correlation = o - o( ) ( )F Rlog 1.00 0.45 log 0.66 1.041.33 mm gas
with a correlation coefficient of 0.5±0.2 and a dispersion of
0.42±0.08. To test the significance of the correlation, we use
a Spearman rank test, which gives r = 0.54 and a p-value of
0.009. However, we caution that our sample is biased toward
disks with both resolved continuum and gas emission; some
Lupus disks exhibit faint and unresolved continuum emission,
but bright and extended gas emission, and therefore may not
follow this correlation.
We do not see a correlation between Rgas andMå (lower right

panel of Figure 8), although this is likely due to the bias of
our sample toward the highest-mass disks around the highest-
mass stars (upper right panel of Figure 8). More sensitive and

Figure 8. Top left: gas disk radii (Rgas) compared to dust disk radii (Rdust) for Lupus disks with constraints on both parameters: Rgas is universally larger than Rdust with
an average ratio of = oR R 1.96 0.04gas dust (Section 5.1). Edge-on disks ( . n∣ ∣i 65 ) are outlined in red, and transition disks (Section 5.4.1) are indicated by
diamonds. Top right: Mdust–Må correlation seen for Lupus disks (Paper I); the subsample with Rgas measurements are highlighted by red crosses, illustrating the bias
toward high-mass disks around high-mass stars. Bottom left: tentative correlation between Rgas and F1.33 mm (and thus disk mass), similar to the Rdust– mF890 m relation
seen previously for Lupus disks (Tazzari et al. 2017). The dashed gray line shows a Bayesian linear regression fit to the data, and the light gray lines are a subsample of
the MCMC chains. Bottom right: lack of correlation between Rgas and Må, likely due to the small range of Må covered by the subsample of Lupus disks with Rgas
constraints (see top right panel).

12

The Astrophysical Journal, 859:21 (21pp), 2018 May 20 Ansdell et al.

ALMA: Constraints on radial drift

Ansdell+  2018



rough estimate of the average dust temperature inside the
effective radius. Ideally, we could calculate Tdá ñ weighted by the
continuum optical depth (e.g., Andrews et al. 2013), but since
we have opted for an empirical modeling approach here, such
information is not directly accessible. As an approximation, we
can presume the emission is optically thin and thereby adopt a
weighting function w r I r B T rd= n n( ) ( ) [ ( )], so that

T
w r T r r dr

w r r dr
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Now we need to specify a presumed parametric form for Td(r)
that roughly captures the behavior of irradiation heating by the
central star. We base that behavior on the analysis of a suite of
radiative transfer models of representative disks by Andrews
et al. (2013) and set

T r T
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where T 30 510 = o K is the temperature at 10 au and L* is the
stellar host luminosity. We also impose a floor on Td(r), such
that it cannot go below a background level of 7 K (the adopted
value makes little difference, so long as it is in a reasonable
range, 12 K). Using this prescription, we collated L*
estimates from the literature9 (see Testi et al. 2003; Natta et al.
2004; Andrews et al. 2010, 2011, 2012, 2013; Cieza et al.
2012; Barenfeld et al. 2016; Cleeves et al. 2016) and computed
posterior samples of Tdá ñ for each posterior draw of brightness
profile parameters, including a representative 20% uncertainty
in L* (along with the distance and T10 uncertainties). Table 4
includes the derived Tdá ñ and adopted L* values.

With this coarse metric of the disk heating in hand, we can
then examine the relationship between Reff and a quantity

L B Tdmmµ á ñn ( ) that should account for any scatter introduced
by dust heating in the analysis of the size–luminosity relation.
For the sake of a familiar comparison, we opt to recast the

scaled luminosity dimension in the context of a disk mass
estimate. Again assuming the emission is optically thin, we
followed Andrews et al. (2013) to calculate

M
L

B T
dlog log 2 log log , 10d

d

mm zk=
á ñ

+ ¢ -
n

n

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( )

where d 140¢ = pc (the adopted reference distance for Lmm),
0.01z = (an assumed dust-to-gas mass ratio), and 3.5k =n

cm2 g−1 (a standard 340 GHz dust opacity).
Figure 10 shows the corresponding relationship between the

effective radii and these masses. It is immediately apparent that
the correlation is stronger and tighter after accounting for Tdá ñ,
at least partially because much of the perpendicular spread has
been redistributed along the trend. We performed the same
regression analysis in the R Mlog , log deff{ } plane as before and
found

R Mlog 2.64 0.07 0.47 0.04 log 11deff = o + o ´( ) ( ) ( )

(where again Reff is in au and Md is in M: units; the quoted
uncertainties are at the 68% confidence level). The scatter
perpendicular to this relation is considerably smaller than in
Figure 9: it has a (presumed Gaussian) dispersion of∼0.10 dex,
but is consistent with the scatter arising solely from the data
uncertainties (at 2.5σ).
This demonstrates that the inferred slope of the size–luminosity

relation is preserved (and indeed reinforced) by the temperature
correction, which in this framework implies a roughly constant
average surface density interior to Reff , 10ReffáSñ »<∣ g cm−2

(following the same logic as in Equation (7)). That value can be
recast into an average optical depth, 1 3Refftá ñ »<∣ .
We will revisit that inference of optical depth below, but it is

worth pointing out that these results do not depend much on the
choice for the weighting function in Equation (8). If we instead
adopt an empirical w r I r= n( ) ( ) or something more appropriate
for optically thick emission, w r B Td= n( ) ( ), the inferred slope
and scatter of the relationship are not significantly different.10

Figure 9. Disk size (as defined in Section 3.3) as a function of the 340 GHz
luminosity. Each ellipse represents the 68% joint confidence interval on

R Llog , logeff mm{ }. The gray curves show 200 random draws from the linear
regression posteriors.

