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What we learn from one-body and two-body physics:

Ø  Highly-symmetric SOC:
•  Ground state degeneracy
•  Enhanced low-E density-of-state

Ø  Spin locked with momentum

Two-‐body 

Ø  Highly-symmetric SOC favors dimer formation

Ø  Coupled relative and center-of-mass motions; 
     Coupled scattering channels 

One-‐body 

Q: What change will SOC make to three-body physics? 

Conceptually	  new?	  Prac6cally	  solvable?	  	  	   



3-body physics without SOC:
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m	  

EN/EN+1=515 

EN=1=1/mR*2 

EN=2 

•  Three	  bosons:	  Efimov	  spectrum 

•  Fermion	  mixtures: 

M/m 

EN=3 

•  induced	  by	  1/R2	  poten6al	  	  
•  short-‐range	  physics	  is	  important 

8.2 12.9 13.6 

Universal	  trimer:	  (a_s>0,	  M/m=[8.2,13.6])	  
Kartavtsev	  &	  Malykh:	  J.	  Phys.	  B	  40,	  1429	  (2007)	  

One	  trimer Two	  trimers Efimov	  trimer 



Our strategy:
Ø Highly-symmetric SOC (simplest while with great interests)

Ø  Fermion mixtures 

With SOC, we ask:

p Trimer formation? (universal trimer, Efimov physics…)

p New universality?

p Few to Many?  



Outline

Ø Universal	  trimers	  favored	  by	  SOC	  	  

	  

Ø Universal	  Borromean	  binding	  	  
	  
	  
	  
Ø Three	  to	  Many:	  trimers	  on	  top	  of	  a	  Fermi	  sea 

XC	  and	  Wei	  Yi,	  	  Phys.	  Rev.	  X	  4,	  031206	  (2014)	  
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the high-energy cutoff known as the three-body param-
eter, while the energies of two successive trimers obey a
universal scaling behavior [1]. Second, when 8.17 <
M=m < 13.6, there exists another type of trimer named
the “Kartavtsev-Malykh” trimer, whose energy is uni-
versal (i.e., independent of any high-energy cutoff) [11].
Since the s-wave scattering length a is the only length
scale, the trimer energy has to simply scale with the two-
body binding energy. Thus, such a universal trimer
appears only for positive a when a two-body bound
state exists. Because of the antisymmetrization of the two
α atoms, both types of trimer states have a total orbital
angular momentum L ¼ 1.
Model.—Our system is described by the Hamiltonian

Ĥ ¼ Ĥ0 þ Û,

Ĥ0 ¼
p1

2

2M
þ p2

2

2M
þ ðp3 − λσ̂Þ2

2m
; (1)

Û ¼ ½gδðr1 − r3Þ þ gδðr2 − r3Þ&I; (2)

in which p1;2ðr1;2Þ refers to the momentum (position) of
two α atoms, and p3ðr3Þ is for the β atom. σ̂ is the spin of
the β atom, which couples to its momentum via a three-
dimensional isotropic SO coupling λp · σ̂ where p ¼
ðpx; py; pzÞ and σ̂ ¼ ðσx; σy; σzÞ. Without loss of general-
ity, we take λ > 0. Proposals for realizing such a SO
coupling have been presented in Refs. [31,32]. The
s-wave contact interaction Û only takes place between
the β atom and α atom, and the interaction strength is
assumed to be independent of the spin-index of the β
atom, where I in Û denotes the identity operator acting
on the spin space of the β atom. g is related to a by the
renormalization equation

1

g
¼ Mm

2πðM þmÞa
− 1

Ω
X

k

2Mm
ðM þmÞk2

; (3)

where Ω is the volume. It has been shown that this relation
will not be changed by SO coupling, as long as 1=λ is
much larger than the range of interatomic potential
[35–37].
To address the three-body bound state, we should first

solve the two-body problem with one α and one β atom to
determine the atom-dimer threshold, which can be carried
out quite straightforwardly with the Lippman-Schwinger
equation [38]. Although our case differs from previous
studies of the two-body problem with SO coupling
[24,31,32,35–37,39–42] where both two atoms are sub-
jected to SO coupling, the results are quite similar to
previous cases with Rashba or three-dimensional isotropic
SO coupling, i.e., for any mass ratio M=m and for all a, a
two-body bound state with zero center-of-mass momentum
exists [24,25,31,35]. The physical reason is also attributed
to the enhancement of the density of state of the β atom,
which diverges at the threshold scattering energy.

For the same three-body system without SO coupling,
the total orbital angular momentum L is a good quantum
number and most previous calculations focus on the lowest
bound states in the L ¼ 1 channel. After introducing spin
degrees of freedom for the β atom, these bound states are
always sixfold degenerate. In the presence of SO coupling,
these states would split into two channels with a different
total angular momentum J ¼ Lþ S. They are two states
with J ¼ 1=2 and four states with J ¼ 3=2.
Solving the three-body problem.—Generally, we assume

the three-body wave function (with total momentumK0) as

jΨi ¼
X

p;q;σ

Ψσðq;K0 − p;p − qÞα̂†qα̂†K0−pβ̂
†
σ;p−qj0i; (4)

where α̂† and β̂† are creation operators for the α atom
and β atom, respectively, and σ ¼ ↑, ↓ is the spin index of
the β atom. Introducing an auxiliary function fσðpÞ ¼
g
P

qΨσðq;K0 − p;p − qÞ, we can reach the following
integral equation for fσðqÞ:

fσðkÞ ¼ g
X

p;σ0
Gσσ0ðE;p;K0 − k;k − pÞ

× ½fσ0ðkÞ − fσ0ðK0 − pÞ&; (5)

where

Gσσ0ðE;k1;k2;k3Þ

¼
!
k1;k2;k3; σ

""""
1

E −H0

""""k1;k2;k3; σ0
#

is the Green’s function in momentum space [43–45]. The
nonzero solution of Eq. (5) determines the energy of the
trimer states, E ¼ E3. To get physical solutions for E3,
the renormalization equation (3) can be used to eliminate
the ultraviolet divergence of

P
pGσσ in Eq. (5) [38].

However, in general, solving the coupled three-
dimensional integral equation is highly nontrivial.
Nevertheless, great simplification can be obtained in the
subspace with K0 ¼ 0. As shown in the Supplemental
Material [38], for a quantum state labeled by ðJ; JzÞ ¼ ðjþ
1=2; mþ 1=2Þ (where j and m are integers), fσðkÞ satisfies

f↑ðkÞ ¼ C0
↑f0ðkÞYm

j ðΩkÞ þ C1
↑f1ðkÞYm

jþ1ðΩkÞ;

f↓ðkÞ ¼ C0
↓f0ðkÞY

mþ1
j ðΩkÞ þ C1

↓f1ðkÞY
mþ1
jþ1 ðΩkÞ; (6)

where k ¼ jkj is the magnitude of k and f0, f1 are func-
tions that only depend on k, C0

σ , C1
σ are Clebsch-Gordan

coefficients,

Cδ
σ ¼

!
jþ δ; m − σ;

1

2
; σjjþ 1

2
; mþ 1

2

#
; (7)

with δ ¼ 0,1 and σ ¼ ' 1
2. After substituting Eq. (6) into

Eq. (5), Eq. (5) is reduced to two coupled one-dimensional
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Case I: one particle with isotropic SOC 

We	  solve	  three-‐body	  bound	  states	  with 
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l1

l3, s

l2

L = l1 + l2 + l3
s =1/2

Good numbers: 
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FIG. 3. (Color online) Three-body threshold energy Eth(0) as a
function of 1/λa (mass ratio M/m = µ = 1).

We restrict the calculation in a fixed total momentum
subspace. The Lippmann-Schwinger equation is

"σ (k1,k2) = g

$

∑

q,σ ′

G
(0)
σσ ′(k1,k2)["σ ′(q,k2) + "σ ′(k1,q)].

(26)

Here k1,k2 are the momenta of two α atoms. We omit the
momentum of the β atom in the equation since the total
momentum K is always a conserved quantity. So "σ (k1,k2)
is actually a short form of "σ (k1,k2,K − k1 − k2). G

(0)
σσ ′ is

the Green’s function of three noninteracting particles (see
Appendix A for details),

G↑↑ =
cos2 θk3

2

E − εk1 − εk2 − ϵ+
k3

+
sin2 θk3

2

E − εk1 − εk2 − ϵ−
k3

,

G↓↓ =
sin2 θk3

2

E − εk1 − εk2 − ϵ+
k3

+
cos2 θk3

2

E − εk1 − εk2 − ϵ−
k3

,

G↓↑ = G∗
↑↓ = sin

θk3

2
cos

θk3

2
eiφk3

×
(

1
E − εk1 − εk2 − ϵ+

k3

− 1
E − εk1 − εk2 − ϵ−

k3

)
.

(27)

To solve Eq. (26), we define an auxiliary function fσ (p) as

fσ (p) = g
∑

q

"σ (q,K − p) = −g
∑

q

"σ (K − p,q). (28)

Using this definition, we can simplify Eq. (26) into

fσ (k) = g

$

∑

σ ′,p

G
(0)
σσ ′(p,K − k)[fσ ′(k) − fσ ′(K − p)]. (29)

The linear integral Eq. (29) has one trivial solution, which
is fσ = 0. For some special E = E3(K) the equation has a
nonzero solution of fσ ; this gives the energies of three-body
bound states. Next we show that the symmetry consideration
can simplify the problem to a great extent.

There are two good quantum numbers of the three-body
Hamiltonian: the total momentum P = p1 + p2 + p3 and the

total angular momentum J = L + s. They correspond to the
spatial translation operation and a simultaneously rotation in
real and spin space. We find following commutation relation
of P and J,

[Ji,Jj ] = iϵijkJk, [Pi,Pj ] = 0, [Pi,Jj ] = iϵijkPk. (30)

Here the subindices i,j,k = 1,2,3 denote different compo-
nents of P and J, and ϵijk is the common Levi-Civita symbol.

The commutation relation (30) is the algebra of the special
Euclidean group SE(3), which is related to the kinematics of
a rigid body in three dimensions. It has been proved that there
are two independent Casimir invariants for SE(3), which are
P2 and P · J [47]. Since we have already used the conservation
of total momentum P, the only nontrivial Casimir is then P · J.
In Appendix C, we show that the use of this Casimir can help
integrate out one fold of the integral in Eq. (29) and simplify
it into a two-dimensional integral equation.

Moreover, the commutation relation (30) suggests that
the angular momentum J actually commutes with the total
momentum P in P = 0 subspace. Therefore, in this subspace,
we can use the good quantum number J. In Appendix D,
we show that for a bound state with angular momentum
(J,Jz) = (j + 1

2 ,m + 1
2 ), fσ (k) should take the form

f↑(k) =

√
j + m + 1

2j + 1
f0Y

m
j −

√
j − m + 1

2j + 3
f1Y

m
j+1,

f↓(k) =

√
j − m

2j + 1
f0Y

m+1
j +

√
j + m + 2

2j + 3
f1Y

m+1
j+1 , (31)

where f0 and f1 are two functions only depending on the
magnitude of k and Ym

j is short for Ym
j ($k).

After substituting this ansatz into Eq. (29), we obtain two
coupled one-dimensional integral equations which can be
written in a compact form,

Z(k)
(

f0(k)
f1(k)

)
=

∫ +

0
dpKj (k,p)

(
f0(p)
f1(p)

)
. (32)

The high-energy cutoff + is equivalent to imposing a short-
range three-body boundary condition, as we did in Sec. III.
Both Z and Kj are two-by-two matrices, whose elements are
shown in Appendix D. We can see that the bound states with
different quantum numbers Jz are degenerate, which is also a
consequence of the SE(3) symmetry.

A. Efimov trimer

We know that the emergence of the Efimov physics comes
from the high-momentum part of the coefficient matrices Z
and KJ . In the high-momentum region, where p3 ≫ λ, the
dispersion ϵ±

p3
becomes closer to a normal parabolic form and

the SO-coupling effect can be neglected. Therefore, the SO
coupling will not change the critical mass ratio for Efimov
trimers:

µEfimov(λ) = µEfimov(0) = 13.606 . . . . (33)

In Fig. 4, we plot the trimer energies in the lowest angular
momentum channel (J = 1/2) as a function of SO-coupling
strength λ at two-body resonance. We find that many shallow
bound states will merge into the atom-dimer threshold as we
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FIG. 3. (Color online) Three-body threshold energy Eth(0) as a
function of 1/λa (mass ratio M/m = µ = 1).

We restrict the calculation in a fixed total momentum
subspace. The Lippmann-Schwinger equation is

"σ (k1,k2) = g

$

∑

q,σ ′

G
(0)
σσ ′(k1,k2)["σ ′(q,k2) + "σ ′(k1,q)].

(26)

Here k1,k2 are the momenta of two α atoms. We omit the
momentum of the β atom in the equation since the total
momentum K is always a conserved quantity. So "σ (k1,k2)
is actually a short form of "σ (k1,k2,K − k1 − k2). G

(0)
σσ ′ is

the Green’s function of three noninteracting particles (see
Appendix A for details),

G↑↑ =
cos2 θk3

2

E − εk1 − εk2 − ϵ+
k3

+
sin2 θk3

2

E − εk1 − εk2 − ϵ−
k3

,

G↓↓ =
sin2 θk3

2

E − εk1 − εk2 − ϵ+
k3

+
cos2 θk3

2

E − εk1 − εk2 − ϵ−
k3

,

G↓↑ = G∗
↑↓ = sin

θk3

2
cos

θk3

2
eiφk3

×
(

1
E − εk1 − εk2 − ϵ+

k3

− 1
E − εk1 − εk2 − ϵ−

k3

)
.

