Quantum magnets with strong frustration

Oleg Tchernyshyov (JHU)

Thanks

- Colleagues:
 - A.G. Abanov (Stony Brook)
 - P. Fendley (UVA)
 - C.L. Henley (Cornell)
 - R. Moessner (ENS)
 - S.L. Sondhi (Princeton)
 - O.A. Starykh (Hofstra \mapsto Utah)
 - Hong Yao (JHU \mapsto Stanford)
- Funding:
 - NSF
 - Research Corporation

Outline

Which magnets:

pha.jhu.edu/~olegt/pyrochlore.html

- Large-S approach:
 - O.T., J.Phys.:Condens.Matter 16, S709 (2004).
 - O.T., Moessner, Starykh, A.G. Abanov, PRB 68, 144422 (2003).
 - O.T., H. Yao and R. Moessner, PRB 69 (June 1, 2004).
- Large-N approach:
 - O.T., R. Moessner and S.L. Sondhi, in preparation.
- Summary

Which magnets?

- Heisenberg SU(2) spins
- network of tetrahedra
- 3D pyrochlore lattice

Which magnets?

- Heisenberg SU(2) spins
- network of tetrahedra
- 3D pyrochlore lattice
- + analogs in 2D

Which magnets?

- Heisenberg SU(2) spins
- network of tetrahedra
- 3D pyrochlore lattice
- + analogs in 2D and 1D

Heisenberg spins on a tetrahedron

- Degenerate ground state.
- **9** $S_1 + S_2 + S_3 + S_4 = 0.$
- Classical ground states: distinct *relative* orientations form a manifold S_2/D_2 .
- Quantum ground states: 2S + 1 singlets labeled by total spins of bond 12 or 34: $S_{12} = S_{34} = 0, 1, 2 \dots 2S$.
- Very strong frustration.

O.T., R. Moessner and S.L. Sondhi, PRB 66, 064403 (2002).

Pyrochlore lattice: classical spins

- **•** Down to $T = 10^{-4} JS^2$:
 - No magnetic order
 - No spin-Peierls order
 - No thermodynamic singularities

Moessner and Chalker, 1998.

Pyrochlore lattice: classical spins

- **•** Down to $T = 10^{-4} JS^2$:
 - No magnetic order
 - No spin-Peierls order
 - No thermodynamic singularities

Moessner and Chalker, 1998.

• Reminiscent of $ZnCr_2O_4$ (S = 3/2) at T > 13 K.

S.-H. Lee et al., Nature 418, 856 (2002).

Quantum effects as a perturbation: $S \gg 1$

Motivation:

- Frustration is defined in the classical limit $S \to \infty$.
- Existence of a small parameter: 1/S.

Quantum effects as a perturbation: $S \gg 1$

Motivation:

- Frustration is defined in the classical limit $S \to \infty$.
- Existence of a small parameter: 1/S.
- Challenges:
 - Extremely large degeneracy at $\mathcal{O}(1)$.
 - Tendency to form magnetic order (cf. kagome).

Quantum effects as a perturbation: $S \gg 1$

Motivation:

- Frustration is defined in the classical limit $S \to \infty$.
- Existence of a small parameter: 1/S.
- Challenges:
 - Extremely large degeneracy at $\mathcal{O}(1)$.
 - Tendency to form magnetic order (cf. kagome).
- Solutions:
 - Effective interactions for zero-point motion.
 - Gauge-like Z_2 symmetry at $\mathcal{O}(1/S)$ kills Neel order.

C.L. Henley (unpublished).

Zeroth order in 1/S

Geometry:

- Tetrahedra α , β , γ ,...
 form a diamond lattice.
- Spins live on links $\alpha\beta$, $\beta\gamma$,... of the diamond lattice.

Zeroth order in 1/S

Geometry:

- Tetrahedra α , β , γ ,...
 form a diamond lattice.
- Spins live on links $\alpha\beta$, $\beta\gamma$,... of the diamond lattice.

Zeroth order in 1/S

Geometry:

- Tetrahedra α , β , γ ,...
 form a diamond lattice.
- Spins live on links $\alpha\beta$, $\beta\gamma$,... of the diamond lattice.

Classical energy $\mathcal{O}(S^2)$:

- $E_0 = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j = (J/2) \sum_{\alpha} |\mathbf{L}_{\alpha}|^2 \text{const},$ where $\{\mathbf{S}_i\}$ is a classical spin configuration.
- Minimized by configs in which $\mathbf{L}_{\alpha} \equiv \sum_{\beta} \mathbf{S}_{\alpha\beta} = 0$.

