Quantum magnets with strong frustration

Oleg Tchernyshyov (JHU)

Thanks

- Colleagues:
- A.G. Abanov (Stony Brook)
- P. Fendley (UVA)
- C.L. Henley (Cornell)
- R. Moessner (ENS)
- S.L. Sondhi (Princeton)
- O.A. Starykh (Hofstra \mapsto Utah)
- Hong Yao (JHU \mapsto Stanford)
- Funding:
- NSF
- Research Corporation

Outline

- Which magnets:
pha.jhu.edu/~olegt/pyrochlore.html
- Large- S approach:
- O.T., J.Phys.:Condens.Matter 16, S709 (2004).
- O.T., Moessner, Starykh, A.G. Abanov, PRB 68, 144422 (2003).
- O.T., H. Yao and R. Moessner, PRB 69 (June 1, 2004).
- Large- N approach:
- O.T., R. Moessner and S.L. Sondhi, in preparation.
- Summary

Which magnets?

- Heisenberg SU(2) spins
- $H=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$
- network of tetrahedra
- 3D pyrochlore lattice

Which magnets?

- Heisenberg SU(2) spins
- $H=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$
- network of tetrahedra
- 3D pyrochlore lattice
- + analogs in 2D

Which magnets?

- Heisenberg SU(2) spins
- $H=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$
- network of tetrahedra
- 3D pyrochlore lattice
- + analogs in 2D and 1D

Heisenberg spins on a tetrahedron

- Degenerate ground state.
- $\mathbf{S}_{1}+\mathbf{S}_{2}+\mathbf{S}_{3}+\mathbf{S}_{4}=0$.
- Classical ground states: distinct relative orientations form a manifold S_{2} / D_{2}.
- Quantum ground states: $2 S+1$ singlets labeled by total spins of bond 12 or 34: $S_{12}=S_{34}=0,1,2 \ldots 2 S$.
- Very strong frustration.

O.T., R. Moessner and S.L. Sondhi, PRB 66, 064403 (2002).

Pyrochlore lattice: classical spins

- Down to $T=10^{-4} J S^{2}$:
- No magnetic order
- No spin-Peierls order
- No thermodynamic singularities

Moessner and Chalker, 1998.

Pyrochlore lattice: classical spins

- Down to $T=10^{-4} J S^{2}$:
- No magnetic order
- No spin-Peierls order
- No thermodynamic singularities

Moessner and Chalker, 1998.

- Reminiscent of $\mathrm{ZnCr}_{2} \mathrm{O}_{4}(S=3 / 2)$ at $T>13 \mathrm{~K}$.
S.-H. Lee et al., Nature 418, 856 (2002).

Quantum effects as a perturbation: S

- Motivation:
- Frustration is defined in the classical limit $S \rightarrow \infty$.
- Existence of a small parameter: $1 / S$.

Quantum effects as a perturbation: S

- Motivation:
- Frustration is defined in the classical limit $S \rightarrow \infty$.
- Existence of a small parameter: $1 / S$.
- Challenges:
- Extremely large degeneracy at $\mathcal{O}(1)$.
- Tendency to form magnetic order (cf. kagome).

Quantum effects as a perturbation: $S \gg$

- Motivation:
- Frustration is defined in the classical limit $S \rightarrow \infty$.
- Existence of a small parameter: $1 / S$.
- Challenges:
- Extremely large degeneracy at $\mathcal{O}(1)$.
- Tendency to form magnetic order (cf. kagome).
- Solutions:
- Effective interactions for zero-point motion.
- Gauge-like Z_{2} symmetry at $\mathcal{O}(1 / S)$ kills Neel order.
C.L. Henley (unpublished).

Zeroth order in $1 / S$

Geometry:

- Tetrahedra $\alpha, \beta, \gamma, \ldots$ form a diamond lattice.
- Spins live on links $\alpha \beta, \beta \gamma, \ldots$
 of the diamond lattice.

Zeroth order in $1 / S$

Geometry:

- Tetrahedra $\alpha, \beta, \gamma, \ldots$ form a diamond lattice.
- Spins live on links $\alpha \beta, \beta \gamma, \ldots$
 of the diamond lattice.