(27)

To solve Eq. (26), we define an auxiliary function fσ (p) as

fσ (p) = g
∑

q

"σ (q,K − p) = −g
∑

q

"σ (K − p,q). (28)

Using this definition, we can simplify Eq. (26) into

fσ (k) = g

$

∑

σ ′,p

G
(0)
σσ ′(p,K − k)[fσ ′(k) − fσ ′(K − p)]. (29)

The linear integral Eq. (29) has one trivial solution, which
is fσ = 0. For some special E = E3(K) the equation has a
nonzero solution of fσ ; this gives the energies of three-body
bound states. Next we show that the symmetry consideration
can simplify the problem to a great extent.

There are two good quantum numbers of the three-body
Hamiltonian: the total momentum P = p1 + p2 + p3 and the

total angular momentum J = L + s. They correspond to the
spatial translation operation and a simultaneously rotation in
real and spin space. We find following commutation relation
of P and J,

[Ji,Jj ] = iϵijkJk, [Pi,Pj ] = 0, [Pi,Jj ] = iϵijkPk. (30)

Here the subindices i,j,k = 1,2,3 denote different compo-
nents of P and J, and ϵijk is the common Levi-Civita symbol.

The commutation relation (30) is the algebra of the special
Euclidean group SE(3), which is related to the kinematics of
a rigid body in three dimensions. It has been proved that there
are two independent Casimir invariants for SE(3), which are
P2 and P · J [47]. Since we have already used the conservation
of total momentum P, the only nontrivial Casimir is then P · J.
In Appendix C, we show that the use of this Casimir can help
integrate out one fold of the integral in Eq. (29) and simplify
it into a two-dimensional integral equation.

Moreover, the commutation relation (30) suggests that
the angular momentum J actually commutes with the total
momentum P in P = 0 subspace. Therefore, in this subspace,
we can use the good quantum number J. In Appendix D,
we show that for a bound state with angular momentum
(J,Jz) = (j + 1

2 ,m + 1
2 ), fσ (k) should take the form

f↑(k) =

√
j + m + 1

2j + 1
f0Y

m
j −

√
j − m + 1

2j + 3
f1Y

m
j+1,

f↓(k) =

√
j − m

2j + 1
f0Y

m+1
j +

√
j + m + 2

2j + 3
f1Y

m+1
j+1 , (31)

where f0 and f1 are two functions only depending on the
magnitude of k and Ym

j is short for Ym
j ($k).

After substituting this ansatz into Eq. (29), we obtain two
coupled one-dimensional integral equations which can be
written in a compact form,

Z(k)
(

f0(k)
f1(k)

)
=

∫ +

0
dpKj (k,p)

(
f0(p)
f1(p)

)
. (32)

The high-energy cutoff + is equivalent to imposing a short-
range three-body boundary condition, as we did in Sec. III.
Both Z and Kj are two-by-two matrices, whose elements are
shown in Appendix D. We can see that the bound states with
different quantum numbers Jz are degenerate, which is also a
consequence of the SE(3) symmetry.

A. Efimov trimer

We know that the emergence of the Efimov physics comes
from the high-momentum part of the coefficient matrices Z
and KJ . In the high-momentum region, where p3 ≫ λ, the
dispersion ϵ±

p3
becomes closer to a normal parabolic form and

the SO-coupling effect can be neglected. Therefore, the SO
coupling will not change the critical mass ratio for Efimov
trimers:

µEfimov(λ) = µEfimov(0) = 13.606 . . . . (33)

In Fig. 4, we plot the trimer energies in the lowest angular
momentum channel (J = 1/2) as a function of SO-coupling
strength λ at two-body resonance. We find that many shallow
bound states will merge into the atom-dimer threshold as we
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FIG. 3. (Color online) Three-body threshold energy Eth(0) as a
function of 1/λa (mass ratio M/m = µ = 1).

We restrict the calculation in a fixed total momentum
subspace. The Lippmann-Schwinger equation is

"σ (k1,k2) = g

$

∑

q,σ ′

G
(0)
σσ ′(k1,k2)["σ ′(q,k2) + "σ ′(k1,q)].

(26)

Here k1,k2 are the momenta of two α atoms. We omit the
momentum of the β atom in the equation since the total
momentum K is always a conserved quantity. So "σ (k1,k2)
is actually a short form of "σ (k1,k2,K − k1 − k2). G

(0)
σσ ′ is

the Green’s function of three noninteracting particles (see
Appendix A for details),

G↑↑ =
cos2 θk3

2

E − εk1 − εk2 − ϵ+
k3

+
sin2 θk3

2

E − εk1 − εk2 − ϵ−
k3

,

G↓↓ =
sin2 θk3

2

E − εk1 − εk2 − ϵ+
k3

+
cos2 θk3

2

E − εk1 − εk2 − ϵ−
k3

,

G↓↑ = G∗
↑↓ = sin

θk3

2
cos

θk3

2
eiφk3

×
(

1
E − εk1 − εk2 − ϵ+

k3

− 1
E − εk1 − εk2 − ϵ−

k3

)
.

(27)

To solve Eq. (26), we define an auxiliary function fσ (p) as

fσ (p) = g
∑

q

"σ (q,K − p) = −g
∑

q

"σ (K − p,q). (28)

Using this definition, we can simplify Eq. (26) into

fσ (k) = g

$

∑

σ ′,p

G
(0)
σσ ′(p,K − k)[fσ ′(k) − fσ ′(K − p)]. (29)

The linear integral Eq. (29) has one trivial solution, which
is fσ = 0. For some special E = E3(K) the equation has a
nonzero solution of fσ ; this gives the energies of three-body
bound states. Next we show that the symmetry consideration
can simplify the problem to a great extent.

There are two good quantum numbers of the three-body
Hamiltonian: the total momentum P = p1 + p2 + p3 and the

total angular momentum J = L + s. They correspond to the
spatial translation operation and a simultaneously rotation in
real and spin space. We find following commutation relation
of P and J,

[Ji,Jj ] = iϵijkJk, [Pi,Pj ] = 0, [Pi,Jj ] = iϵijkPk. (30)

Here the subindices i,j,k = 1,2,3 denote different compo-
nents of P and J, and ϵijk is the common Levi-Civita symbol.

The commutation relation (30) is the algebra of the special
Euclidean group SE(3), which is related to the kinematics of
a rigid body in three dimensions. It has been proved that there
are two independent Casimir invariants for SE(3), which are
P2 and P · J [47]. Since we have already used the conservation
of total momentum P, the only nontrivial Casimir is then P · J.
In Appendix C, we show that the use of this Casimir can help
integrate out one fold of the integral in Eq. (29) and simplify
it into a two-dimensional integral equation.

Moreover, the commutation relation (30) suggests that
the angular momentum J actually commutes with the total
momentum P in P = 0 subspace. Therefore, in this subspace,
we can use the good quantum number J. In Appendix D,
we show that for a bound state with angular momentum
(J,Jz) = (j + 1

2 ,m + 1
2 ), fσ (k) should take the form

f↑(k) =

√
j + m + 1

2j + 1
f0Y

m
j −

√
j − m + 1

2j + 3
f1Y

m
j+1,

f↓(k) =

√
j − m

2j + 1
f0Y

m+1
j +

√
j + m + 2

2j + 3
f1Y

m+1
j+1 , (31)

where f0 and f1 are two functions only depending on the
magnitude of k and Ym

j is short for Ym
j ($k).

After substituting this ansatz into Eq. (29), we obtain two
coupled one-dimensional integral equations which can be
written in a compact form,

Z(k)
(

f0(k)
f1(k)

)
=

∫ +

0
dpKj (k,p)

(
f0(p)
f1(p)

)
. (32)

The high-energy cutoff + is equivalent to imposing a short-
range three-body boundary condition, as we did in Sec. III.
Both Z and Kj are two-by-two matrices, whose elements are
shown in Appendix D. We can see that the bound states with
different quantum numbers Jz are degenerate, which is also a
consequence of the SE(3) symmetry.

A. Efimov trimer

We know that the emergence of the Efimov physics comes
from the high-momentum part of the coefficient matrices Z
and KJ . In the high-momentum region, where p3 ≫ λ, the
dispersion ϵ±

p3
becomes closer to a normal parabolic form and

the SO-coupling effect can be neglected. Therefore, the SO
coupling will not change the critical mass ratio for Efimov
trimers:

µEfimov(λ) = µEfimov(0) = 13.606 . . . . (33)

In Fig. 4, we plot the trimer energies in the lowest angular
momentum channel (J = 1/2) as a function of SO-coupling
strength λ at two-body resonance. We find that many shallow
bound states will merge into the atom-dimer threshold as we

023618-5

P = 0,  J =1/2,3/2



the high-energy cutoff known as the three-body param-
eter, while the energies of two successive trimers obey a
universal scaling behavior [1]. Second, when 8.17 <
M=m < 13.6, there exists another type of trimer named
the “Kartavtsev-Malykh” trimer, whose energy is uni-
versal (i.e., independent of any high-energy cutoff) [11].
Since the s-wave scattering length a is the only length
scale, the trimer energy has to simply scale with the two-
body binding energy. Thus, such a universal trimer
appears only for positive a when a two-body bound
state exists. Because of the antisymmetrization of the two
α atoms, both types of trimer states have a total orbital
angular momentum L ¼ 1.
Model.—Our system is described by the Hamiltonian

Ĥ ¼ Ĥ0 þ Û,

Ĥ0 ¼
p1

2

2M
þ p2

2

2M
þ ðp3 − λσ̂Þ2

2m
; (1)

Û ¼ ½gδðr1 − r3Þ þ gδðr2 − r3Þ&I; (2)

in which p1;2ðr1;2Þ refers to the momentum (position) of
two α atoms, and p3ðr3Þ is for the β atom. σ̂ is the spin of
the β atom, which couples to its momentum via a three-
dimensional isotropic SO coupling λp · σ̂ where p ¼
ðpx; py; pzÞ and σ̂ ¼ ðσx; σy; σzÞ. Without loss of general-
ity, we take λ > 0. Proposals for realizing such a SO
coupling have been presented in Refs. [31,32]. The
s-wave contact interaction Û only takes place between
the β atom and α atom, and the interaction strength is
assumed to be independent of the spin-index of the β
atom, where I in Û denotes the identity operator acting
on the spin space of the β atom. g is related to a by the
renormalization equation

1

g
¼ Mm

2πðM þmÞa
− 1

Ω
X

k

2Mm
ðM þmÞk2

; (3)

where Ω is the volume. It has been shown that this relation
will not be changed by SO coupling, as long as 1=λ is
much larger than the range of interatomic potential
[35–37].
To address the three-body bound state, we should first

solve the two-body problem with one α and one β atom to
determine the atom-dimer threshold, which can be carried
out quite straightforwardly with the Lippman-Schwinger
equation [38]. Although our case differs from previous
studies of the two-body problem with SO coupling
[24,31,32,35–37,39–42] where both two atoms are sub-
jected to SO coupling, the results are quite similar to
previous cases with Rashba or three-dimensional isotropic
SO coupling, i.e., for any mass ratio M=m and for all a, a
two-body bound state with zero center-of-mass momentum
exists [24,25,31,35]. The physical reason is also attributed
to the enhancement of the density of state of the β atom,
which diverges at the threshold scattering energy.

For the same three-body system without SO coupling,
the total orbital angular momentum L is a good quantum
number and most previous calculations focus on the lowest
bound states in the L ¼ 1 channel. After introducing spin
degrees of freedom for the β atom, these bound states are
always sixfold degenerate. In the presence of SO coupling,
these states would split into two channels with a different
total angular momentum J ¼ Lþ S. They are two states
with J ¼ 1=2 and four states with J ¼ 3=2.
Solving the three-body problem.—Generally, we assume

the three-body wave function (with total momentumK0) as

jΨi ¼
X

p;q;σ

Ψσðq;K0 − p;p − qÞα̂†qα̂†K0−pβ̂
†
σ;p−qj0i; (4)

where α̂† and β̂† are creation operators for the α atom
and β atom, respectively, and σ ¼ ↑, ↓ is the spin index of
the β atom. Introducing an auxiliary function fσðpÞ ¼
g
P

qΨσðq;K0 − p;p − qÞ, we can reach the following
integral equation for fσðqÞ:

fσðkÞ ¼ g
X

p;σ0
Gσσ0ðE;p;K0 − k;k − pÞ

× ½fσ0ðkÞ − fσ0ðK0 − pÞ&; (5)

where

Gσσ0ðE;k1;k2;k3Þ

¼
!
k1;k2;k3; σ

""""
1

E −H0

""""k1;k2;k3; σ0
#

is the Green’s function in momentum space [43–45]. The
nonzero solution of Eq. (5) determines the energy of the
trimer states, E ¼ E3. To get physical solutions for E3,
the renormalization equation (3) can be used to eliminate
the ultraviolet divergence of

P
pGσσ in Eq. (5) [38].