Leading-order correction $\mathcal{O}(1/S)$

- Zero-point magnon energy:
 - Classical ground states are not eigenstates of H.
 - Virtual excitations are pairs of magnons.
 - Energy of zero-point quantum motion is $\mathcal{O}(1/S)$:
 - $E_1 = \operatorname{const} + \sum_a \hbar |\omega_a|/2.$
 - Find the spin config $\{S_{\alpha\beta}\}$ minimizing it.

Leading-order correction $\mathcal{O}(1/S)$

- Zero-point magnon energy:
 - Classical ground states are not eigenstates of H.
 - Virtual excitations are pairs of magnons.
 - Energy of zero-point quantum motion is $\mathcal{O}(1/S)$:
 - $E_1 = \operatorname{const} + \sum_a \hbar |\omega_a|/2.$
 - Find the spin config $\{S_{\alpha\beta}\}$ minimizing it.
- Collinear states are the best bet:
 - Spin waves are *transverse* excitations.
 - More ways to make waves in *collinear* states.
 - More virtual excitations \Rightarrow lower energy.

- All spins point along, say, $\pm \hat{z}$.
- ▶ New Ising variables $\sigma_{\alpha\beta} = \pm 1$: $\mathbf{S}_{\alpha\beta}/S = \sigma_{\alpha\beta}\hat{\mathbf{z}}$.

- All spins point along, say, $\pm \hat{z}$.
- New Ising variables $\sigma_{\alpha\beta} = \pm 1$: $\mathbf{S}_{\alpha\beta}/S = \sigma_{\alpha\beta}\hat{\mathbf{z}}$.
- Use eqns of motion to obtain $\{\omega_a\}$: $\hbar d\mathbf{L}_{\alpha}/dt = J \mathbf{S}_{\alpha\beta} \times \mathbf{L}_{\beta}$. (Moessner and Chalker)
- Transverse fluctuations $\lambda = L_x + iL_y$: $\hbar\omega \,\lambda_{\alpha} = JS \,\sigma_{\alpha\beta} \,\lambda_{\beta}.$

- All spins point along, say, $\pm \hat{z}$.
- New Ising variables $\sigma_{\alpha\beta} = \pm 1$: $\mathbf{S}_{\alpha\beta}/S = \sigma_{\alpha\beta}\hat{\mathbf{z}}$.
- Use eqns of motion to obtain $\{\omega_a\}$: $\hbar d\mathbf{L}_{\alpha}/dt = J \mathbf{S}_{\alpha\beta} \times \mathbf{L}_{\beta}$. (Moessner and Chalker)
- Transverse fluctuations $\lambda = L_x + iL_y$: $\hbar \omega \lambda_{\alpha} = JS \sigma_{\alpha\beta} \lambda_{\beta}$.
- "Gauge" symmetry: $\lambda_{\alpha} \mapsto \Lambda_{\alpha} \lambda_{\alpha}$, $\sigma_{\alpha\beta} \mapsto \Lambda_{\alpha} \sigma_{\alpha\beta} \Lambda_{\beta}^{-1}$.
- $\Lambda_{\alpha} = \pm 1$: keep/flip spins on tetrahedron α .
- Gauge-equivalent states have identical spectra. (Henley)

- All spins point along, say, $\pm \hat{z}$.
- New Ising variables $\sigma_{\alpha\beta} = \pm 1$: $\mathbf{S}_{\alpha\beta}/S = \sigma_{\alpha\beta}\hat{\mathbf{z}}$.
- Use eqns of motion to obtain $\{\omega_a\}$: $\hbar d\mathbf{L}_{\alpha}/dt = J \mathbf{S}_{\alpha\beta} \times \mathbf{L}_{\beta}$. (Moessner and Chalker)
- Transverse fluctuations $\lambda = L_x + iL_y$: $\hbar \omega \lambda_{\alpha} = JS \sigma_{\alpha\beta} \lambda_{\beta}$.
- "Gauge" symmetry: $\lambda_{\alpha} \mapsto \Lambda_{\alpha} \lambda_{\alpha}$, $\sigma_{\alpha\beta} \mapsto \Lambda_{\alpha} \sigma_{\alpha\beta} \Lambda_{\beta}^{-1}$.
- $\Lambda_{\alpha} = \pm 1$: keep/flip spins on tetrahedron α .
- Gauge-equivalent states have identical spectra. (Henley)
- Substantial degeneracy kills Néel order!

