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Overview

• High-Tc superconductivity and RVB theory
• The Rokhsar-Kivelson quantum dimer model:

– valence bond solids and RVB liquids in d = 2 and d = 3
– description as height/gauge theories

• Connections to highly frustrated magnets (cooperative
paramagnets):

– pyrochlore magnets and spin ice
– large-N approach to determine spin liquid correlations

• Excitations of the RVB liquids:
– excitations in the single-mode approximation
– resonons, photons and pi0ns

• Conclusions and outlook
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Short-range RVB physics

Basic problem of high-Tc: how do holes hop through an
antiferromagnetic Mott insulator?
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Hole motion is frustrated:
hopping creates domain walls

+ + + +
+ + + +

+ + + +
+ + + +

+ + + ++ +

Possible resolution: magnet enters a different phase
resonating valence bond liquid phase

which breaks no symmetries.

Neighbouring electrons form a singlet (“valence”) bond
→denoted by a dimer.
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The basic RVB scenario - electron fractionalisation

Energetics RVB Neel
single pair valence bond optimal

higher coordination energy from resonance ... each neighbour
hole doping motion unimpeded motion frustrated

————–

• Basic resonance move is that of benzene

• Removing an electron → holon + spinon

spinon and holon are
deconfined

↓
(bosonic) holons can

condense
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Local constraints and quantum dynamics

• ‘Hard’ constraints are ubiquitous (e.g. single occupancy)
• Effective degrees of freedom encode constraint (sometimes)
• Adding quantum dynamics lifts extensive classical

degeneracy (via plaquette resonance; inversion of closed
loops; XY or ring exchange, transverse field)

dimer models vertex models Ising ground states

→ degeneracy + quantum dynamics = ???
→ non-perturbative + potentially very interesting (see QHE)
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The Rokhsar-Kivelson quantum dimer model

H
QDM

= t( )+v( )
H

QDM
= t( )+v( )

• Resonance (t) and potential (v) term from uncontrolled
approximation – one parameter: v/t

• RK point v/t = 1 is exactly soluble in d = 2 at T = 0:

|0〉 = 1√
Nc

∑
c |c〉 → 〈P̂ 〉 = 1

Nc

∑
c,c′〈c|P̂ |c′〉 = 1

Nc

∑
c pc

→ classical calculation for diagonal operators
• v/t > 1 and limits of v/t → −∞ give solid (staggered and

columnar, respectively) phases:
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Phase diagram for the square lattice

deconfined0

columnar
v/t

1

staggeredplaquette

• all phases confining (break translational symmetry) RK;

Read+Sachdev; Leung; ...

• RK point deconfined RM+Sondhi

• RK point highly degenerate RK

• Crucial ingredient: bipartitness allows height (gauge)
mapping
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Height/gauge mapping of square lattice dimer model

Orientation of dimers (from red to blue sublattice) is possible.

Magnetic analogy: dimer = magnetic flux ~B
• Link with dimer → flux ~B = +3

• Unoccupied link → flux ~B = −1

• ∇ · ~B = 0 → ~B = ∇× ~A = ∇× h

‘Vector potential’ ~A in d = 2 is simple scalar height function h (
Youngblood et al.)
Mapping to height takes care of hardcore constraint → we can
coarse-grain safely to get effective long-wavelength theory.
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Height representation in d = 2

I Classical (RK point) Blote, Nightingale, Hilhorst, ...

coarse-grain h → h̃ to get energy functional of entropic origin:

Z =
∫
Dh̃ exp[Scl];Scl = −K

2

∫
(∇h̃)2

II Quantum: guess effective long-wavelength theory RM et al., Henley

Sq =
∫

(∂τ h̃)2 − ρ2(∇h̃)2 − ρ4(∇
2h̃)2 + λ cos(2πh̃)

with
• ρ2 ∝ (v/t − 1) = 0 at the critical RK point → degeneracy.

• v/t > 1 preferring maximal ∇h̃ → staggered

• For v/t < 1, presence of dangerously irrelevant operator→
flat h̃ → confining solid (plaquette or columnar).

• RK point is ‘deconfined multicritical’ Fradkin et al.
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Can we obtain an RVB liquid nonetheless?

• Do all quantum dimer models order?
• In d = 2 + 1, height model is never in the rough phase
• Possibilities

– Non-bipartite lattice → triangular RVB (Z2) liquid
– Three dimensions → cubic RVB (U(1)) liquid
– Both → fcc RVB (Z2) liquid
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The triangular short-range RVB liquid

12x 12 RVB

0 1

columnar staggered
v/t

• Point of principle: RVB liquid exists in d = 2 + 1

• electron fractionalisation – deconfinement
• gapped excitation spectrum (in single-mode approx.)
• topological order (Wen for QHE)
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Topological order in the RVB liquid phase

• Winding parity (|e〉, |o〉) invariant under action of local
Hamiltonian

• Liquids locally indistinguishable → sectors degenerate for
L → ∞, and 〈o|Ĥn|e〉 ∝ exp(−L) for local noise Ĥn.