However, in general, solving the coupled three-
dimensional integral equation is highly nontrivial.
Nevertheless, great simplification can be obtained in the
subspace with K0 ¼ 0. As shown in the Supplemental
Material [38], for a quantum state labeled by ðJ; JzÞ ¼ ðjþ
1=2; mþ 1=2Þ (where j and m are integers), fσðkÞ satisfies

f↑ðkÞ ¼ C0
↑f0ðkÞYm

j ðΩkÞ þ C1
↑f1ðkÞYm

jþ1ðΩkÞ;

f↓ðkÞ ¼ C0
↓f0ðkÞY

mþ1
j ðΩkÞ þ C1

↓f1ðkÞY
mþ1
jþ1 ðΩkÞ; (6)

where k ¼ jkj is the magnitude of k and f0, f1 are func-
tions that only depend on k, C0

σ , C1
σ are Clebsch-Gordan

coefficients,

Cδ
σ ¼

!
jþ δ; m − σ;

1

2
; σjjþ 1

2
; mþ 1

2

#
; (7)

with δ ¼ 0,1 and σ ¼ ' 1
2. After substituting Eq. (6) into

Eq. (5), Eq. (5) is reduced to two coupled one-dimensional
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Case I: one particle with isotropic SOC 
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the high-energy cutoff known as the three-body param-
eter, while the energies of two successive trimers obey a
universal scaling behavior [1]. Second, when 8.17 <
M=m < 13.6, there exists another type of trimer named
the “Kartavtsev-Malykh” trimer, whose energy is uni-
versal (i.e., independent of any high-energy cutoff) [11].
Since the s-wave scattering length a is the only length
scale, the trimer energy has to simply scale with the two-
body binding energy. Thus, such a universal trimer
appears only for positive a when a two-body bound
state exists. Because of the antisymmetrization of the two
α atoms, both types of trimer states have a total orbital
angular momentum L ¼ 1.
Model.—Our system is described by the Hamiltonian

Ĥ ¼ Ĥ0 þ Û,

Ĥ0 ¼
p1

2

2M
þ p2

2

2M
þ ðp3 − λσ̂Þ2

2m
; (1)

Û ¼ ½gδðr1 − r3Þ þ gδðr2 − r3Þ&I; (2)

in which p1;2ðr1;2Þ refers to the momentum (position) of
two α atoms, and p3ðr3Þ is for the β atom. σ̂ is the spin of
the β atom, which couples to its momentum via a three-
dimensional isotropic SO coupling λp · σ̂ where p ¼
ðpx; py; pzÞ and σ̂ ¼ ðσx; σy; σzÞ. Without loss of general-
ity, we take λ > 0. Proposals for realizing such a SO
coupling have been presented in Refs. [31,32]. The
s-wave contact interaction Û only takes place between
the β atom and α atom, and the interaction strength is
assumed to be independent of the spin-index of the β
atom, where I in Û denotes the identity operator acting
on the spin space of the β atom. g is related to a by the
renormalization equation

1

g
¼ Mm

2πðM þmÞa
− 1

Ω
X

k

2Mm
ðM þmÞk2

; (3)

where Ω is the volume. It has been shown that this relation
will not be changed by SO coupling, as long as 1=λ is
much larger than the range of interatomic potential
[35–37].
To address the three-body bound state, we should first

solve the two-body problem with one α and one β atom to
determine the atom-dimer threshold, which can be carried
out quite straightforwardly with the Lippman-Schwinger
equation [38]. Although our case differs from previous
studies of the two-body problem with SO coupling
[24,31,32,35–37,39–42] where both two atoms are sub-
jected to SO coupling, the results are quite similar to
previous cases with Rashba or three-dimensional isotropic
SO coupling, i.e., for any mass ratio M=m and for all a, a
two-body bound state with zero center-of-mass momentum
exists [24,25,31,35]. The physical reason is also attributed
to the enhancement of the density of state of the β atom,
which diverges at the threshold scattering energy.

For the same three-body system without SO coupling,
the total orbital angular momentum L is a good quantum
number and most previous calculations focus on the lowest
bound states in the L ¼ 1 channel. After introducing spin
degrees of freedom for the β atom, these bound states are
always sixfold degenerate. In the presence of SO coupling,
these states would split into two channels with a different
total angular momentum J ¼ Lþ S. They are two states
with J ¼ 1=2 and four states with J ¼ 3=2.
Solving the three-body problem.—Generally, we assume

the three-body wave function (with total momentumK0) as

jΨi ¼
X

p;q;σ

Ψσðq;K0 − p;p − qÞα̂†qα̂†K0−pβ̂
†
σ;p−qj0i; (4)

where α̂† and β̂† are creation operators for the α atom
and β atom, respectively, and σ ¼ ↑, ↓ is the spin index of
the β atom. Introducing an auxiliary function fσðpÞ ¼
g
P

qΨσðq;K0 − p;p − qÞ, we can reach the following
integral equation for fσðqÞ:

fσðkÞ ¼ g
X

p;σ0
Gσσ0ðE;p;K0 − k;k − pÞ

× ½fσ0ðkÞ − fσ0ðK0 − pÞ&; (5)

where

Gσσ0ðE;k1;k2;k3Þ

¼
!
k1;k2;k3; σ

""""
1

E −H0

""""k1;k2;k3; σ0
#

is the Green’s function in momentum space [43–45]. The
nonzero solution of Eq. (5) determines the energy of the
trimer states, E ¼ E3. To get physical solutions for E3,
the renormalization equation (3) can be used to eliminate
the ultraviolet divergence of

P
pGσσ in Eq. (5) [38].

However, in general, solving the coupled three-
dimensional integral equation is highly nontrivial.
Nevertheless, great simplification can be obtained in the
subspace with K0 ¼ 0. As shown in the Supplemental
Material [38], for a quantum state labeled by ðJ; JzÞ ¼ ðjþ
1=2; mþ 1=2Þ (where j and m are integers), fσðkÞ satisfies

f↑ðkÞ ¼ C0
↑f0ðkÞYm

j ðΩkÞ þ C1
↑f1ðkÞYm

jþ1ðΩkÞ;

f↓ðkÞ ¼ C0
↓f0ðkÞY

mþ1
j ðΩkÞ þ C1

↓f1ðkÞY
mþ1
jþ1 ðΩkÞ; (6)

where k ¼ jkj is the magnitude of k and f0, f1 are func-
tions that only depend on k, C0

σ , C1
σ are Clebsch-Gordan

coefficients,

Cδ
σ ¼

!
jþ δ; m − σ;

1

2
; σjjþ 1

2
; mþ 1

2

#
; (7)

with δ ¼ 0,1 and σ ¼ ' 1
2. After substituting Eq. (6) into

Eq. (5), Eq. (5) is reduced to two coupled one-dimensional
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the high-energy cutoff known as the three-body param-
eter, while the energies of two successive trimers obey a
universal scaling behavior [1]. Second, when 8.17 <
M=m < 13.6, there exists another type of trimer named
the “Kartavtsev-Malykh” trimer, whose energy is uni-
versal (i.e., independent of any high-energy cutoff) [11].
Since the s-wave scattering length a is the only length
scale, the trimer energy has to simply scale with the two-
body binding energy. Thus, such a universal trimer
appears only for positive a when a two-body bound
state exists. Because of the antisymmetrization of the two
α atoms, both types of trimer states have a total orbital
angular momentum L ¼ 1.
Model.—Our system is described by the Hamiltonian

Ĥ ¼ Ĥ0 þ Û,

Ĥ0 ¼
p1

2

2M
þ p2

2

2M
þ ðp3 − λσ̂Þ2

2m
; (1)

Û ¼ ½gδðr1 − r3Þ þ gδðr2 − r3Þ&I; (2)

in which p1;2ðr1;2Þ refers to the momentum (position) of
two α atoms, and p3ðr3Þ is for the β atom. σ̂ is the spin of
the β atom, which couples to its momentum via a three-
dimensional isotropic SO coupling λp · σ̂ where p ¼
ðpx; py; pzÞ and σ̂ ¼ ðσx; σy; σzÞ. Without loss of general-
ity, we take λ > 0. Proposals for realizing such a SO
coupling have been presented in Refs. [31,32]. The
s-wave contact interaction Û only takes place between
the β atom and α atom, and the interaction strength is
assumed to be independent of the spin-index of the β
atom, where I in Û denotes the identity operator acting
on the spin space of the β atom. g is related to a by the
renormalization equation

1

g
¼ Mm

2πðM þmÞa
− 1

Ω
X

k

2Mm
ðM þmÞk2

; (3)

where Ω is the volume. It has been shown that this relation
will not be changed by SO coupling, as long as 1=λ is
much larger than the range of interatomic potential
[35–37].
To address the three-body bound state, we should first

solve the two-body problem with one α and one β atom to
determine the atom-dimer threshold, which can be carried
out quite straightforwardly with the Lippman-Schwinger
equation [38]. Although our case differs from previous
studies of the two-body problem with SO coupling
[24,31,32,35–37,39–42] where both two atoms are sub-
jected to SO coupling, the results are quite similar to
previous cases with Rashba or three-dimensional isotropic
SO coupling, i.e., for any mass ratio M=m and for all a, a
two-body bound state with zero center-of-mass momentum
exists [24,25,31,35]. The physical reason is also attributed
to the enhancement of the density of state of the β atom,
which diverges at the threshold scattering energy.

For the same three-body system without SO coupling,
the total orbital angular momentum L is a good quantum
number and most previous calculations focus on the lowest
bound states in the L ¼ 1 channel. After introducing spin
degrees of freedom for the β atom, these bound states are
always sixfold degenerate. In the presence of SO coupling,
these states would split into two channels with a different
total angular momentum J ¼ Lþ S. They are two states
with J ¼ 1=2 and four states with J ¼ 3=2.
Solving the three-body problem.—Generally, we assume

the three-body wave function (with total momentumK0) as

jΨi ¼
X

p;q;σ

Ψσðq;K0 − p;p − qÞα̂†qα̂†K0−pβ̂
†
σ;p−qj0i; (4)

where α̂† and β̂† are creation operators for the α atom
and β atom, respectively, and σ ¼ ↑, ↓ is the spin index of
the β atom. Introducing an auxiliary function fσðpÞ ¼
g
P

qΨσðq;K0 − p;p − qÞ, we can reach the following
integral equation for fσðqÞ:

fσðkÞ ¼ g
X

p;σ0
Gσσ0ðE;p;K0 − k;k − pÞ

× ½fσ0ðkÞ − fσ0ðK0 − pÞ&; (5)

where

Gσσ0ðE;k1;k2;k3Þ

¼
!
k1;k2;k3; σ

""""
1

E −H0

""""k1;k2;k3; σ0
#

is the Green’s function in momentum space [43–45]. The
nonzero solution of Eq. (5) determines the energy of the
trimer states, E ¼ E3. To get physical solutions for E3,
the renormalization equation (3) can be used to eliminate
the ultraviolet divergence of

P
pGσσ in Eq. (5) [38].

However, in general, solving the coupled three-
dimensional integral equation is highly nontrivial.
Nevertheless, great simplification can be obtained in the
subspace with K0 ¼ 0. As shown in the Supplemental
Material [38], for a quantum state labeled by ðJ; JzÞ ¼ ðjþ
1=2; mþ 1=2Þ (where j and m are integers), fσðkÞ satisfies

f↑ðkÞ ¼ C0
↑f0ðkÞYm

j ðΩkÞ þ C1
↑f1ðkÞYm

jþ1ðΩkÞ;

f↓ðkÞ ¼ C0
↓f0ðkÞY

mþ1
j ðΩkÞ þ C1

↓f1ðkÞY
mþ1
jþ1 ðΩkÞ; (6)

where k ¼ jkj is the magnitude of k and f0, f1 are func-
tions that only depend on k, C0

σ , C1
σ are Clebsch-Gordan

coefficients,

Cδ
σ ¼

!
jþ δ; m − σ;

1

2
; σjjþ 1

2
; mþ 1

2

#
; (7)

with δ ¼ 0,1 and σ ¼ ' 1
2. After substituting Eq. (6) into

Eq. (5), Eq. (5) is reduced to two coupled one-dimensional
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the high-energy cutoff known as the three-body param-
eter, while the energies of two successive trimers obey a
universal scaling behavior [1]. Second, when 8.17 <
M=m < 13.6, there exists another type of trimer named
the “Kartavtsev-Malykh” trimer, whose energy is uni-
versal (i.e., independent of any high-energy cutoff) [11].
Since the s-wave scattering length a is the only length
scale, the trimer energy has to simply scale with the two-
body binding energy. Thus, such a universal trimer
appears only for positive a when a two-body bound
state exists. Because of the antisymmetrization of the two
α atoms, both types of trimer states have a total orbital
angular momentum L ¼ 1.
Model.—Our system is described by the Hamiltonian

Ĥ ¼ Ĥ0 þ Û,

Ĥ0 ¼
p1

2

2M
þ p2

2

2M
þ ðp3 − λσ̂Þ2

2m
; (1)

Û ¼ ½gδðr1 − r3Þ þ gδðr2 − r3Þ&I; (2)

in which p1;2ðr1;2Þ refers to the momentum (position) of
two α atoms, and p3ðr3Þ is for the β atom. σ̂ is the spin of
the β atom, which couples to its momentum via a three-
dimensional isotropic SO coupling λp · σ̂ where p ¼
ðpx; py; pzÞ and σ̂ ¼ ðσx; σy; σzÞ. Without loss of general-
ity, we take λ > 0. Proposals for realizing such a SO
coupling have been presented in Refs. [31,32]. The
s-wave contact interaction Û only takes place between
the β atom and α atom, and the interaction strength is
assumed to be independent of the spin-index of the β
atom, where I in Û denotes the identity operator acting
on the spin space of the β atom. g is related to a by the
renormalization equation

1

g
¼ Mm

2πðM þmÞa
− 1

Ω
X

k

2Mm
ðM þmÞk2

; (3)

where Ω is the volume. It has been shown that this relation
will not be changed by SO coupling, as long as 1=λ is
much larger than the range of interatomic potential
[35–37].
To address the three-body bound state, we should first

solve the two-body problem with one α and one β atom to
determine the atom-dimer threshold, which can be carried
out quite straightforwardly with the Lippman-Schwinger
equation [38]. Although our case differs from previous
studies of the two-body problem with SO coupling
[24,31,32,35–37,39–42] where both two atoms are sub-
jected to SO coupling, the results are quite similar to
previous cases with Rashba or three-dimensional isotropic
SO coupling, i.e., for any mass ratio M=m and for all a, a
two-body bound state with zero center-of-mass momentum
exists [24,25,31,35]. The physical reason is also attributed
to the enhancement of the density of state of the β atom,
which diverges at the threshold scattering energy.