Figure 10. Disk size (as defined in Section 3.3) as a function of the total disk
mass (see text for associated assumptions). Each ellipse represents the
68% joint confidence interval on R Mlog , log deff{ }. The gray curves show
200 random draws from the linear regression posteriors. There is notably less
scatter than in its scaling with Lmm (see Figure 9), suggesting that much of the
dispersion in that relation can be explained by a heating (temperature) effect.

9 The adopted L* values were appropriately scaled to the draws from the
distance posteriors.

10 Naturally the intercepts change to reflect the shifts in Tdá ñ.
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• Giant planets more common around more massive stars


• Sub-Neptunes are more common around low-mass stars


• Inconsistent with protoplanetary disk mass scaling laws
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Figure 6. The inner-outer planet connection. Here, multi-planet
systems are connected by colored lines, and dark blue symbols rep-
resent the single long-period candidates, as in Figure 4. We use the
updated planet radii reported by Berger et al. (2018) for all inner
planets. The same vertical line from Figure 4 is shown, and the
radii of Jupiter, Saturn, and Neptune are denoted for comparison.

Querying ExoFOP4 revealed that eight of our 15 candi-
dates have AO follow-up imaging (Law et al. 2014; Hirsch
et al. 2017; Furlan et al. 2017; Ziegler et al. 2018), and
among these, three have stellar companions with dis-
tances from 100 to 400. But among the 13 candidates
on which we base our analysis, only KIC3239945 has
a known companion, with a K-magnitude di↵erence of
3.6 between the two stars and a separation of 2.200. For-
tunately, a thorough vetting of this system, which also
hosts three inner planets, has been performed by Kip-
ping et al. (2016) and the planetary nature of the outer
planet (Kepler-167e) is firmly established.
What about star pairs that are un-resolvable by AO?

This is increasingly rare for ones that are not physically
associated, but more likely for physically bound ones.
Given our sample, the only possible scenario for false-
positives is that in which a solar-type star is orbited
by two M-dwarfs that transit each other. This would
however create a very di↵erent transit shape that should
be identified by the peerless vetting procedure and FAP
analysis. As such, we consider this unlikely.

3. DISCUSSION

Here, we discuss the implications of our work on three
issues: the occurrence rate of long-period planets, the
size distribution of such planets, and the inner-outer
planet correlation.

3.1. Occurrence Rate for Outer Planets

Having justified that the majority of our planet can-
didates are likely true planets, we proceed to constrain
the planet occurrence rate. We perform this calculation,
using the detection e�ciency as determined in Section
2.4, for planets from 0.3� 1 RJ.
As alluded to earlier, the occurrence estimate by FM16

has to be revised using the updated stellar radii from
Berger et al. (2018). In fact, many of their candidates

4 https://exofop.ipac.caltech.edu/

are now shifted to sizes larger than Jupiter. Further-
more, while the equation describing the geometric transit
probability given in FM16 is correct, its implementation
in peerless misses a factor of ⇡1/3. This decreases their
reported occurrence rate by a factor of 1.46. We report
a new occurrence rate taking into account the revised
radii, this minor calculation error, and the seven addi-
tional transit candidates found in our sample.
To estimate this occurrence rate, we assume that the

uncertainties on the planet properties, such as radius and
orbital period, are negligible. This is a permissible sim-
plification because the mean occurrence rate is calculated
in bins considerably larger than the uncertainties. Ad-
ditionally, like FM16 we assume that no other transits
occur in a data gap for those candidates with a single
transit event, i.e.,the orbital period we determine is as-
sumed correct. Each candidate is also assumed to orbit
a star accurately described by the Kepler catalog of Hu-
ber et al. (2014), with updated radii from Berger et al.
(2018), rather than a companion or background star. We
also exclude the likely false positives contained in our
sample when computing the occurrence rate, and make
the simplifying assumption that all of our planet can-
didates have zero eccentricity, the latter of which has a
negligible e↵ect on the outcome of our results. We further
assume that the distribution of planets in the parameter
space of interest follows the relation

d2N

d logPd logRp
= A

✓
Rp

RJ

◆↵ ✓
P

year

◆�

. (5)

In the following, we set � = 0. This assumed period in-
sensitivity is justified both because we are in a relatively
narrow range (2�10 years), and because RV studies have
not found any strong period dependence for giant planets
in this range (Cumming et al. 2008; Bryan et al. 2016).

The total expected number of detected planets, for N (i)
⇤

stars in magnitude bin i, is

N̄lp =
X

i

N (i)
?

10yrsZ

2yrs

Rp,maxZ

Rp,min

A

✓
Rp

RJ

◆↵

pdetd logPd logRp ,

(6)
where the detection e�ciency pdet is given by equation
(4).
We divide the radius range covered by our candidates

(0.3� 1.0 RJ) into three equal logarithmic bins. Within
each narrow radius bin, we can adopt ↵ = 0; but we let
A vary across the bins.
The probability of getting the actual number of planets

we detect, Nlp, given its expectation value N̄lp, is

P (Nlp|nlp) =
N̄

Nlp

lp exp (�N̄lp)

Nlp!
. (7)

According to Bayes’ theorem, the posterior distribution
of nlp is given by

P (nlp|Nlp) =
P (Nlp|nlp)P (nlp)

P (Nlp)
/ P (Nlp|nlp) , (8)

since both P (nlp) and P (Nlp) are essentially constant.
The posterior probability distributions for the three ra-
dius bins are presented in Figure 7. The separation by
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