Zeroth order in $1 / S$

Geometry:

- Tetrahedra $\alpha, \beta, \gamma, \ldots$ form a diamond lattice.
- Spins live on links $\alpha \beta, \beta \gamma, \ldots$
 of the diamond lattice.

Classical energy $\mathcal{O}\left(S^{2}\right)$:

- $E_{0}=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}=(J / 2) \sum_{\alpha}\left|\mathbf{L}_{\alpha}\right|^{2}$ - const, where $\left\{\mathbf{S}_{i}\right\}$ is a classical spin configuration.
- Minimized by configs in which $\mathbf{L}_{\alpha} \equiv \sum_{\beta} \mathbf{S}_{\alpha \beta}=0$.

Leading-order correction $\mathcal{O}(1 / S)$

- Zero-point magnon energy:
- Classical ground states are not eigenstates of H.
- Virtual excitations are pairs of magnons.
- Energy of zero-point quantum motion is $\mathcal{O}(1 / S)$: - $E_{1}=$ const $+\sum_{a} \hbar\left|\omega_{a}\right| / 2$.
- Find the spin config $\left\{\mathbf{S}_{\alpha \beta}\right\}$ minimizing it.

Leading-order correction $\mathcal{O}(1 / S)$

- Zero-point magnon energy:
- Classical ground states are not eigenstates of H.
- Virtual excitations are pairs of magnons.
- Energy of zero-point quantum motion is $\mathcal{O}(1 / S)$: - $E_{1}=$ const $+\sum_{a} \hbar\left|\omega_{a}\right| / 2$.
- Find the spin config $\left\{\mathbf{S}_{\alpha \beta}\right\}$ minimizing it.
- Collinear states are the best bet:
- Spin waves are transverse excitations.
- More ways to make waves in collinear states.
- More virtual excitations \Rightarrow lower energy.

Collinear states: Ising gauge symmetry

- All spins point along, say, $\pm \hat{z}$.
- New Ising variables $\sigma_{\alpha \beta}= \pm 1: \mathbf{S}_{\alpha \beta} / S=\sigma_{\alpha \beta} \hat{\mathbf{z}}$.

Collinear states: Ising gauge symmetry

- All spins point along, say, $\pm \hat{z}$.
- New Ising variables $\sigma_{\alpha \beta}= \pm 1: \mathbf{S}_{\alpha \beta} / S=\sigma_{\alpha \beta} \hat{\mathbf{z}}$.
- Use eqns of motion to obtain $\left\{\omega_{a}\right\}$:

$$
\hbar \mathrm{d} \mathbf{L}_{\alpha} / \mathrm{d} t=J \mathbf{S}_{\alpha \beta} \times \mathbf{L}_{\beta .} \quad \text { (Moessner and Chalker) }
$$

- Transverse fluctuations $\lambda=L_{x}+i L_{y}$:

$$
\hbar \omega \lambda_{\alpha}=J S \sigma_{\alpha \beta} \lambda_{\beta}
$$

Collinear states: Ising gauge symmetry

- All spins point along, say, $\pm \hat{z}$.
- New Ising variables $\sigma_{\alpha \beta}= \pm 1: \mathbf{S}_{\alpha \beta} / S=\sigma_{\alpha \beta} \hat{\mathbf{z}}$.
- Use eqns of motion to obtain $\left\{\omega_{a}\right\}$:

$$
\hbar \mathrm{d} \mathbf{L}_{\alpha} / \mathrm{d} t=J \mathbf{S}_{\alpha \beta} \times \mathbf{L}_{\beta} . \quad \text { (Moessner and Chalker) }
$$

- Transverse fluctuations $\lambda=L_{x}+i L_{y}$:

$$
\hbar \omega \lambda_{\alpha}=J S \sigma_{\alpha \beta} \lambda_{\beta} .
$$

- "Gauge" symmetry: $\lambda_{\alpha} \mapsto \Lambda_{\alpha} \lambda_{\alpha}, \sigma_{\alpha \beta} \mapsto \Lambda_{\alpha} \sigma_{\alpha \beta} \Lambda_{\beta}^{-1}$.
- $\Lambda_{\alpha}= \pm 1$: keep/flip spins on tetrahedron α.
- Gauge-equivalent states have identical spectra. (Henley)