For the same three-body system without SO coupling,
the total orbital angular momentum L is a good quantum
number and most previous calculations focus on the lowest
bound states in the L ¼ 1 channel. After introducing spin
degrees of freedom for the β atom, these bound states are
always sixfold degenerate. In the presence of SO coupling,
these states would split into two channels with a different
total angular momentum J ¼ Lþ S. They are two states
with J ¼ 1=2 and four states with J ¼ 3=2.
Solving the three-body problem.—Generally, we assume

the three-body wave function (with total momentumK0) as

jΨi ¼
X

p;q;σ

Ψσðq;K0 − p;p − qÞα̂†qα̂†K0−pβ̂
†
σ;p−qj0i; (4)

where α̂† and β̂† are creation operators for the α atom
and β atom, respectively, and σ ¼ ↑, ↓ is the spin index of
the β atom. Introducing an auxiliary function fσðpÞ ¼
g
P

qΨσðq;K0 − p;p − qÞ, we can reach the following
integral equation for fσðqÞ:

fσðkÞ ¼ g
X

p;σ0
Gσσ0ðE;p;K0 − k;k − pÞ

× ½fσ0ðkÞ − fσ0ðK0 − pÞ&; (5)

where

Gσσ0ðE;k1;k2;k3Þ

¼
!
k1;k2;k3; σ

""""
1

E −H0

""""k1;k2;k3; σ0
#

is the Green’s function in momentum space [43–45]. The
nonzero solution of Eq. (5) determines the energy of the
trimer states, E ¼ E3. To get physical solutions for E3,
the renormalization equation (3) can be used to eliminate
the ultraviolet divergence of

P
pGσσ in Eq. (5) [38].

However, in general, solving the coupled three-
dimensional integral equation is highly nontrivial.
Nevertheless, great simplification can be obtained in the
subspace with K0 ¼ 0. As shown in the Supplemental
Material [38], for a quantum state labeled by ðJ; JzÞ ¼ ðjþ
1=2; mþ 1=2Þ (where j and m are integers), fσðkÞ satisfies

f↑ðkÞ ¼ C0
↑f0ðkÞYm

j ðΩkÞ þ C1
↑f1ðkÞYm

jþ1ðΩkÞ;

f↓ðkÞ ¼ C0
↓f0ðkÞY

mþ1
j ðΩkÞ þ C1

↓f1ðkÞY
mþ1
jþ1 ðΩkÞ; (6)

where k ¼ jkj is the magnitude of k and f0, f1 are func-
tions that only depend on k, C0

σ , C1
σ are Clebsch-Gordan

coefficients,

Cδ
σ ¼

!
jþ δ; m − σ;

1

2
; σjjþ 1

2
; mþ 1

2

#
; (7)

with δ ¼ 0,1 and σ ¼ ' 1
2. After substituting Eq. (6) into

Eq. (5), Eq. (5) is reduced to two coupled one-dimensional
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the high-energy cutoff known as the three-body param-
eter, while the energies of two successive trimers obey a
universal scaling behavior [1]. Second, when 8.17 <
M=m < 13.6, there exists another type of trimer named
the “Kartavtsev-Malykh” trimer, whose energy is uni-
versal (i.e., independent of any high-energy cutoff) [11].
Since the s-wave scattering length a is the only length
scale, the trimer energy has to simply scale with the two-
body binding energy. Thus, such a universal trimer
appears only for positive a when a two-body bound
state exists. Because of the antisymmetrization of the two
α atoms, both types of trimer states have a total orbital
angular momentum L ¼ 1.
Model.—Our system is described by the Hamiltonian

Ĥ ¼ Ĥ0 þ Û,

Ĥ0 ¼
p1

2

2M
þ p2

2

2M
þ ðp3 − λσ̂Þ2

2m
; (1)

Û ¼ ½gδðr1 − r3Þ þ gδðr2 − r3Þ&I; (2)

in which p1;2ðr1;2Þ refers to the momentum (position) of
two α atoms, and p3ðr3Þ is for the β atom. σ̂ is the spin of
the β atom, which couples to its momentum via a three-
dimensional isotropic SO coupling λp · σ̂ where p ¼
ðpx; py; pzÞ and σ̂ ¼ ðσx; σy; σzÞ. Without loss of general-
ity, we take λ > 0. Proposals for realizing such a SO
coupling have been presented in Refs. [31,32]. The
s-wave contact interaction Û only takes place between
the β atom and α atom, and the interaction strength is
assumed to be independent of the spin-index of the β
atom, where I in Û denotes the identity operator acting
on the spin space of the β atom. g is related to a by the
renormalization equation

1

g
¼ Mm

2πðM þmÞa
− 1

Ω
X

k

2Mm
ðM þmÞk2

; (3)

where Ω is the volume. It has been shown that this relation
will not be changed by SO coupling, as long as 1=λ is
much larger than the range of interatomic potential
[35–37].
To address the three-body bound state, we should first

solve the two-body problem with one α and one β atom to
determine the atom-dimer threshold, which can be carried
out quite straightforwardly with the Lippman-Schwinger
equation [38]. Although our case differs from previous
studies of the two-body problem with SO coupling
[24,31,32,35–37,39–42] where both two atoms are sub-
jected to SO coupling, the results are quite similar to
previous cases with Rashba or three-dimensional isotropic
SO coupling, i.e., for any mass ratio M=m and for all a, a
two-body bound state with zero center-of-mass momentum
exists [24,25,31,35]. The physical reason is also attributed
to the enhancement of the density of state of the β atom,
which diverges at the threshold scattering energy.

For the same three-body system without SO coupling,
the total orbital angular momentum L is a good quantum
number and most previous calculations focus on the lowest
bound states in the L ¼ 1 channel. After introducing spin
degrees of freedom for the β atom, these bound states are
always sixfold degenerate. In the presence of SO coupling,
these states would split into two channels with a different
total angular momentum J ¼ Lþ S. They are two states
with J ¼ 1=2 and four states with J ¼ 3=2.
Solving the three-body problem.—Generally, we assume

the three-body wave function (with total momentumK0) as

jΨi ¼
X

p;q;σ

Ψσðq;K0 − p;p − qÞα̂†qα̂†K0−pβ̂
†
σ;p−qj0i; (4)

where α̂† and β̂† are creation operators for the α atom
and β atom, respectively, and σ ¼ ↑, ↓ is the spin index of
the β atom. Introducing an auxiliary function fσðpÞ ¼
g
P

qΨσðq;K0 − p;p − qÞ, we can reach the following
integral equation for fσðqÞ:

fσðkÞ ¼ g
X

p;σ0
Gσσ0ðE;p;K0 − k;k − pÞ

× ½fσ0ðkÞ − fσ0ðK0 − pÞ&; (5)

where

Gσσ0ðE;k1;k2;k3Þ

¼
!
k1;k2;k3; σ

""""
1

E −H0

""""k1;k2;k3; σ0
#

is the Green’s function in momentum space [43–45]. The
nonzero solution of Eq. (5) determines the energy of the
trimer states, E ¼ E3. To get physical solutions for E3,
the renormalization equation (3) can be used to eliminate
the ultraviolet divergence of

P
pGσσ in Eq. (5) [38].

However, in general, solving the coupled three-
dimensional integral equation is highly nontrivial.
Nevertheless, great simplification can be obtained in the
subspace with K0 ¼ 0. As shown in the Supplemental
Material [38], for a quantum state labeled by ðJ; JzÞ ¼ ðjþ
1=2; mþ 1=2Þ (where j and m are integers), fσðkÞ satisfies

f↑ðkÞ ¼ C0
↑f0ðkÞYm

j ðΩkÞ þ C1
↑f1ðkÞYm

jþ1ðΩkÞ;

f↓ðkÞ ¼ C0
↓f0ðkÞY

mþ1
j ðΩkÞ þ C1

↓f1ðkÞY
mþ1
jþ1 ðΩkÞ; (6)

where k ¼ jkj is the magnitude of k and f0, f1 are func-
tions that only depend on k, C0

σ , C1
σ are Clebsch-Gordan

coefficients,

Cδ
σ ¼

!
jþ δ; m − σ;

1

2
; σjjþ 1

2
; mþ 1

2

#
; (7)

with δ ¼ 0,1 and σ ¼ ' 1
2. After substituting Eq. (6) into

Eq. (5), Eq. (5) is reduced to two coupled one-dimensional
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the high-energy cutoff known as the three-body param-
eter, while the energies of two successive trimers obey a
universal scaling behavior [1]. Second, when 8.17 <
M=m < 13.6, there exists another type of trimer named
the “Kartavtsev-Malykh” trimer, whose energy is uni-
versal (i.e., independent of any high-energy cutoff) [11].
Since the s-wave scattering length a is the only length
scale, the trimer energy has to simply scale with the two-
body binding energy. Thus, such a universal trimer
appears only for positive a when a two-body bound
state exists. Because of the antisymmetrization of the two
α atoms, both types of trimer states have a total orbital
angular momentum L ¼ 1.
Model.—Our system is described by the Hamiltonian

Ĥ ¼ Ĥ0 þ Û,

Ĥ0 ¼
p1

2

2M
þ p2

2

2M
þ ðp3 − λσ̂Þ2

2m
; (1)

Û ¼ ½gδðr1 − r3Þ þ gδðr2 − r3Þ&I; (2)

in which p1;2ðr1;2Þ refers to the momentum (position) of
two α atoms, and p3ðr3Þ is for the β atom. σ̂ is the spin of
the β atom, which couples to its momentum via a three-
dimensional isotropic SO coupling λp · σ̂ where p ¼
ðpx; py; pzÞ and σ̂ ¼ ðσx; σy; σzÞ. Without loss of general-
ity, we take λ > 0. Proposals for realizing such a SO
coupling have been presented in Refs. [31,32]. The
s-wave contact interaction Û only takes place between
the β atom and α atom, and the interaction strength is
assumed to be independent of the spin-index of the β
atom, where I in Û denotes the identity operator acting
on the spin space of the β atom. g is related to a by the
renormalization equation

1

g
¼ Mm

2πðM þmÞa
− 1

Ω
X

k

2Mm
ðM þmÞk2

; (3)

where Ω is the volume. It has been shown that this relation
will not be changed by SO coupling, as long as 1=λ is
much larger than the range of interatomic potential
[35–37].
To address the three-body bound state, we should first

solve the two-body problem with one α and one β atom to
determine the atom-dimer threshold, which can be carried
out quite straightforwardly with the Lippman-Schwinger
equation [38]. Although our case differs from previous
studies of the two-body problem with SO coupling
[24,31,32,35–37,39–42] where both two atoms are sub-
jected to SO coupling, the results are quite similar to
previous cases with Rashba or three-dimensional isotropic
SO coupling, i.e., for any mass ratio M=m and for all a, a
two-body bound state with zero center-of-mass momentum
exists [24,25,31,35]. The physical reason is also attributed
to the enhancement of the density of state of the β atom,
which diverges at the threshold scattering energy.

For the same three-body system without SO coupling,
the total orbital angular momentum L is a good quantum
number and most previous calculations focus on the lowest
bound states in the L ¼ 1 channel. After introducing spin
degrees of freedom for the β atom, these bound states are
always sixfold degenerate. In the presence of SO coupling,
these states would split into two channels with a different
total angular momentum J ¼ Lþ S. They are two states
with J ¼ 1=2 and four states with J ¼ 3=2.
Solving the three-body problem.—Generally, we assume

the three-body wave function (with total momentumK0) as

jΨi ¼
X

p;q;σ

Ψσðq;K0 − p;p − qÞα̂†qα̂†K0−pβ̂
†
σ;p−qj0i; (4)

where α̂† and β̂† are creation operators for the α atom
and β atom, respectively, and σ ¼ ↑, ↓ is the spin index of
the β atom. Introducing an auxiliary function fσðpÞ ¼
g
P

qΨσðq;K0 − p;p − qÞ, we can reach the following
integral equation for fσðqÞ:

fσðkÞ ¼ g
X

p;σ0
Gσσ0ðE;p;K0 − k;k − pÞ

× ½fσ0ðkÞ − fσ0ðK0 − pÞ&; (5)

where

Gσσ0ðE;k1;k2;k3Þ

¼
!
k1;k2;k3; σ

""""
1

E −H0

""""k1;k2;k3; σ0
#

is the Green’s function in momentum space [43–45]. The
nonzero solution of Eq. (5) determines the energy of the
trimer states, E ¼ E3. To get physical solutions for E3,
the renormalization equation (3) can be used to eliminate
the ultraviolet divergence of

P
pGσσ in Eq. (5) [38].