 Not exactly a gauge symmetry: Constraint $\sum_{\beta} \sigma_{\alpha\beta} = 0$ on every tetrahedron α .

 $\mathbf{L}_{\beta}=0.$

- Not exactly a gauge symmetry: Constraint $\sum_{\beta} \sigma_{\alpha\beta} = 0$ on every tetrahedron α .
- Some gauge transformations violate it.

- Not exactly a gauge symmetry: Constraint $\sum_{\beta} \sigma_{\alpha\beta} = 0$ on every tetrahedron α .
- Some gauge transformations violate it.

 $\mathbf{L}_{\alpha} \neq 0$, $\mathbf{L}_{\beta} = 0$, $\mathbf{L}_{\gamma} \neq 0$

- Not exactly a gauge symmetry:
 Constraint $\sum_{\beta} \sigma_{\alpha\beta} = 0$ on every tetrahedron α .
- Some gauge transformations violate it.

•
$$N_{\text{vacua}} \neq 2^{N_{\text{tetrahedra}}}$$
.

Nonetheless, N_{vacua} is large enough to kill Néel order.

 $\mathbf{L}_{\alpha} = 0$, $\mathbf{L}_{\beta} = 0$, $\mathbf{L}_{\gamma} = 0$

Effective interaction

- \blacksquare $H_{\rm eff}$ must be gauge-invariant.
- **•** Physical variables are Z_2 fluxes
 - $\phi(\bigcirc) = \bar{\sigma}_{12}\sigma_{23}\dots\bar{\sigma}_{56}\sigma_{61} = \pm 1.$
 - where $\bar{\sigma} = -\sigma$.
- **•** Cluster expansion for Z_2 fluxes:

$$\frac{E_1}{N} = \frac{1}{N} \sum_{\gamma} a_1 \phi_{\gamma} + \frac{1}{2N^2} \sum_{\gamma,\gamma'} a_2(\gamma,\gamma') \phi_{\gamma} \phi_{\gamma'} + \dots$$

Effective interaction

- $H_{\rm eff}$ must be gauge-invariant.
- **•** Physical variables are Z_2 fluxes
 - $\phi(\bigcirc) = \bar{\sigma}_{12}\sigma_{23}\dots\bar{\sigma}_{56}\sigma_{61} = \pm 1.$
 - where $\bar{\sigma} = -\sigma$.
- Cluster expansion for Z_2 fluxes:

$$\frac{E_1}{N} = \frac{1}{N} \sum_{\gamma} a_1 \phi_{\gamma} + \frac{1}{2N^2} \sum_{\gamma,\gamma'} a_2(\gamma,\gamma') \phi_{\gamma} \phi_{\gamma'} + \dots$$

Does not converge well (spin waves are gapless).

• $T \gg JS^2$, paramagnet (spin gas).

- $T \gg JS^2$, paramagnet (spin gas).
- $T = \mathcal{O}(JS^2)$, classical spin liquid:
 - $\sum_{\beta} \mathbf{S}_{\alpha\beta} \approx 0.$
 - Spins move collectively (groups of 6 in $ZnCr_2O_4$).

- $T \gg JS^2$, paramagnet (spin gas).
- $T = \mathcal{O}(JS^2)$, classical spin liquid:
 - $\sum_{\beta} \mathbf{S}_{\alpha\beta} \approx 0.$
 - Spins move collectively (groups of 6 in $ZnCr_2O_4$).
- T = O(JS): Gibbs ensemble of discrete classical states.
 - Roughly collinear: $\mathbf{S}_i \cdot \mathbf{S}_j \approx \pm S^2$.
 - No Néel order: $\langle \mathbf{S}_i \rangle = 0$ (thanks to Z_2 "gauge").
 - Possibly valence-bond order: $\langle \mathbf{S}_i \cdot \mathbf{S}_j \mathbf{S}_k \cdot \mathbf{S}_l \rangle \neq 0$.