Collinear states: Ising gauge symmetry

- All spins point along, say, $\pm \hat{z}$.
- New Ising variables $\sigma_{\alpha \beta}= \pm 1: \mathbf{S}_{\alpha \beta} / S=\sigma_{\alpha \beta} \hat{\mathbf{z}}$.
- Use eqns of motion to obtain $\left\{\omega_{a}\right\}$:

$$
\hbar \mathrm{d} \mathbf{L}_{\alpha} / \mathrm{d} t=J \mathbf{S}_{\alpha \beta} \times \mathbf{L}_{\beta} . \quad \text { (Moessner and Chalker) }
$$

- Transverse fluctuations $\lambda=L_{x}+i L_{y}$:

$$
\hbar \omega \lambda_{\alpha}=J S \sigma_{\alpha \beta} \lambda_{\beta} .
$$

- "Gauge" symmetry: $\lambda_{\alpha} \mapsto \Lambda_{\alpha} \lambda_{\alpha}, \sigma_{\alpha \beta} \mapsto \Lambda_{\alpha} \sigma_{\alpha \beta} \Lambda_{\beta}^{-1}$.
- $\Lambda_{\alpha}= \pm 1$: keep/flip spins on tetrahedron α.
- Gauge-equivalent states have identical spectra. (Henley)
- Substantial degeneracy kills Néel order!

Caveat

- Not exactly a gauge symmetry: Constraint $\sum_{\beta} \sigma_{\alpha \beta}=0$ on every tetrahedron α.

$$
\mathbf{L}_{\beta}=0 .
$$

Caveat

- Not exactly a gauge symmetry: Constraint $\sum_{\beta} \sigma_{\alpha \beta}=0$ on every tetrahedron α.
- Some gauge transformations violate it.

Caveat

- Not exactly a gauge symmetry:

Constraint $\sum_{\beta} \sigma_{\alpha \beta}=0$ on every tetrahedron α.

- Some gauge transformations violate it.

Caveat

- Not exactly a gauge symmetry:

Constraint $\sum_{\beta} \sigma_{\alpha \beta}=0$ on every tetrahedron α.

- Some gauge transformations violate it.
- $N_{\text {vacua }} \neq 2^{N_{\text {tetrahedra }}}$.
- Nonetheless, $N_{\text {vacua }}$ is large
 enough to kill Néel order.

Effective interaction

- $H_{\text {eff }}$ must be gauge-invariant.
- Physical variables are Z_{2} fluxes
- $\phi(\square)=\bar{\sigma}_{12} \sigma_{23} \ldots \bar{\sigma}_{56} \sigma_{61}= \pm 1$.
- where $\bar{\sigma}=-\sigma$.
- Cluster expansion for Z_{2} fluxes:

$$
\frac{E_{1}}{N}=\frac{1}{N} \sum_{\gamma} a_{1} \phi_{\gamma}+\frac{1}{2 N^{2}} \sum_{\gamma, \gamma^{\prime}} a_{2}\left(\gamma, \gamma^{\prime}\right) \phi_{\gamma} \phi_{\gamma^{\prime}}+\ldots
$$

Effective interaction

- $H_{\text {eff }}$ must be gauge-invariant.
- Physical variables are Z_{2} fluxes
- $\phi(\square)=\bar{\sigma}_{12} \sigma_{23} \ldots \bar{\sigma}_{56} \sigma_{61}= \pm 1$.
- where $\bar{\sigma}=-\sigma$.
- Cluster expansion for Z_{2} fluxes:

$$
\frac{E_{1}}{N}=\frac{1}{N} \sum_{\gamma} a_{1} \phi_{\gamma}+\frac{1}{2 N^{2}} \sum_{\gamma, \gamma^{\prime}} a_{2}\left(\gamma, \gamma^{\prime}\right) \phi_{\gamma} \phi_{\gamma^{\prime}}+\ldots
$$

- Does not converge well (spin waves are gapless).