However, in general, solving the coupled three-
dimensional integral equation is highly nontrivial.
Nevertheless, great simplification can be obtained in the
subspace with K0 ¼ 0. As shown in the Supplemental
Material [38], for a quantum state labeled by ðJ; JzÞ ¼ ðjþ
1=2; mþ 1=2Þ (where j and m are integers), fσðkÞ satisfies

f↑ðkÞ ¼ C0
↑f0ðkÞYm

j ðΩkÞ þ C1
↑f1ðkÞYm

jþ1ðΩkÞ;

f↓ðkÞ ¼ C0
↓f0ðkÞY

mþ1
j ðΩkÞ þ C1

↓f1ðkÞY
mþ1
jþ1 ðΩkÞ; (6)

where k ¼ jkj is the magnitude of k and f0, f1 are func-
tions that only depend on k, C0

σ , C1
σ are Clebsch-Gordan

coefficients,

Cδ
σ ¼

!
jþ δ; m − σ;

1

2
; σjjþ 1

2
; mþ 1

2

#
; (7)

with δ ¼ 0,1 and σ ¼ ' 1
2. After substituting Eq. (6) into

Eq. (5), Eq. (5) is reduced to two coupled one-dimensional
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integral equations, whose explicit forms are given in the
Supplemental Material [38] and can be solved numerically
to determine the trimer energy E3.
Results.—With SO coupling, the energies of the J ¼ 1=2

channel and J ¼ 3=2 channel will split, and we find that
in most regions of interest, the J ¼ 1=2 channel has a
higher energy than that of the J ¼ 3=2 channel. In the
following we will summarize the results for the ground
state J ¼ 3=2 channel, while the results for J ¼ 1=2 will be
presented elsewhere [46].
(1) When 5.92≲M=m < 8.17, there is no trimer state if

there is no SO coupling. We find that with SO coupling, a
trimer state will be induced in the vicinity of two-body
resonance. It emerges from the atom-dimer threshold at
a < 0 side and then merges into the atom-dimer threshold
at the a > 0 side, as shown in Fig. 1(a). The energy of such
a trimer state is independent of any high energy cutoff; thus,
similar to the universal “Kartavtsev-Malykh” trimer, the
ratio between trimer energy (E3) and atom-dimer threshold
energy (Eth) γ ¼ E3=jEthj is a universal function of 1=λa, as
plotted in Fig. 2(a). γ < −1 means that the trimer energy is
below the atom-dimer threshold.
(2) When 8.17 < M=m < 13:6, there exists at least one

universal “Kartavtsev-Malykh” trimer at the positive a side if
there is no SO coupling. We find that with SO coupling, the
lowest trimer starts to appear at the a < 0 side. This trimer
energy is also universal. The ratio γ plotted in Fig. 2(a)

shows that γ < −1 from a certain point with negative a and
saturates to a constant (the same value as predicted by
Kartavtsev andMalykh for the case without SO coupling) for
large 1=λa. When 12.9≲M=m < 13.6, an second trimer
emerges at a > 0 side.
(3) When M=m > 13.6, the system enters the nonuni-

versal regime with trimer energies sensitively depending on
the short-range parameter [47]. Without SO coupling, there
are an infinite number of Efimov trimers whose spectra
exhibit a discrete scaling property [2]. When the strength of
SO coupling increases, the binding energies of these
trimers decrease, and finally these trimers merge into an
atom-dimer continuum and disappear one after the other. In
addition, because SO coupling introduces an additional
length scale, these trimers no longer obey the discrete
scaling symmetry even at resonance [46].
With the results above, a “phase diagram” for the J ¼

3=2 trimer is constructed in terms of dimensionless
interaction parameter 1=λa and mass ratio μ ¼ M=m, as
shown in Fig. 2(b), where μc1 (μc2) is the critical mass ratio
for the emergence of the first (second) universal trimer. It is
interesting to note that μc1 is a nonmonotonic function of
1=λa, which reaches its minimum when 1=λa is close
to zero.

FIG. 1 (color online). Schematic of the atom-dimer threshold
(green dashed line) and trimer energy in the presence of SO
coupling for 6.5 < M=m < 8.17 (a), 8.17 < M=m < 12.9 (b),
12.9 < M=m < 13.6 (c) and 13.6 < M=m (d). Red solid line in
(a)–(c) represents the universal trimer with lowest energy. Blue
dashed-dotted line in (c) represents the second universal trimer,
and yellow dotted lines in (d) represent Efimov trimers. This is a
schematic plot in order to highlight main features. The actual
numbers are shown in Fig. 2.
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FIG. 2 (color online). (a) The ratio between the J ¼ 3=2 trimer
energy E3 and atom-dimer threshold energy jEthj, γ ¼ E3=jEthj,
as a function of 1=λa for different mass ratiosM=m labeled in the
curve. (b) The “phase diagram” for J ¼ 3=2 trimer in terms of
1=λa and mass ratio μ ¼ M=m.
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integral equations, whose explicit forms are given in the
Supplemental Material [38] and can be solved numerically
to determine the trimer energy E3.
Results.—With SO coupling, the energies of the J ¼ 1=2

channel and J ¼ 3=2 channel will split, and we find that
in most regions of interest, the J ¼ 1=2 channel has a
higher energy than that of the J ¼ 3=2 channel. In the
following we will summarize the results for the ground
state J ¼ 3=2 channel, while the results for J ¼ 1=2 will be
presented elsewhere [46].
(1) When 5.92≲M=m < 8.17, there is no trimer state if

there is no SO coupling. We find that with SO coupling, a
trimer state will be induced in the vicinity of two-body
resonance. It emerges from the atom-dimer threshold at
a < 0 side and then merges into the atom-dimer threshold
at the a > 0 side, as shown in Fig. 1(a). The energy of such
a trimer state is independent of any high energy cutoff; thus,
similar to the universal “Kartavtsev-Malykh” trimer, the
ratio between trimer energy (E3) and atom-dimer threshold
energy (Eth) γ ¼ E3=jEthj is a universal function of 1=λa, as
plotted in Fig. 2(a). γ < −1 means that the trimer energy is
below the atom-dimer threshold.
(2) When 8.17 < M=m < 13:6, there exists at least one

universal “Kartavtsev-Malykh” trimer at the positive a side if
there is no SO coupling. We find that with SO coupling, the
lowest trimer starts to appear at the a < 0 side. This trimer
energy is also universal. The ratio γ plotted in Fig. 2(a)

shows that γ < −1 from a certain point with negative a and
saturates to a constant (the same value as predicted by
Kartavtsev andMalykh for the case without SO coupling) for
large 1=λa. When 12.9≲M=m < 13.6, an second trimer
emerges at a > 0 side.
(3) When M=m > 13.6, the system enters the nonuni-

versal regime with trimer energies sensitively depending on
the short-range parameter [47]. Without SO coupling, there
are an infinite number of Efimov trimers whose spectra
exhibit a discrete scaling property [2]. When the strength of
SO coupling increases, the binding energies of these
trimers decrease, and finally these trimers merge into an
atom-dimer continuum and disappear one after the other. In
addition, because SO coupling introduces an additional
length scale, these trimers no longer obey the discrete
scaling symmetry even at resonance [46].
With the results above, a “phase diagram” for the J ¼

3=2 trimer is constructed in terms of dimensionless
interaction parameter 1=λa and mass ratio μ ¼ M=m, as
shown in Fig. 2(b), where μc1 (μc2) is the critical mass ratio
for the emergence of the first (second) universal trimer. It is
interesting to note that μc1 is a nonmonotonic function of
1=λa, which reaches its minimum when 1=λa is close
to zero.

FIG. 1 (color online). Schematic of the atom-dimer threshold
(green dashed line) and trimer energy in the presence of SO
coupling for 6.5 < M=m < 8.17 (a), 8.17 < M=m < 12.9 (b),
12.9 < M=m < 13.6 (c) and 13.6 < M=m (d). Red solid line in
(a)–(c) represents the universal trimer with lowest energy. Blue
dashed-dotted line in (c) represents the second universal trimer,
and yellow dotted lines in (d) represent Efimov trimers. This is a
schematic plot in order to highlight main features. The actual
numbers are shown in Fig. 2.
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FIG. 2 (color online). (a) The ratio between the J ¼ 3=2 trimer
energy E3 and atom-dimer threshold energy jEthj, γ ¼ E3=jEthj,
as a function of 1=λa for different mass ratiosM=m labeled in the
curve. (b) The “phase diagram” for J ¼ 3=2 trimer in terms of
1=λa and mass ratio μ ¼ M=m.
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integral equations, whose explicit forms are given in the
Supplemental Material [38] and can be solved numerically
to determine the trimer energy E3.
Results.—With SO coupling, the energies of the J ¼ 1=2

channel and J ¼ 3=2 channel will split, and we find that
in most regions of interest, the J ¼ 1=2 channel has a
higher energy than that of the J ¼ 3=2 channel. In the
following we will summarize the results for the ground
state J ¼ 3=2 channel, while the results for J ¼ 1=2 will be
presented elsewhere [46].
(1) When 5.92≲M=m < 8.17, there is no trimer state if

there is no SO coupling. We find that with SO coupling, a
trimer state will be induced in the vicinity of two-body
resonance. It emerges from the atom-dimer threshold at
a < 0 side and then merges into the atom-dimer threshold
at the a > 0 side, as shown in Fig. 1(a). The energy of such
a trimer state is independent of any high energy cutoff; thus,
similar to the universal “Kartavtsev-Malykh” trimer, the
ratio between trimer energy (E3) and atom-dimer threshold
energy (Eth) γ ¼ E3=jEthj is a universal function of 1=λa, as
plotted in Fig. 2(a). γ < −1 means that the trimer energy is
below the atom-dimer threshold.
(2) When 8.17 < M=m < 13:6, there exists at least one

universal “Kartavtsev-Malykh” trimer at the positive a side if
there is no SO coupling. We find that with SO coupling, the
lowest trimer starts to appear at the a < 0 side. This trimer
energy is also universal. The ratio γ plotted in Fig. 2(a)

shows that γ < −1 from a certain point with negative a and
saturates to a constant (the same value as predicted by
Kartavtsev andMalykh for the case without SO coupling) for
large 1=λa. When 12.9≲M=m < 13.6, an second trimer
emerges at a > 0 side.
(3) When M=m > 13.6, the system enters the nonuni-

versal regime with trimer energies sensitively depending on
the short-range parameter [47]. Without SO coupling, there
are an infinite number of Efimov trimers whose spectra
exhibit a discrete scaling property [2]. When the strength of
SO coupling increases, the binding energies of these
trimers decrease, and finally these trimers merge into an
atom-dimer continuum and disappear one after the other. In
addition, because SO coupling introduces an additional
length scale, these trimers no longer obey the discrete
scaling symmetry even at resonance [46].
With the results above, a “phase diagram” for the J ¼

3=2 trimer is constructed in terms of dimensionless
interaction parameter 1=λa and mass ratio μ ¼ M=m, as
shown in Fig. 2(b), where μc1 (μc2) is the critical mass ratio
for the emergence of the first (second) universal trimer. It is
interesting to note that μc1 is a nonmonotonic function of
1=λa, which reaches its minimum when 1=λa is close
to zero.

FIG. 1 (color online). Schematic of the atom-dimer threshold
(green dashed line) and trimer energy in the presence of SO
coupling for 6.5 < M=m < 8.17 (a), 8.17 < M=m < 12.9 (b),
12.9 < M=m < 13.6 (c) and 13.6 < M=m (d). Red solid line in
(a)–(c) represents the universal trimer with lowest energy. Blue
dashed-dotted line in (c) represents the second universal trimer,
and yellow dotted lines in (d) represent Efimov trimers. This is a
schematic plot in order to highlight main features. The actual
numbers are shown in Fig. 2.
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FIG. 2 (color online). (a) The ratio between the J ¼ 3=2 trimer
energy E3 and atom-dimer threshold energy jEthj, γ ¼ E3=jEthj,
as a function of 1=λa for different mass ratiosM=m labeled in the
curve. (b) The “phase diagram” for J ¼ 3=2 trimer in terms of
1=λa and mass ratio μ ¼ M=m.
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integral equations, whose explicit forms are given in the
Supplemental Material [38] and can be solved numerically
to determine the trimer energy E3.
Results.—With SO coupling, the energies of the J ¼ 1=2

channel and J ¼ 3=2 channel will split, and we find that
in most regions of interest, the J ¼ 1=2 channel has a
higher energy than that of the J ¼ 3=2 channel. In the
following we will summarize the results for the ground
state J ¼ 3=2 channel, while the results for J ¼ 1=2 will be
presented elsewhere [46].
(1) When 5.92≲M=m < 8.17, there is no trimer state if

there is no SO coupling. We find that with SO coupling, a
trimer state will be induced in the vicinity of two-body
resonance. It emerges from the atom-dimer threshold at
a < 0 side and then merges into the atom-dimer threshold
at the a > 0 side, as shown in Fig. 1(a). The energy of such
a trimer state is independent of any high energy cutoff; thus,
similar to the universal “Kartavtsev-Malykh” trimer, the
ratio between trimer energy (E3) and atom-dimer threshold
energy (Eth) γ ¼ E3=jEthj is a universal function of 1=λa, as
plotted in Fig. 2(a). γ < −1 means that the trimer energy is
below the atom-dimer threshold.
(2) When 8.17 < M=m < 13:6, there exists at least one

universal “Kartavtsev-Malykh” trimer at the positive a side if
there is no SO coupling. We find that with SO coupling, the
lowest trimer starts to appear at the a < 0 side. This trimer
energy is also universal. The ratio γ plotted in Fig. 2(a)

shows that γ < −1 from a certain point with negative a and
saturates to a constant (the same value as predicted by
Kartavtsev andMalykh for the case without SO coupling) for
large 1=λa. When 12.9≲M=m < 13.6, an second trimer
emerges at a > 0 side.
(3) When M=m > 13.6, the system enters the nonuni-

versal regime with trimer energies sensitively depending on
the short-range parameter [47]. Without SO coupling, there
are an infinite number of Efimov trimers whose spectra
exhibit a discrete scaling property [2]. When the strength of
SO coupling increases, the binding energies of these
trimers decrease, and finally these trimers merge into an
atom-dimer continuum and disappear one after the other. In
addition, because SO coupling introduces an additional
length scale, these trimers no longer obey the discrete
scaling symmetry even at resonance [46].
With the results above, a “phase diagram” for the J ¼

3=2 trimer is constructed in terms of dimensionless
interaction parameter 1=λa and mass ratio μ ¼ M=m, as
shown in Fig. 2(b), where μc1 (μc2) is the critical mass ratio
for the emergence of the first (second) universal trimer. It is
interesting to note that μc1 is a nonmonotonic function of
1=λa, which reaches its minimum when 1=λa is close
to zero.