- $T \gg JS^2$, paramagnet (spin gas).
- $T = \mathcal{O}(JS^2)$, classical spin liquid:
 - $\sum_{\beta} \mathbf{S}_{\alpha\beta} \approx 0.$
 - Spins move collectively (groups of 6 in $ZnCr_2O_4$).
- T = O(JS): Gibbs ensemble of discrete classical states.
 - Roughly collinear: $\mathbf{S}_i \cdot \mathbf{S}_j \approx \pm S^2$.
 - No Néel order: $\langle \mathbf{S}_i \rangle = 0$ (thanks to Z_2 "gauge").
 - Possibly valence-bond order: $\langle \mathbf{S}_i \cdot \mathbf{S}_j \mathbf{S}_k \cdot \mathbf{S}_l \rangle \neq 0$.
- $T = \mathcal{O}(J)$: unique collinear state (Henley):
 - Néel order: $\langle \mathbf{S}_i \rangle \neq 0$.
 - Very large magnetic unit cell (64 spins in $ZnCr_2O_4$).

Large-S results

- 3D pyrochlore lattice:
 - work in progress

Large-S results

- 3D pyrochlore lattice:
 - work in progress
- checkerboard:
 - valence-bond crystal
 - $Z_2 \times Z_2$ order parameter
 - similar to S = 1/2

Large-S results

- 3D pyrochlore lattice:
 - work in progress
- checkerboard:
 - valence-bond crystal
 - $Z_2 \times Z_2$ order parameter
 - $\bullet \ \ {\rm similar \ to} \ S=1/2$
- pyrochlore slice:
 - valence-bond crystal
 - q = 4 Potts.

- 2^L classical vacua selected:
 - $\phi(\Box) = \bar{\sigma}_1 \sigma_2 \bar{\sigma}_3 \sigma_4 = +1.$
 - bonds across □ equally happy

- 2^L classical vacua selected:
 - $\phi(\Box) = \bar{\sigma}_1 \sigma_2 \bar{\sigma}_3 \sigma_4 = +1.$
 - bonds across □ equally happy

- 2^L classical vacua selected:
 - $\phi(\Box) = \bar{\sigma}_1 \sigma_2 \bar{\sigma}_3 \sigma_4 = +1.$
 - bonds across □ equally happy

- 2^L classical vacua selected:
 - $\phi(\Box) = \bar{\sigma}_1 \sigma_2 \bar{\sigma}_3 \sigma_4 = +1.$
 - bonds across □ equally happy

- 2^L classical vacua selected:
 - $\phi(\Box) = \bar{\sigma}_1 \sigma_2 \bar{\sigma}_3 \sigma_4 = +1.$
 - bonds across □ equally happy
- 4 disjoint thermal ensembles:
 - Location of happy bonds on 2 sublattices of ⊠:
 H × H,

- 2^L classical vacua selected:
 - $\phi(\Box) = \bar{\sigma}_1 \sigma_2 \bar{\sigma}_3 \sigma_4 = +1.$
 - ▶ bonds across □ equally happy
- 4 disjoint thermal ensembles:
 - Location of happy bonds on 2 sublattices of ⊠:
 H × H, V × V,

- 2^L classical vacua selected:
 - $\phi(\Box) = \bar{\sigma}_1 \sigma_2 \bar{\sigma}_3 \sigma_4 = +1.$
 - bonds across □ equally happy
- 4 disjoint thermal ensembles:
 - Location of happy bonds on 2 sublattices of ⊠:

•
$$H \times H$$
, $V \times V$,

•
$$\mathsf{H} \times \mathsf{V},$$

- 2^L classical vacua selected:
 - $\phi(\Box) = \bar{\sigma}_1 \sigma_2 \bar{\sigma}_3 \sigma_4 = +1.$
 - ▶ bonds across □ equally happy
- 4 disjoint thermal ensembles:
 - Location of happy bonds on 2 sublattices of ⊠:
 - $H \times H$, $V \times V$,
 - $\bullet H \times V, V \times H.$

S = 1/2: Lhuillier *et al.* (2001).

- $Z_2 \times Z_2$ valence-bond order.
 - Thermal phase transition paramagnet → valence-bond crystal:
 C. Xu and J.E. Moore, cond-mat/0405271.

- Collinear ground states.
- \blacksquare Z₂ gauge symmetry applies.
- Educated guess (Henley):

- Collinear ground states.
- \blacksquare Z₂ gauge symmetry applies.
- Educated guess (Henley):
 - $\phi(\bigcirc) = +1.$

- Collinear ground states.
- \blacksquare Z₂ gauge symmetry applies.
- Educated guess (Henley):
 - $\phi(\bigcirc) = +1$.
 - 2 or 0 frustrated bonds on \bigcirc
 - (counting either ∇ or Δ).