General expectations

- $T \gg J S^{2}$, paramagnet (spin gas).

General expectations

- $T \gg J S^{2}$, paramagnet (spin gas).
- $T=\mathcal{O}\left(J S^{2}\right)$, classical spin liquid:
- $\sum_{\beta} \mathbf{S}_{\alpha \beta} \approx 0$.
- Spins move collectively (groups of 6 in $\mathrm{ZnCr}_{2} \mathrm{O}_{4}$).

General expectations

- $T \gg J S^{2}$, paramagnet (spin gas).
- $T=\mathcal{O}\left(J S^{2}\right)$, classical spin liquid:
- $\sum_{\beta} \mathbf{S}_{\alpha \beta} \approx 0$.
- Spins move collectively (groups of 6 in $\mathrm{ZnCr}_{2} \mathrm{O}_{4}$).
- $T=\mathcal{O}(J S)$: Gibbs ensemble of discrete classical states.
- Roughly collinear: $\mathbf{S}_{i} \cdot \mathbf{S}_{j} \approx \pm S^{2}$.
- No Néel order: $\left\langle\mathbf{S}_{i}\right\rangle=0$ (thanks to Z_{2} "gauge").
- Possibly valence-bond order: $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}-\mathbf{S}_{k} \cdot \mathbf{S}_{l}\right\rangle \neq 0$.

General expectations

- $T \gg J S^{2}$, paramagnet (spin gas).
- $T=\mathcal{O}\left(J S^{2}\right)$, classical spin liquid:
- $\sum_{\beta} \mathbf{S}_{\alpha \beta} \approx 0$.
- Spins move collectively (groups of 6 in $\mathrm{ZnCr}_{2} \mathrm{O}_{4}$).
- $T=\mathcal{O}(J S)$: Gibbs ensemble of discrete classical states.
- Roughly collinear: $\mathbf{S}_{i} \cdot \mathbf{S}_{j} \approx \pm S^{2}$.
- No Néel order: $\left\langle\mathbf{S}_{i}\right\rangle=0$ (thanks to Z_{2} "gauge").
- Possibly valence-bond order: $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}-\mathbf{S}_{k} \cdot \mathbf{S}_{l}\right\rangle \neq 0$.
- $T=\mathcal{O}(J)$: unique collinear state (Henley):
- Néel order: $\left\langle\mathbf{S}_{i}\right\rangle \neq 0$.
- Very large magnetic unit cell (64 spins in $\mathrm{ZnCr}_{2} \mathrm{O}_{4}$).

Large- S results

- 3D pyrochlore lattice:
- work in progress

Large- S results

- 3D pyrochlore lattice:
- work in progress
- checkerboard:
- valence-bond crystal
- $Z_{2} \times Z_{2}$ order parameter

- similar to $S=1 / 2$

Large- S results

- 3D pyrochlore lattice:
- work in progress
- checkerboard:
- valence-bond crystal
- $Z_{2} \times Z_{2}$ order parameter
- similar to $S=1 / 2$
- pyrochlore slice:
- valence-bond crystal
- $q=4$ Potts.

Checkerboard AF at large S

- 2^{L} classical vacua selected:
- $\phi(\square)=\bar{\sigma}_{1} \sigma_{2} \bar{\sigma}_{3} \sigma_{4}=+1$.
- bonds across \square equally happy

Checkerboard AF at large S

- 2^{L} classical vacua selected:
- $\phi(\square)=\bar{\sigma}_{1} \sigma_{2} \bar{\sigma}_{3} \sigma_{4}=+1$.
- bonds across \square equally happy

Checkerboard AF at large S

- 2^{L} classical vacua selected:
- $\phi(\square)=\bar{\sigma}_{1} \sigma_{2} \bar{\sigma}_{3} \sigma_{4}=+1$.
- bonds across \square equally happy

Checkerboard AF at large S

- 2^{L} classical vacua selected:
- $\phi(\square)=\bar{\sigma}_{1} \sigma_{2} \bar{\sigma}_{3} \sigma_{4}=+1$.
- bonds across \square equally happy