FIG. 1 (color online). Schematic of the atom-dimer threshold
(green dashed line) and trimer energy in the presence of SO
coupling for 6.5 < M=m < 8.17 (a), 8.17 < M=m < 12.9 (b),
12.9 < M=m < 13.6 (c) and 13.6 < M=m (d). Red solid line in
(a)–(c) represents the universal trimer with lowest energy. Blue
dashed-dotted line in (c) represents the second universal trimer,
and yellow dotted lines in (d) represent Efimov trimers. This is a
schematic plot in order to highlight main features. The actual
numbers are shown in Fig. 2.
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FIG. 2 (color online). (a) The ratio between the J ¼ 3=2 trimer
energy E3 and atom-dimer threshold energy jEthj, γ ¼ E3=jEthj,
as a function of 1=λa for different mass ratiosM=m labeled in the
curve. (b) The “phase diagram” for J ¼ 3=2 trimer in terms of
1=λa and mass ratio μ ¼ M=m.
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FIG. 2. (Color online) (a) Effective potential for two heavy atoms
for scattering length a = ∞. (b) Three-body bound-state energies as
a function of SO-coupling strength λ (solid orange lines); threshold
energy is shown by the solid green line. The mass ratio is chosen to
be 50.

This fast decay behavior as shown in Eq. (20) will have
significant effects on shallow Efimov states with binding
energies Eb ! λ2

2M
, as they have very extended wave functions

and thus are more sensitive to the long-range part of ϵ(R).
Since the long-range effective potential decays much faster
than the pure − 1

R2 potential, these shallow bound states are
expected to be less favored in the presence of SO coupling.

In Fig. 2(a), we plot ϵ(R) as a function of R at a = ∞ by
numerically solving Eq. (17), and also verify its short-range
and long-range behaviors as shown by Eqs. (18) and (20).
In Fig. 2(b), we show the three-body spectrum as increasing
the SO-coupling strength λ, which is obtained by applying a
hard-core boundary condition ψ |R=r0 = 0 to Eq. (12). We can
see that the binding energies of those deeply bound states are
insensitive to the SO coupling for small λ, while if we keep
increasing λ, all bound states will eventually merge into the
atom-dimer continuum and disappear. This behavior verifies
our analyses based on the asymptotic behaviors of ϵ(R).

Moreover, we find an interesting scaling behavior of
these three-body bound states. We checked the ratio of two
successive bound-state energies along the gray dashed line
in Fig. 2(b). It shows that the energy ratios follow a discrete
scaling law,

En+1(λ,a)
En(eπ/s0λ,e−π/s0a)

" e−2π/s0 . (21)

This discrete scaling behavior is also due to the short-
range − 1

R2 effective potential. For an arbitrary bound-state
wave function ψ(R), we can perform the following scaling
transformation:

R → e−π/s0 R, a → e−π/s0a,

λ → eπ/s0λ, E → e2π/s0E, (22)

where s0 =
√

α2µ − 9/2. After such a transformation, the
wave function still satisfies the corresponding Schrödinger
equation under the same hard-core boundary condition. The
modified discrete scaling law as in Eq. (21) can thus be applied
to the SO-coupled system.

At the end of this section, we conclude several important
effects of SO coupling on the Efimov physics in this system.

(i) SO coupling will not change the critical mass ratio to
support Efimov states.

(ii) As the SO coupling increases, the Efimov states will
merge into the atom-dimer continuum and disappear.

(iii) In the presence of SO coupling, the system exhibits a
discrete scaling behavior like Eq. (21). Moreover, the scaling
ratio is identical to that without SO coupling.

Although these properties are based on the Born-
Oppenheimer approximation that is valid only for a very large
mass ratio, the calculation in the next section shows that all
the above properties hold exactly for an arbitrary mass ratio.

IV. THREE-BODY SYSTEM: EXACT SOLUTION

In this section, we exactly solve the three-body bound-state
problem. Sections IV A and IV B are, respectively, for the
discussions of Efimov trimer and universal trimer states.

Similar to the two-body problem, we define a three-body
threshold energy at first. Generally speaking, a three-body
bound state can either dissociate into three free atoms or one
free atom plus one two-body bound state (dimer). These two
channels give two corresponding thresholds, three-atom (aaa)
threshold and atom-dimer (a-d) threshold, which are defined
as follows:

Eaaa(K) = min
k1+k2+k3=K,±

(
εk1 + εk2 + ϵ±

k3

)
, (23)

Ea-d(K) = min
k+p=K

[εk + E2(p)]. (24)

Here εk = k2/2M and ϵ±
k = (k2 ± 2|k|λ)/2m are the disper-

sions for the α atom and the β atom, respectively. E2(p) is the
two-body bound-state energy calculated in Sec. II. Since the
total momentum K is always a good quantum number, both
thresholds are defined as a function of K.

The three-body threshold Eth is the minimum of both the
three-atom threshold and the atom-dimer threshold,

Eth(K) = min{Eaaa(K),Ea-d(K)}. (25)

In Fig. 3, we plot the three-body threshold as a function
of 1/λa in K = 0 subspace. Different from the case without
SO coupling, the atom-dimer threshold becomes larger than
the three-atom threshold at some critical point. This is due to
the complex momentum dependence of the two-body binding
energy.
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for scattering length a = ∞. (b) Three-body bound-state energies as
a function of SO-coupling strength λ (solid orange lines); threshold
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This fast decay behavior as shown in Eq. (20) will have
significant effects on shallow Efimov states with binding
energies Eb ! λ2

2M
, as they have very extended wave functions

and thus are more sensitive to the long-range part of ϵ(R).
Since the long-range effective potential decays much faster
than the pure − 1

R2 potential, these shallow bound states are
expected to be less favored in the presence of SO coupling.

In Fig. 2(a), we plot ϵ(R) as a function of R at a = ∞ by
numerically solving Eq. (17), and also verify its short-range
and long-range behaviors as shown by Eqs. (18) and (20).
In Fig. 2(b), we show the three-body spectrum as increasing
the SO-coupling strength λ, which is obtained by applying a
hard-core boundary condition ψ |R=r0 = 0 to Eq. (12). We can
see that the binding energies of those deeply bound states are
insensitive to the SO coupling for small λ, while if we keep
increasing λ, all bound states will eventually merge into the
atom-dimer continuum and disappear. This behavior verifies
our analyses based on the asymptotic behaviors of ϵ(R).

Moreover, we find an interesting scaling behavior of
these three-body bound states. We checked the ratio of two
successive bound-state energies along the gray dashed line
in Fig. 2(b). It shows that the energy ratios follow a discrete
scaling law,

En+1(λ,a)
En(eπ/s0λ,e−π/s0a)

" e−2π/s0 . (21)

This discrete scaling behavior is also due to the short-
range − 1

R2 effective potential. For an arbitrary bound-state
wave function ψ(R), we can perform the following scaling
transformation:

R → e−π/s0 R, a → e−π/s0a,

λ → eπ/s0λ, E → e2π/s0E, (22)

where s0 =
√

α2µ − 9/2. After such a transformation, the
wave function still satisfies the corresponding Schrödinger
equation under the same hard-core boundary condition. The
modified discrete scaling law as in Eq. (21) can thus be applied
to the SO-coupled system.

At the end of this section, we conclude several important
effects of SO coupling on the Efimov physics in this system.

(i) SO coupling will not change the critical mass ratio to
support Efimov states.

(ii) As the SO coupling increases, the Efimov states will
merge into the atom-dimer continuum and disappear.

(iii) In the presence of SO coupling, the system exhibits a
discrete scaling behavior like Eq. (21). Moreover, the scaling
ratio is identical to that without SO coupling.

Although these properties are based on the Born-
Oppenheimer approximation that is valid only for a very large
mass ratio, the calculation in the next section shows that all
the above properties hold exactly for an arbitrary mass ratio.

IV. THREE-BODY SYSTEM: EXACT SOLUTION

In this section, we exactly solve the three-body bound-state
problem. Sections IV A and IV B are, respectively, for the
discussions of Efimov trimer and universal trimer states.

Similar to the two-body problem, we define a three-body
threshold energy at first. Generally speaking, a three-body
bound state can either dissociate into three free atoms or one
free atom plus one two-body bound state (dimer). These two
channels give two corresponding thresholds, three-atom (aaa)
threshold and atom-dimer (a-d) threshold, which are defined
as follows:

Eaaa(K) = min
k1+k2+k3=K,±

(
εk1 + εk2 + ϵ±

k3

)
, (23)

Ea-d(K) = min
k+p=K

[εk + E2(p)]. (24)

Here εk = k2/2M and ϵ±
k = (k2 ± 2|k|λ)/2m are the disper-

sions for the α atom and the β atom, respectively. E2(p) is the
two-body bound-state energy calculated in Sec. II. Since the
total momentum K is always a good quantum number, both
thresholds are defined as a function of K.

The three-body threshold Eth is the minimum of both the
three-atom threshold and the atom-dimer threshold,

Eth(K) = min{Eaaa(K),Ea-d(K)}. (25)

In Fig. 3, we plot the three-body threshold as a function
of 1/λa in K = 0 subspace. Different from the case without
SO coupling, the atom-dimer threshold becomes larger than
the three-atom threshold at some critical point. This is due to
the complex momentum dependence of the two-body binding
energy.
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for scattering length a = ∞. (b) Three-body bound-state energies as
a function of SO-coupling strength λ (solid orange lines); threshold
energy is shown by the solid green line. The mass ratio is chosen to
be 50.

This fast decay behavior as shown in Eq. (20) will have
significant effects on shallow Efimov states with binding
energies Eb ! λ2

2M
, as they have very extended wave functions

and thus are more sensitive to the long-range part of ϵ(R).
Since the long-range effective potential decays much faster
than the pure − 1

R2 potential, these shallow bound states are
expected to be less favored in the presence of SO coupling.

In Fig. 2(a), we plot ϵ(R) as a function of R at a = ∞ by
numerically solving Eq. (17), and also verify its short-range
and long-range behaviors as shown by Eqs. (18) and (20).
In Fig. 2(b), we show the three-body spectrum as increasing
the SO-coupling strength λ, which is obtained by applying a
hard-core boundary condition ψ |R=r0 = 0 to Eq. (12). We can
see that the binding energies of those deeply bound states are
insensitive to the SO coupling for small λ, while if we keep
increasing λ, all bound states will eventually merge into the
atom-dimer continuum and disappear. This behavior verifies
our analyses based on the asymptotic behaviors of ϵ(R).

Moreover, we find an interesting scaling behavior of
these three-body bound states. We checked the ratio of two
successive bound-state energies along the gray dashed line
in Fig. 2(b). It shows that the energy ratios follow a discrete
scaling law,

En+1(λ,a)
En(eπ/s0λ,e−π/s0a)

" e−2π/s0 . (21)

This discrete scaling behavior is also due to the short-
range − 1

R2 effective potential. For an arbitrary bound-state
wave function ψ(R), we can perform the following scaling
transformation:

R → e−π/s0 R, a → e−π/s0a,

λ → eπ/s0λ, E → e2π/s0E, (22)

where s0 =
√

α2µ − 9/2. After such a transformation, the
wave function still satisfies the corresponding Schrödinger
equation under the same hard-core boundary condition. The
modified discrete scaling law as in Eq. (21) can thus be applied
to the SO-coupled system.

At the end of this section, we conclude several important
effects of SO coupling on the Efimov physics in this system.

(i) SO coupling will not change the critical mass ratio to
support Efimov states.

(ii) As the SO coupling increases, the Efimov states will
merge into the atom-dimer continuum and disappear.

(iii) In the presence of SO coupling, the system exhibits a
discrete scaling behavior like Eq. (21). Moreover, the scaling
ratio is identical to that without SO coupling.

Although these properties are based on the Born-
Oppenheimer approximation that is valid only for a very large
mass ratio, the calculation in the next section shows that all
the above properties hold exactly for an arbitrary mass ratio.

IV. THREE-BODY SYSTEM: EXACT SOLUTION

In this section, we exactly solve the three-body bound-state
problem. Sections IV A and IV B are, respectively, for the
discussions of Efimov trimer and universal trimer states.

Similar to the two-body problem, we define a three-body
threshold energy at first. Generally speaking, a three-body
bound state can either dissociate into three free atoms or one
free atom plus one two-body bound state (dimer). These two
channels give two corresponding thresholds, three-atom (aaa)
threshold and atom-dimer (a-d) threshold, which are defined
as follows:

Eaaa(K) = min
k1+k2+k3=K,±

(
εk1 + εk2 + ϵ±

k3

)
, (23)

Ea-d(K) = min
k+p=K

[εk + E2(p)]. (24)

Here εk = k2/2M and ϵ±
k = (k2 ± 2|k|λ)/2m are the disper-

sions for the α atom and the β atom, respectively. E2(p) is the
two-body bound-state energy calculated in Sec. II. Since the
total momentum K is always a good quantum number, both
thresholds are defined as a function of K.

The three-body threshold Eth is the minimum of both the
three-atom threshold and the atom-dimer threshold,

Eth(K) = min{Eaaa(K),Ea-d(K)}. (25)

In Fig. 3, we plot the three-body threshold as a function
of 1/λa in K = 0 subspace. Different from the case without
SO coupling, the atom-dimer threshold becomes larger than
the three-atom threshold at some critical point. This is due to
the complex momentum dependence of the two-body binding
energy.
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for scattering length a = ∞. (b) Three-body bound-state energies as
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energy is shown by the solid green line. The mass ratio is chosen to
be 50.