- Collinear ground states.
- \blacksquare Z₂ gauge symmetry applies.
- Educated guess (Henley):
 - $\phi(\bigcirc) = +1$.
 - 2 or 0 frustrated bonds on \bigcirc
 - (counting either ∇ or Δ).

- Collinear ground states.
- Z_2 gauge symmetry applies.
- Educated guess (Henley):
 - $\phi(\bigcirc) = +1.$
 - 2 or 0 frustrated bonds on \bigcirc
 - (counting either ∇ or Δ).

• These states \mapsto classical dimers on a triangular lattice:

- Collinear ground states.
- \blacksquare Z₂ gauge symmetry applies.
- Educated guess (Henley):
 - $\phi(\bigcirc) = +1$.
 - 2 or 0 frustrated bonds on \bigcirc
 - (counting either ∇ or Δ).
- These states \mapsto classical dimers on a triangular lattice:
 - 2 frustrated bonds on a \bigcirc = dimer.

- Collinear ground states.
- \blacksquare Z₂ gauge symmetry applies.
- Educated guess (Henley):
 - $\phi(\bigcirc) = +1$.
 - 2 or 0 frustrated bonds on \bigcirc
 - (counting either ∇ or Δ).

- **•** These states \mapsto classical dimers on a triangular lattice:
 - 2 frustrated bonds on a \bigcirc = dimer.
- Classical valence-bond liquid:
 - No Néel order: $\langle \mathbf{S}_i \rangle = 0$.
 - No valence-bond order: uniform $\langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle$.

- Collinear ground states.
- \blacksquare Z_2 gauge symmetry applies.
- Educated guess (Henley):
 - $\phi(\bigcirc) = +1$.
 - 2 or 0 frustrated bonds on \bigcirc
 - (counting either ∇ or Δ).

- These states \mapsto classical dimers on a triangular lattice:
 - 2 frustrated bonds on a \bigcirc = dimer.
- Classical valence-bond liquid:
 - No Néel order: $\langle \mathbf{S}_i \rangle = 0$.
 - No valence-bond order: uniform $\langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle$.
 - Topological order (Z_2 fluxes on a torus).

Numerical minimization:

- Numerical minimization:
 - 3/4 hexagons: $\phi = +1$.
 - the rest: $\phi = -1$.

- Numerical minimization:
 - 3/4 hexagons: $\phi = +1$.
 - the rest: $\phi = -1$.
 - 2×2 unit cell.

Numerical minimization:

- 3/4 hexagons: $\phi = +1$.
- the rest: $\phi = -1$.
- 2×2 unit cell.
- Still \mapsto dimers
 - on decorated triang. lattice.

Numerical minimization:

- 3/4 hexagons: $\phi = +1$.
- the rest: $\phi = -1$.
- 2×2 unit cell.
- - on decorated triang. lattice.
- Broken symmetries:
 - Spin SU(2) is intact: $\langle \mathbf{S}_i \rangle = 0$.
 - Valence-bond order: non-uniform $\langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle$.

S = 1/2: A.B. Harris, Berlinsky and Bruder (1991).

Alternative approach: Schwinger bosons

- Represent spins in terms of bosons carrying S = 1/2:
 - $\mathbf{S} = \frac{1}{2} b_{\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} b_{\beta}, \quad S = \frac{1}{2} b_{\alpha}^{\dagger} b_{\alpha}, \quad \alpha = \uparrow, \downarrow.$
 - $\mathbf{S}_i \cdot \mathbf{S}_j = \operatorname{const} \mathcal{B}_{ij}^{\dagger} B_{ij}$,
 - where $B_{ij} = \varepsilon_{\alpha\beta} b_{i\alpha} b_{j\beta}$ is a singlet pair of bosons.

Alternative approach: Schwinger bosons

- Represent spins in terms of bosons carrying S = 1/2:
 - $\mathbf{S} = \frac{1}{2} b_{\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} b_{\beta}, \quad S = \frac{1}{2} b_{\alpha}^{\dagger} b_{\alpha}, \quad \alpha = \uparrow, \downarrow.$
 - $\mathbf{S}_i \cdot \mathbf{S}_j = \mathsf{const} \mathcal{B}_{ij}^\dagger B_{ij}$,
 - where $B_{ij} = \varepsilon_{\alpha\beta} b_{i\alpha} b_{j\beta}$ is a singlet pair of bosons.
- $SU(2) \rightarrow SU(2N) \rightarrow Sp(N)$, 1/N small parameter.