Checkerboard AF at large S

- 2^{L} classical vacua selected:
- $\phi(\square)=\bar{\sigma}_{1} \sigma_{2} \bar{\sigma}_{3} \sigma_{4}=+1$.
- bonds across \square equally happy
- 4 disjoint thermal ensembles:
- Location of happy bonds on 2 sublattices of \boxtimes :
- $\mathrm{H} \times \mathrm{H}$,

Checkerboard AF at large S

- 2^{L} classical vacua selected:
- $\phi(\square)=\bar{\sigma}_{1} \sigma_{2} \bar{\sigma}_{3} \sigma_{4}=+1$.
- bonds across \square equally happy
- 4 disjoint thermal ensembles:
- Location of happy bonds on 2 sublattices of \boxtimes :
- $\mathrm{H} \times \mathrm{H}, \mathrm{V} \times \mathrm{V}$,

Checkerboard AF at large S

- 2^{L} classical vacua selected:
- $\phi(\square)=\bar{\sigma}_{1} \sigma_{2} \bar{\sigma}_{3} \sigma_{4}=+1$.
- bonds across \square equally happy
- 4 disjoint thermal ensembles:
- Location of happy bonds on 2 sublattices of \boxtimes :
- $\mathrm{H} \times \mathrm{H}, \mathrm{V} \times \mathrm{V}$,
- $\mathrm{H} \times \mathrm{V}$,

Checkerboard AF at large S

- 2^{L} classical vacua selected:
- $\phi(\square)=\bar{\sigma}_{1} \sigma_{2} \bar{\sigma}_{3} \sigma_{4}=+1$.
- bonds across \square equally happy
- 4 disjoint thermal ensembles:
- Location of happy bonds on 2 sublattices of \boxtimes :
- $\mathrm{H} \times \mathrm{H}, \mathrm{V} \times \mathrm{V}$,
- $\mathrm{H} \times \mathrm{V}, \mathrm{V} \times \mathrm{H}$.

$S=1 / 2$: Lhuillier et al. (2001).
- $Z_{2} \times Z_{2}$ valence-bond order.
- Thermal phase transition paramagnet \mapsto valence-bond crystal: C. Xu and J.E. Moore, cond-mat/0405271.

(111) slice of the pyrochlore lattice

- Collinear ground states.
- Z_{2} gauge symmetry applies.
- Educated guess (Henley):

(111) slice of the pyrochlore lattice

- Collinear ground states.
- Z_{2} gauge symmetry applies.
- Educated guess (Henley):
- $\phi(\square)=+1$.

(111) slice of the pyrochlore lattice

- Collinear ground states.
- Z_{2} gauge symmetry applies.
- Educated guess (Henley):
- $\phi(\square)=+1$.
- 2 or 0 frustrated bonds on \square

- (counting either ∇ or Δ).

(111) slice of the pyrochlore lattice

- Collinear ground states.
- Z_{2} gauge symmetry applies.
- Educated guess (Henley):
- $\phi(\square)=+1$.
- 2 or 0 frustrated bonds on \square

- (counting either ∇ or Δ).

(111) slice of the pyrochlore lattice

- Collinear ground states.
- Z_{2} gauge symmetry applies.
- Educated guess (Henley):
- $\phi(\square)=+1$.
- 2 or 0 frustrated bonds on \square
- (counting either ∇ or Δ).

- These states \mapsto classical dimers on a triangular lattice:

(111) slice of the pyrochlore lattice

- Collinear ground states.
- Z_{2} gauge symmetry applies.
- Educated guess (Henley):
- $\phi(\square)=+1$.
- 2 or 0 frustrated bonds on \square
- (counting either ∇ or Δ).

- These states \mapsto classical dimers on a triangular lattice:
- 2 frustrated bonds on a $\square=$ dimer.

(111) slice of the pyrochlore lattice

- Collinear ground states.
- Z_{2} gauge symmetry applies.
- Educated guess (Henley):
- $\phi(\square)=+1$.
- 2 or 0 frustrated bonds on \square
- (counting either ∇ or Δ).