This fast decay behavior as shown in Eq. (20) will have
significant effects on shallow Efimov states with binding
energies Eb ! λ2

2M
, as they have very extended wave functions

and thus are more sensitive to the long-range part of ϵ(R).
Since the long-range effective potential decays much faster
than the pure − 1

R2 potential, these shallow bound states are
expected to be less favored in the presence of SO coupling.

In Fig. 2(a), we plot ϵ(R) as a function of R at a = ∞ by
numerically solving Eq. (17), and also verify its short-range
and long-range behaviors as shown by Eqs. (18) and (20).
In Fig. 2(b), we show the three-body spectrum as increasing
the SO-coupling strength λ, which is obtained by applying a
hard-core boundary condition ψ |R=r0 = 0 to Eq. (12). We can
see that the binding energies of those deeply bound states are
insensitive to the SO coupling for small λ, while if we keep
increasing λ, all bound states will eventually merge into the
atom-dimer continuum and disappear. This behavior verifies
our analyses based on the asymptotic behaviors of ϵ(R).

Moreover, we find an interesting scaling behavior of
these three-body bound states. We checked the ratio of two
successive bound-state energies along the gray dashed line
in Fig. 2(b). It shows that the energy ratios follow a discrete
scaling law,

En+1(λ,a)
En(eπ/s0λ,e−π/s0a)

" e−2π/s0 . (21)

This discrete scaling behavior is also due to the short-
range − 1

R2 effective potential. For an arbitrary bound-state
wave function ψ(R), we can perform the following scaling
transformation:

R → e−π/s0 R, a → e−π/s0a,

λ → eπ/s0λ, E → e2π/s0E, (22)

where s0 =
√

α2µ − 9/2. After such a transformation, the
wave function still satisfies the corresponding Schrödinger
equation under the same hard-core boundary condition. The
modified discrete scaling law as in Eq. (21) can thus be applied
to the SO-coupled system.

At the end of this section, we conclude several important
effects of SO coupling on the Efimov physics in this system.

(i) SO coupling will not change the critical mass ratio to
support Efimov states.

(ii) As the SO coupling increases, the Efimov states will
merge into the atom-dimer continuum and disappear.

(iii) In the presence of SO coupling, the system exhibits a
discrete scaling behavior like Eq. (21). Moreover, the scaling
ratio is identical to that without SO coupling.

Although these properties are based on the Born-
Oppenheimer approximation that is valid only for a very large
mass ratio, the calculation in the next section shows that all
the above properties hold exactly for an arbitrary mass ratio.

IV. THREE-BODY SYSTEM: EXACT SOLUTION

In this section, we exactly solve the three-body bound-state
problem. Sections IV A and IV B are, respectively, for the
discussions of Efimov trimer and universal trimer states.

Similar to the two-body problem, we define a three-body
threshold energy at first. Generally speaking, a three-body
bound state can either dissociate into three free atoms or one
free atom plus one two-body bound state (dimer). These two
channels give two corresponding thresholds, three-atom (aaa)
threshold and atom-dimer (a-d) threshold, which are defined
as follows:

Eaaa(K) = min
k1+k2+k3=K,±

(
εk1 + εk2 + ϵ±

k3

)
, (23)

Ea-d(K) = min
k+p=K

[εk + E2(p)]. (24)

Here εk = k2/2M and ϵ±
k = (k2 ± 2|k|λ)/2m are the disper-

sions for the α atom and the β atom, respectively. E2(p) is the
two-body bound-state energy calculated in Sec. II. Since the
total momentum K is always a good quantum number, both
thresholds are defined as a function of K.

The three-body threshold Eth is the minimum of both the
three-atom threshold and the atom-dimer threshold,

Eth(K) = min{Eaaa(K),Ea-d(K)}. (25)

In Fig. 3, we plot the three-body threshold as a function
of 1/λa in K = 0 subspace. Different from the case without
SO coupling, the atom-dimer threshold becomes larger than
the three-atom threshold at some critical point. This is due to
the complex momentum dependence of the two-body binding
energy.
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Case II: two particles with Rashba SOC 



Rashba	  SOC	  

Spin-‐selec6ve	  interac6on	  

in the absence of SOC. So far, however, no universal
Borromean binding has yet been identified.
In this work, we report the discovery of universal

Borromean bindings in ultracold Fermi-Fermi mixtures
with Rashba SOC. The three-body system can be denoted
as ~a- ~a-b, where ~a is a two-component fermion subject to
Rashba SOC, with one of its components tuned close to a
wide Feshbach resonance with the b atom [46]. The
mechanism for the Borromean binding in this system is
schematically shown in Fig. 1. Under Rashba SOC, the
single-particle ground state of ~a possesses a U(1) degen-
eracy [see Fig. 1(a)]. With such a spectral symmetry,
the two-body ( ~a-b) scattering within the lowest-energy
subspace is blocked due to total momentum conservation
[Fig. 1(b)], which effectively suppresses the dimer for-
mation. In contrast, the three-body scattering can take full
advantage of this U(1) degeneracy, where an initial state of
~a ~-a -b atoms at fk;−k; 0g can be scattered to a different
state at fk0;−k0; 0g with a conserved total momentum
[Fig. 1(c)]. Here, k and k0 both lie on the circle of the U(1)
degenerate manifold of ~a. This enhanced low-energy
scattering phase space strongly suggests that the trimer
formation is much easier than the dimer formation, which,
as we will show, would give rise to the Borromean binding.
As the emergence of this Borromean binding is symmetry
selective rather than interaction selective, its universality is
naturally guaranteed: The binding energy only relies on the

s-wave scattering length and the SOC strength. We identify
the existence of such bindings in a wide range of mass
ratios between composing fermions, which are readily
accessible by Li-Li, K-K, and K-Li mixtures in current
cold-atom experiments. The robustness of this Borromean
binding suggests the importance of the single-particle
spectral symmetry in few-body physics, which has rarely
been discussed before.

II. MODEL

The Hamiltonian of our system is written as

H ¼
X

k;α¼↑;↓

k2

2ma
a†k;αak;α þ

X

k

k2

2mb
b†kbk

þ λ
ma

X

k

½ðkx − ikyÞa†k;↑ak;↓ þ H:c:&

þU
V

X

k;k0;Q

a†k;↑b
†
Q−kbQ−k0ak0;↑; ð1Þ

where λ is the strength of the Rashba SOC between two
spin species (α ¼ ↑;↓) of the ~a atom; U is the bare inter-
action between a↑ and b and is related to the s-wave
scattering length as via 1=U ¼ μ=ð2πasÞ − ð1=VÞ

P
k1=

ð2μk2Þ, with V the quantization volume and μ ¼
mamb=ðma þmbÞ the reduced mass. As Feshbach reso-
nances are state dependent and have a finite width, it is
reasonable to assume negligible interactions in other two-
body subsystems [46]. Note that we have taken ℏ ¼ 1 for
brevity.
Under SOC, the single-particle eigenstate of ~a in the

helicity basis is created by a†k;σ¼
P

αγ
α
k;σa

†
k;α, where

σ ¼ ', γ↑k;'¼'e'iϕk=2=
ffiffiffi
2

p
, γ↓k;'¼e'iϕk=2=

ffiffiffi
2

p
, and ϕk ¼

argðkx; kyÞ. The corresponding eigenenergy is ϵak;σ¼

½ðk⊥þσλÞ2þk2z &=ð2maÞþEth, with k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. The

ground state has U(1) degeneracy in k space with k⊥ ¼ λ
and a threshold energy Eth ¼ −λ2=ð2maÞ. Given the single-
particle spectrum ϵbk ¼ k2=ð2mbÞ for the b atom, the two-
body ~a-b and the three-body ~a ~-a -b systems, respectively,
have threshold energies Eth and 2Eth.

III. DIMER STATE

We start by addressing the dimer state of the ~a-b system.
The dimer wave function with a center-of-mass momentum
Q can be written as

jΨð2Þi ¼
X

k;σ¼'
Ψð2ÞðQ − k;kσÞb†Q−ka

†
kσj0i: ð2Þ

The coefficient Ψð2Þ can be solved in a standard way based
on the Lippmann-Schwinger equation [47]:

FIG. 1. Illustration of the Borromean binding mechanism in the
~a ~-a -b system. (a) Under Rashba SOC, the single-particle ground
state of ~a has a U(1) degeneracy in the ðkx; kyÞ plane with radius
k⊥ ¼ λ. (b) The two-body ~a-b system cannot scatter within
the lowest-energy subspace due to the conservation of total
momentum. (c) In contrast, the scattering of the three-body
~a ~-a -b system is allowed within the lowest-energy subspace
through virtual scattering to states like fk0;−k;k − k0g or
fk;−k0;k0 − kg (dashed green arrows). The dramatic enhance-
ment of the low-energy scattering phase space in (c) gives rise to
the Borromean binding.
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Ψð2ÞðQ − k;kσÞ ∝ γ↑kσ
#

E2 þ Eth − ϵbQ−k − ϵak;σ
; ð3Þ

where E2 is the two-body binding energy determined by

1

U
¼ 1

V

X

k;σ

jγ↑kσj2

E2 þ Eth − ϵbQ−k − ϵak;σ
: ð4Þ

Among all Q sectors, the lowest bound state ðE2 < 0Þ is
found with Q ¼ 0. Different from previous two-body
solutions with Rashba SOC [41], to support a bound state
here, the interaction strength 1=ðλasÞmust be greater than a
finite critical value 1=ðλasÞc, which can be solved analyti-
cally as a function of mass ratio η ¼ ma=mb:

1

ðλasÞc
¼ x

!
1 − x

2
ln
1þ x
1 − x

"
; x ¼ 1

1þ η
: ð5Þ

The function of 1=ðλasÞc in terms of η is plotted in
Fig. 2(a). As η is increased from 0, 1=ðλasÞc first increases
from −∞ to a positive maximum value around η ∼ 1, then
decreases and finally approaches 0þ as η → ∞. This
behavior can be understood from the analysis of the
two-body scattering energy Eð2Þ

k;σ ¼ ϵb−k þ ϵak;σ − Eth,
whose low-energy property is crucial for the formation

of a shallow bound state. It is easy to see that the minimum
of Eð2Þ

k;σ, denoted as Emin, lies on a ring with radius
k⊥ ¼ λ=ð1þ ηÞ in the ðkx; kyÞ plane. As η increases from
0 to ∞, the radius evolves from λ to 0, indicating a
dimensional crossover from effectively 2D to 3D. This
effective dimensional crossover is also manifested in the
density of states ρ at Emin, which approaches 0 from a
finite value as η increases [see the inset of Fig. 2(a)].
Consequently, the critical 1=ðλasÞc changes from −∞ to 0,
corresponding to an effective dimensional crossover from
2D to 3D without SOC.
An important feature in Fig. 2(a) is that the two-body

threshold 1=ðasÞc is pushed from resonance to positive
values for a considerable range of mass ratio η ∈ ½0.44;∞Þ,
indicating the suppression of dimer formation by Rashba
SOC. The suppression of dimer is consistent with the
schematic picture in Fig. 1(b). For an initial ~a-b state in the
lowest-energy subspace (jQj ¼ λ), it cannot be scattered
into a different state among the U(1) degenerate ground
states due to the conservation of total momentum. Given
the blocked threshold scattering with jQj ¼ λ, the ground-
state dimer with E2 < 0 is found to be at Q ¼ 0, where the
U(1) symmetry is restored at the cost of higher threshold
energy (Emin > 0). In Figs. 2(b1) and 2(b2), we plot the
momentum distribution of such dimers for two different
mass ratios η ¼ 1 and 40=6, corresponding to the cases of
Li-Li (or K-K) and K-Li mixtures. For both cases, the
largest weight of the wave function lies on a ring with
radius k⊥ < λ and with Emin > 0.