Alternative approach: Schwinger bosons

- Represent spins in terms of bosons carrying S = 1/2:
 - $\mathbf{S} = \frac{1}{2} b_{\alpha}^{\dagger} \, \boldsymbol{\sigma}_{\alpha\beta} \, b_{\beta}, \qquad S = \frac{1}{2} b_{\alpha}^{\dagger} b_{\alpha}, \qquad \alpha = \uparrow, \downarrow.$
 - $\mathbf{S}_i \cdot \mathbf{S}_j = \operatorname{const} \mathcal{B}_{ij}^{\dagger} B_{ij}$,
 - where $B_{ij} = \varepsilon_{\alpha\beta} b_{i\alpha} b_{j\beta}$ is a singlet pair of bosons.
- $SU(2) \rightarrow SU(2N) \rightarrow Sp(N)$, 1/N small parameter.
- Method particuarly suitable for finding spin liquids:
 - Featureless quantum ground state.
 - Deconfined S = 1/2 excitations.
 - Topological order.
 - Square lattice with frustration, triangular, kagome.

N. Read and S. Sachdev, late 1980s.

- Ground state breaks:
 - lattice symmetries,
 - time reversal.

- Ground state breaks:
 - lattice symmetries,
 - time reversal.
- Sp(N) saddle points related to classical vacua of SU(2):
 - take a classical state,

- Ground state breaks:
 - lattice symmetries,
 - time reversal.
- Sp(N) saddle points related to classical vacua of SU(2):
 - take a classical state,
 - average over global rotations.

- Ground state breaks:
 - lattice symmetries,
 - time reversal.
- Sp(N) saddle points related to classical vacua of SU(2):
 - take a classical state,
 - average over global rotations.

- Antiferromagnet built from tetrahedra tends to order:
 - Valence-bond order, $\langle \mathbf{S}_i \cdot \mathbf{S}_j \mathbf{S}_k \cdot \mathbf{S}_l \rangle \neq 0$.
 - Broken time reversal: $\langle \mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_k) \rangle \neq 0$.

- Ground state breaks:
 - lattice symmetries,
 - time reversal.
- Sp(N) saddle points related to classical vacua of SU(2):
 - take a classical state,
 - average over global rotations.

- Antiferromagnet built from tetrahedra tends to order:
 - Valence-bond order, $\langle \mathbf{S}_i \cdot \mathbf{S}_j \mathbf{S}_k \cdot \mathbf{S}_l \rangle \neq 0$.
 - Broken time reversal: $\langle \mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_k) \rangle \neq 0$.
- Antiferromagnet built from triangles does not.

Pyrochlore antiferromagnet: a summary

- Strongly degenerate classical ground state:
 - 1 continuous degree of freedom per tetrahedron.
 - No order of any kind detected (MC simulations).

Pyrochlore antiferromagnet: a summary

- Strongly degenerate classical ground state:
 - 1 continuous degree of freedom per tetrahedron.
 - No order of any kind detected (MC simulations).
- Holstein-Primakoff bosons (large S):
 - Leading quantum corrections at $\mathcal{O}(1/S)$.
 - Collinear ground states are preferred.
 - The selected states have a Z_2 "gauge" symmetry.
 - Likely no Néel order: $\langle \mathbf{S}_i \rangle = 0$.
 - Valence-bond order: $\langle \mathbf{S}_i \cdot \mathbf{S}_j \mathbf{S}_k \cdot \mathbf{S}_l \rangle \neq 0$.

Pyrochlore antiferromagnet: a summary

- Strongly degenerate classical ground state:
 - 1 continuous degree of freedom per tetrahedron.
 - No order of any kind detected (MC simulations).
- Holstein-Primakoff bosons (large S):
 - Leading quantum corrections at $\mathcal{O}(1/S)$.
 - Collinear ground states are preferred.
 - The selected states have a Z_2 "gauge" symmetry.
 - Likely no Néel order: $\langle \mathbf{S}_i \rangle = 0$.
 - Valence-bond order: $\langle \mathbf{S}_i \cdot \mathbf{S}_j \mathbf{S}_k \cdot \mathbf{S}_l \rangle \neq 0$.
- Schwinger bosons (large *N*):
 - Valence-bond order or broken T reversal.
 - Spinon deconfinement possible in broken-T state.