- These states \mapsto classical dimers on a triangular lattice:
- 2 frustrated bonds on a $\square=$ dimer.
- Classical valence-bond liquid:
- No Néel order: $\left\langle\mathbf{S}_{i}\right\rangle=0$.
- No valence-bond order: uniform $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle$.

(111) slice of the pyrochlore lattice

- Collinear ground states.
- Z_{2} gauge symmetry applies.
- Educated guess (Henley):
- $\phi(\square)=+1$.
- 2 or 0 frustrated bonds on \square
- (counting either ∇ or Δ).

- These states \mapsto classical dimers on a triangular lattice:
- 2 frustrated bonds on a $\square=$ dimer.
- Classical valence-bond liquid:
- No Néel order: $\left\langle\mathbf{S}_{i}\right\rangle=0$.
- No valence-bond order: uniform $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle$.
- Topological order (Z_{2} fluxes on a torus).

Actual ground states

- Numerical minimization:

Actual ground states

- Numerical minimization:
- $3 / 4$ hexagons: $\phi=+1$.
- the rest: $\phi=-1$.

Actual ground states

- Numerical minimization:
- $3 / 4$ hexagons: $\phi=+1$.
- the rest: $\phi=-1$.
- 2×2 unit cell.

Actual ground states

- Numerical minimization:
- $3 / 4$ hexagons: $\phi=+1$.
- the rest: $\phi=-1$.
- 2×2 unit cell.
- Still \mapsto dimers
- on decorated triang. lattice.

Actual ground states

- Numerical minimization:
- 3/4 hexagons: $\phi=+1$.
- the rest: $\phi=-1$.
- 2×2 unit cell.
- Still \mapsto dimers
- on decorated triang. lattice.

- Broken symmetries:
- Spin $\mathrm{SU}(2)$ is intact: $\left\langle\mathbf{S}_{i}\right\rangle=0$.
- Valence-bond order: non-uniform $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle$.
$S=1 / 2$: A.B. Harris, Berlinsky and Bruder (1991).

Alternative approach: Schwinger bosons

- Represent spins in terms of bosons carrying $S=1 / 2$:
- $\mathbf{S}=\frac{1}{2} b_{\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha \beta} b_{\beta}, \quad S=\frac{1}{2} b_{\alpha}^{\dagger} b_{\alpha}, \quad \alpha=\uparrow, \downarrow$.
- $\mathbf{S}_{i} \cdot \mathbf{S}_{j}=\mathbf{c o n s t}-\mathcal{B}_{i j}^{\dagger} B_{i j}$,
- where $B_{i j}=\varepsilon_{\alpha \beta} b_{i \alpha} b_{j \beta}$ is a singlet pair of bosons.

Alternative approach: Schwinger bosons

- Represent spins in terms of bosons carrying $S=1 / 2$:
- $\mathbf{S}=\frac{1}{2} b_{\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha \beta} b_{\beta}, \quad S=\frac{1}{2} b_{\alpha}^{\dagger} b_{\alpha}, \quad \alpha=\uparrow, \downarrow$.
- $\mathbf{S}_{i} \cdot \mathbf{S}_{j}=\mathbf{c o n s t}-\mathcal{B}_{i j}^{\dagger} B_{i j}$,
- where $B_{i j}=\varepsilon_{\alpha \beta} b_{i \alpha} b_{j \beta}$ is a singlet pair of bosons.
- $\mathrm{SU}(2) \rightarrow \mathrm{SU}(2 N) \rightarrow \mathrm{Sp}(N), 1 / N$ small parameter.

Alternative approach: Schwinger bosons

- Represent spins in terms of bosons carrying $S=1 / 2$:
- $\mathbf{S}=\frac{1}{2} b_{\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha \beta} b_{\beta}, \quad S=\frac{1}{2} b_{\alpha}^{\dagger} b_{\alpha}, \quad \alpha=\uparrow, \downarrow$.
- $\mathbf{S}_{i} \cdot \mathbf{S}_{j}=\mathrm{const}-\mathcal{B}_{i j}^{\dagger} B_{i j}$,
- where $B_{i j}=\varepsilon_{\alpha \beta} b_{i \alpha} b_{j \beta}$ is a singlet pair of bosons.
- $\mathrm{SU}(2) \rightarrow \mathrm{SU}(2 N) \rightarrow \mathrm{Sp}(N), 1 / N$ small parameter.
- Method particuarly suitable for finding spin liquids:
- Featureless quantum ground state.
- Deconfined $S=1 / 2$ excitations.
- Topological order.
- Square lattice with frustration, triangular, kagome.
N. Read and S. Sachdev, late 1980s.