• Use as scalable q-bit, immune to decoherence? Kitaev et al., Ioffe

et al. → realisation as Josephson junction array?
• Problem: logic gates; non-local operations, ...
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Generalisation to d = 3: cubic lattice (RK point)

Can again use analogy to electrodynamics by orienting dimers.
New feature: ~B = ∇× ~A is now related to vector potential with
local gauge invariance. Youngblood+Axe; Henley; Hermele et al.; Huse et al.

Z =
∫
D ~A exp[Scl];Scl = −K

2

∫
(∇× ~A)2

gives dipolar correlators:
cxx ∝ (3 cos2 θ − 1)/r3

which agree well with Monte Carlo (left: L = 128; right: L = 32):

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16

co
nn

ec
te

d 
co

rr
el

at
io

n 
* 

R
3  *

 σ
 

R

[111]
[010]
[100]
[110]

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16

R

RVB liquids and cooperative paramagnetism



U(1) RVB phase on cubic lattice

II Quantum: again guess effective long-wavelength theory

Sq =
∫

~E2 − ρ2
~B2 − ρ4(∇× ~B)2

This is action of compact QED, with monopoles suppressed
(∇ · ~B = 0)→

There exists an RVB “Coulomb” liquid phase, with

• deconfinement
• gapless photons
• ‘quantum order’ (Wen) RKTF

0 18−

MF

‘staggered’confining phases RVB

v/t

RVB liquids and cooperative paramagnetism



Z2 RVB phase on face-centred cubic lattice

• The presence/absence of an RVB phase on bipartite lattices
is a consequence of the respective presence/absence of
deconfining phases in the corresponding U(1) gauge
theories in d = 3 + 1 and d = 2 + 1.

• Similarly, the presence of an RVB phase on the triangular
lattice follows from the existence of a deconfined phase in
Z2 gauge theories in d = 2 + 1. This carries over to d = 3 + 1,
where for the non-bipartite face-centred cubic lattice, an Z2

RVB phase exists (with topological order but without gapless
photons).

• Moral: deconfined dimer phases are more easily found in
d = 3 + 1 than in d = 2 + 1 BUT dimer phases are more
difficult to stabilise in higher dimensions.
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Highly frustrated magnetism in d = 3
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• Pyrochlore lattice: corner-sharing
tetrahedra.

• antiferromagnetic ground states have
zero total spin on each tetrahedron

• huge degeneracy
– Ising: cubic ice=diamond six vertex

with residual Pauling entropy 1

2
ln 3

2
;

– H’berg: cooperative paramagnet

No ordering for T → 0

Lattice of tetrahedra is bipartite – we again ha-
ve conservation law (Henley; R.M. et al.; Hermele et al.)!
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Large- N treatment compared to finite N

Strategy: consider classical O(N) model N = ∞. Hope: ‘gross’
features reproduced correctly.
No free parameter.

Structure factor in [hhk] pla-
ne for pyrochlore antiferro-
magnet. (Zinkin; Garanin+Canals)

O(∞) ice Ih (O(1))

R3× Ising real-space
correlations (different
sizes and directions)
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1/N corrections

• 1/N corrections preserve ‘dipolar’ form of correlations at
large distances (conservation law)

• non-perturbative effects: order by disorder and ‘vertex
operators’ in d = 2 (forbidden in d = 3)

• also works for more general set of models, e.g. three-dimer
model on triangular lattice (aka kagome ring exchange of
Balents et al.)

O(∞) Ising, [O(1)]

Treatment is not
exact but very
accurate
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Excitations and the single-mode approximation

• ρ̂ê(k): dimer density operator (polarisation ê, wavevector k).

• Ground state: |0〉, variational excited state |k〉 = ρ̂ê(k)|0〉

• Single-mode approx.: Ek − E0 ≤ f(k)/s(k), where
s(k) = 〈k|k〉 and f(k) = 〈0|[ρ̂ê(k), [H, ρ̂ê(−k)]]|0〉

• Gapless modes for f(k) → 0 or s(k) → ∞

• For bipartite lattices, near zone-corner Q: f(Q+k) ∝ (k× ê)2

lattice triangular pyrochlore square
excitations gapped (Z2) only photons resonons+pi0ns
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Summary

• RVB liquids:
– different RVB liquids with fractionalisation, topological

order, ...

• range of excitations
– photons, resonons, pi0ns

• potential realisations:
– correlated electrons
– frustrated magnets
– artificial structures
– cold atoms
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