Schwinger bosons in a pyrochlore

- Ground state breaks:
- lattice symmetries,
- time reversal.

Schwinger bosons in a pyrochlore

- Ground state breaks:
- lattice symmetries,
- time reversal.

- $\operatorname{Sp}(N)$ saddle points related to classical vacua of $\operatorname{SU}(2)$:
- take a classical state,

Schwinger bosons in a pyrochlore

- Ground state breaks:
- lattice symmetries,
- time reversal.
- $\operatorname{Sp}(N)$ saddle points related to classical vacua of $\operatorname{SU}(2)$:
- take a classical state,
- average over global rotations.

Schwinger bosons in a pyrochlore

- Ground state breaks:
- lattice symmetries,
- time reversal.
- $\operatorname{Sp}(N)$ saddle points related to classical vacua of $\operatorname{SU}(2)$:
- take a classical state,
- average over global rotations.
- Antiferromagnet built from tetrahedra tends to order:
- Valence-bond order, $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}-\mathbf{S}_{k} \cdot \mathbf{S}_{l}\right\rangle \neq 0$.
- Broken time reversal: $\left\langle\mathbf{S}_{i} \cdot\left(\mathbf{S}_{j} \times \mathbf{S}_{k}\right)\right\rangle \neq 0$.

Schwinger bosons in a pyrochlore

- Ground state breaks:
- lattice symmetries,
- time reversal.
- $\operatorname{Sp}(N)$ saddle points related to classical vacua of $\operatorname{SU}(2)$:
- take a classical state,
- average over global rotations.
- Antiferromagnet built from tetrahedra tends to order:
- Valence-bond order, $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}-\mathbf{S}_{k} \cdot \mathbf{S}_{l}\right\rangle \neq 0$.
- Broken time reversal: $\left\langle\mathbf{S}_{i} \cdot\left(\mathbf{S}_{j} \times \mathbf{S}_{k}\right)\right\rangle \neq 0$.
- Antiferromagnet built from triangles does not.

Pyrochlore antiferromagnet: a summary

- Strongly degenerate classical ground state:
- 1 continuous degree of freedom per tetrahedron.
- No order of any kind detected (MC simulations).

Pyrochlore antiferromagnet: a summary

- Strongly degenerate classical ground state:
- 1 continuous degree of freedom per tetrahedron.
- No order of any kind detected (MC simulations).
- Holstein-Primakoff bosons (large S):
- Leading quantum corrections at $\mathcal{O}(1 / S)$.
- Collinear ground states are preferred.
- The selected states have a Z_{2} "gauge" symmetry.
- Likely no Néel order: $\left\langle\mathbf{S}_{i}\right\rangle=0$.
- Valence-bond order: $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}-\mathbf{S}_{k} \cdot \mathbf{S}_{l}\right\rangle \neq 0$.

Pyrochlore antiferromagnet: a summary

- Strongly degenerate classical ground state:
- 1 continuous degree of freedom per tetrahedron.
- No order of any kind detected (MC simulations).
- Holstein-Primakoff bosons (large S):
- Leading quantum corrections at $\mathcal{O}(1 / S)$.
- Collinear ground states are preferred.
- The selected states have a Z_{2} "gauge" symmetry.
- Likely no Néel order: $\left\langle\mathbf{S}_{i}\right\rangle=0$.
- Valence-bond order: $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}-\mathbf{S}_{k} \cdot \mathbf{S}_{l}\right\rangle \neq 0$.
- Schwinger bosons (large N):
- Valence-bond order or broken T reversal.
- Spinon deconfinement possible in broken- T state.