IV. BORROMEAN BINDING

We are now in position to examine the three-
body problem. According to the analysis in Fig. 1(c),
the ground-state trimer is expected to have zero center-of-
mass momentum, for which the wave function can be
written as

jΨð3Þi ¼
X

kσ

X

qξ

Ψð3Þð−k − q;kσ;qξÞb†−k−qa
†
kσa

†
qξj0i:

ð6Þ

Following similar procedures as in solving the two-body
problem, we obtain the integral equations for the three-
body bound-state solution [47]:

1

U
FσðkÞ ¼

1

V

X

qξ

jγ↑qξj2FσðkÞ − jγ↑kσj2FξðqÞ
E3 þ 2Eth − ϵb−k−q − ϵak;σ − ϵaq;ξ

; ð7Þ

where FσðkÞ ¼ U
P

qξΨ
ð3Þð−k − q;kσ;qξÞγ↑kσγ

↑
qξ, and

the trimer binding energy E3 can be obtained by requiring
a nonzero solution of FσðkÞ. Under Rashba SOC, the F
function can be decoupled into sectors with different
magnetic angular momenta:
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FIG. 2. Dimer threshold and momentum distribution. (a) Criti-
cal interaction strength 1=ðλasÞc to support a bound state of an
~a-b system as a function of the mass ratio η ¼ ma=mb. Dashed
lines show the asymptotic fits 1 − 1=2 lnð4=ηÞ and η−1=2, re-
spectively, in the limits of η → 0 and ∞. The insets show the
minimum of the two-body scattering energy Emin [in units of
λ2=ð2maÞ] and the density of states ρ (in units of 4π2maλ) at Emin.
(b1),(b2) Probability distribution of a shallow dimer in the
ðkx; kyÞ plane jΨð2Þð−k;k;−Þj2 for two different mass ratios
η ¼ 1 and 40=6, respectively, at 1=ðλasÞ ¼ 0.3; 0.35.
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Results:

Critical scattering length 
to support a dimer

1) dimer formation:

Ψð2ÞðQ − k;kσÞ ∝ γ↑kσ
#

E2 þ Eth − ϵbQ−k − ϵak;σ
; ð3Þ

where E2 is the two-body binding energy determined by

1

U
¼ 1

V

X

k;σ

jγ↑kσj2

E2 þ Eth − ϵbQ−k − ϵak;σ
: ð4Þ

Among all Q sectors, the lowest bound state ðE2 < 0Þ is
found with Q ¼ 0. Different from previous two-body
solutions with Rashba SOC [41], to support a bound state
here, the interaction strength 1=ðλasÞmust be greater than a
finite critical value 1=ðλasÞc, which can be solved analyti-
cally as a function of mass ratio η ¼ ma=mb:

1

ðλasÞc
¼ x

!
1 − x

2
ln
1þ x
1 − x

"
; x ¼ 1

1þ η
: ð5Þ

The function of 1=ðλasÞc in terms of η is plotted in
Fig. 2(a). As η is increased from 0, 1=ðλasÞc first increases
from −∞ to a positive maximum value around η ∼ 1, then
decreases and finally approaches 0þ as η → ∞. This
behavior can be understood from the analysis of the
two-body scattering energy Eð2Þ

k;σ ¼ ϵb−k þ ϵak;σ − Eth,
whose low-energy property is crucial for the formation

of a shallow bound state. It is easy to see that the minimum
of Eð2Þ

k;σ, denoted as Emin, lies on a ring with radius
k⊥ ¼ λ=ð1þ ηÞ in the ðkx; kyÞ plane. As η increases from
0 to ∞, the radius evolves from λ to 0, indicating a
dimensional crossover from effectively 2D to 3D. This
effective dimensional crossover is also manifested in the
density of states ρ at Emin, which approaches 0 from a
finite value as η increases [see the inset of Fig. 2(a)].
Consequently, the critical 1=ðλasÞc changes from −∞ to 0,
corresponding to an effective dimensional crossover from
2D to 3D without SOC.
An important feature in Fig. 2(a) is that the two-body

threshold 1=ðasÞc is pushed from resonance to positive
values for a considerable range of mass ratio η ∈ ½0.44;∞Þ,
indicating the suppression of dimer formation by Rashba
SOC. The suppression of dimer is consistent with the
schematic picture in Fig. 1(b). For an initial ~a-b state in the
lowest-energy subspace (jQj ¼ λ), it cannot be scattered
into a different state among the U(1) degenerate ground
states due to the conservation of total momentum. Given
the blocked threshold scattering with jQj ¼ λ, the ground-
state dimer with E2 < 0 is found to be at Q ¼ 0, where the
U(1) symmetry is restored at the cost of higher threshold
energy (Emin > 0). In Figs. 2(b1) and 2(b2), we plot the
momentum distribution of such dimers for two different
mass ratios η ¼ 1 and 40=6, corresponding to the cases of
Li-Li (or K-K) and K-Li mixtures. For both cases, the
largest weight of the wave function lies on a ring with
radius k⊥ < λ and with Emin > 0.

IV. BORROMEAN BINDING

We are now in position to examine the three-
body problem. According to the analysis in Fig. 1(c),
the ground-state trimer is expected to have zero center-of-
mass momentum, for which the wave function can be
written as

jΨð3Þi ¼
X

kσ

X

qξ

Ψð3Þð−k − q;kσ;qξÞb†−k−qa
†
kσa

†
qξj0i:

ð6Þ

Following similar procedures as in solving the two-body
problem, we obtain the integral equations for the three-
body bound-state solution [47]:

1

U
FσðkÞ ¼

1

V

X

qξ

jγ↑qξj2FσðkÞ − jγ↑kσj2FξðqÞ
E3 þ 2Eth − ϵb−k−q − ϵak;σ − ϵaq;ξ

; ð7Þ

where FσðkÞ ¼ U
P

qξΨ
ð3Þð−k − q;kσ;qξÞγ↑kσγ

↑
qξ, and

the trimer binding energy E3 can be obtained by requiring
a nonzero solution of FσðkÞ. Under Rashba SOC, the F
function can be decoupled into sectors with different
magnetic angular momenta:
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FIG. 2. Dimer threshold and momentum distribution. (a) Criti-
cal interaction strength 1=ðλasÞc to support a bound state of an
~a-b system as a function of the mass ratio η ¼ ma=mb. Dashed
lines show the asymptotic fits 1 − 1=2 lnð4=ηÞ and η−1=2, re-
spectively, in the limits of η → 0 and ∞. The insets show the
minimum of the two-body scattering energy Emin [in units of
λ2=ð2maÞ] and the density of states ρ (in units of 4π2maλ) at Emin.
(b1),(b2) Probability distribution of a shallow dimer in the
ðkx; kyÞ plane jΨð2Þð−k;k;−Þj2 for two different mass ratios
η ¼ 1 and 40=6, respectively, at 1=ðλasÞ ¼ 0.3; 0.35.
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Mass ratio between a and b

•  For	  most	  region	  of	  mass	  ra6o,	  
dimer	  forma6on	  requires	  a>0	  



Trimer appears before Dimer --- Borromean
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atom-‐dimer	  
threshold	  

Results:
2) Trimer formation:



Universal binding energy

Results:
3) Universal feature of Borromean binding:

E3(as,λsoc )

FσðkÞ ¼
X

m≥0
FðmÞ
σ ðk⊥; kzÞ cosðmϕk þ θmÞ; ð8Þ

where θm is an arbitrary phase shift that turns out to be
irrelevant to the final solution of E3. Note that due to
Fermi statistics, the ground state is in the m ¼ 1 sector.
Given FσðkÞ, the wave function Ψð3Þ can be obtained
accordingly [47].
In Fig. 3, we plot the ground-state trimer energy E3 for

the 40Kð ~aÞ-40Kð ~aÞ-6LiðbÞ case as a function of interaction
strength 1=ðλasÞ. As expected, when 1=ðλasÞ increases, the
trimer is found to emerge well before the dimer, which
leads to the occurrence of the Borromean binding. For the
40K-40K-6Li system, the Borromean state is stable within
the range of 1=ðλasÞ ∈ ½0.2; 0.31Þ, while the most tightly
bound Borromean occurs at the phase boundary against the
ordinary trimer, i.e., when the dimer starts to develop at
1=ðλasÞ ¼ 0.31. At this point, the Borromean binding
energy can be as large as ∼30% of the SOC energy
λ2=ð2maÞ. The ordinary trimer finally merges into the
atom-dimer threshold at a larger 1=ðλasÞ ¼ 0.76.
To gain further understanding of the binding mechanism,

we plot in Fig. 4(a) the momentum distribution of the
Borromean state at 1=ðλasÞ ¼ 0.3. In contrast to that of
dimers shown in Figs. 2(b1) and 2(b2), here, most of the
weight of the probability distribution jΨð3Þð0;k;−;−k;−Þj2
spreads along the U(1) circle in the lowest-energy subspace
for ~a atoms. Thus, scattering among these low-energy states
contributes the most to the bound-state formation, consistent
with the schematics in Fig. 1(c).

An outstanding feature of the Borromean binding in the
current system is its universality; i.e., the binding energy
does not rely on the short-range interaction details. The
universality can be shown by imposing different high-
momentum cutoffs Λ for the argument of the Fσ function in
Eq. (7): ðkc⊥; jkzjcÞ ¼ ð

ffiffiffi
2

p
Λ;ΛÞ. In Fig. 4(b), we plot E3 as

a function of λ=Λ for the Borromean binding at
1=ðλasÞ ¼ 0.3. If the binding is universal, E3 should be
independent of the actual cutoff Λ, and all the points should
fall onto a straight line in the fλ=Λ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3=½Λ2=ð2maÞ&

p
g

plane, which is exactly the case in Fig. 4(b). The only
relevant length scales are then as and 1=λ. The universality
of the Borromean binding here distinguishes itself
from those in the previous studies where the short-range
(or high-energy) details of the interaction potential play
essential roles.
Furthermore, we find that the Borromean binding in the

current system is remarkably robust. As shown in the
ground-state phase diagram for the ~a ~-a -b system in Fig. 5,

AD

FIG. 3. Borromean binding of the 40Kð ~aÞ-40Kð ~aÞ-6LiðbÞ sys-
tem. The trimer binding energy E3 (solid black line) and atom-
dimer threshold EAD (dashed red line) are shown as functions of
1=ðλasÞ. Energies are in units of the SOC energy λ2=ð2maÞ. The
trimer with E3 < 0 and dimer with E2 < 0, respectively, emerge
at 1=ðλasÞ ¼ 0.2 and 0.31. The inset shows ΔE3, the relative
value of E3 compared to the scattering threshold or the atom-
dimer threshold. The dotted vertical line marks the boundary
between Borromean (B) and ordinary trimer (T) states.
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FIG. 4. Momentum distribution and universality of the
Borromean bound state. (a) Probability distribution
jΨð3Þð0;k;−;−k;−Þj2 for the Borromean binding at 1=ðλasÞ ¼
0.3 and η ¼ 40=6. The phase shift θm is chosen to be 0.
(b) Borromean binding energy E3 [in units of cutoff energy
Λ2=ð2maÞ] as a function of λ=Λ for four different cutoffs Λ.
Other parameters are the same as in (a).

FIG. 5. Phase diagram for trimer states. The boundaries are
shown in terms of 1=ðλasÞ and η ¼ ma=mb. The lower and upper
solid curves, respectively, show the threshold of Borromean (B)
binding and the boundary at which the ordinary trimer (T) merges
into the atom-dimer continuum (AD). The dashed blue curve is
the dimer threshold [see Fig. 2(a)], which also marks the
boundary between B and T for η ≥ 0.39.
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Impurity (b) interacting with 
spin-orbit coupled Fermi sea (a):
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FIG. 1: (Color online) (a) Trimer (red solid) and dimer (blue
dashed) energies in a three-body system as functions of Eb.
(b) Trimer and dimer energies near the transition point. The
black-dotted line shows the energy of the zero-momentum
trimer, which is very close to that of the ground-state trimer
with a finite momentum. (c) Total momenta of dimer (blue)
and trimer (red) as functions of Eb.

and ak� annihilates an atom in the Fermi sea with spin
� and massm

a

; ↵ is the strength of Rashba SOC; U is the
bare interaction between the impurity and spin-up atoms,
which can be renormalized as 1/U = �(1/V )

P
k 1/(Eb

+
(1 + ⌘)~2k2/m

a

); V and E
b

are respectively the quanti-
zation area and two-body binding energy in 2D. Finally
we denote the mass ratio as ⌘ = m

a

/m
b

.
Diagonalizing the single-particle Hamiltonian of a spin-

orbit coupled fermion, we have the creation operators of
the helicity states a†

k� =
P

�

��k�a
†
k�, with the eigen ener-

gies ⇠k± = ~2/2m
a

(|k|±k0)2+E
th

. Here, � = ±, �"k± =

e�i�k/2/
p
2, �#k± = ±ei�k/2/

p
2, �

k

= arg(k
x

, k
y

),
k0 = m

a

↵/~2, and the ground-state threshold energy
E

th

= �m
a

↵2/2~2. The single-particle ground state un-
der the Rashba SOC has a U(1) degeneracy along a circle
in momentum space with a radius k0. In the following,
we will use k0 and E0 = |E

th

| as the units of wave vector
and energy, respectively.

Trimer and dimer in the few-body sector.– We first ex-
amine a three-body system with an impurity and two
fermions in the helicity states. The wave function of a
trimer can be written as

| (3)
Q i =

X

k�k0
�

 ��

kk0(Q)b†Q�k�k0a
†
k�a

†
k0

�

|0i, (2)

where Q is the center-of-mass (CoM) momentum of the
trimer. The trimer energy E3, relative to the three-
body threshold 2E

th

, can be calculated by solving the

Schrödinger’s equationH| (3)
Q i = (E3+2E

th

)| (3)
Q i. Sim-

ilarly, we can evaluate the dimer energy, relative to the
two-body threshold E

th

, through its wave function

| (2)
Q i =

X

k�

 �

k(Q)b†Q�ka
†
k�|0i. (3)

We compare trimer and dimer energies for the equal
mass case ⌘ = 1 in Fig. 1. Apparently, the trimer
is stable over a considerable interaction range with

E
b

2 [0, 1.66]E0. Similar to the three-dimensional
case, the stabilization of the trimer here is directly re-
lated to the SOC-induced U(1) degeneracy of the single-
particle ground state, which particularly favors three-
body, rather than two-body, scatterings in the low-energy
subspace [30]. Remarkably, the trimer energy is univer-
sally determined by the physical parameters (E

b

, ↵ and
⌘), and is robust against short-range details of the inter-
action potential. For such a universal trimer, the mo-
mentum distribution of the spin-orbit coupled fermions
has the largest weight on the U(1)-degenerate ring with a
radius k = k0 [31]. With increasing E

b

, the SOC physics
becomes less dominant compared to interaction e↵ects,
and the dimer eventually takes over the trimer as the
ground state for E

b

� 1.66E0 (Fig. 1(a)).
In 2D, both the trimer and the dimer can acquire a

finite CoM momentum Q (Fig. 1(b)). However, as the

energy di↵erence between | (3)
Q=0i and the ground-state

| (3)
Q i is typically quite small up to the trimer-dimer tran-

sition (Fig. 1(c)), it is su�cient to estimate the trimer-
dimer transition using a zero-momentum trimer. Based
on this observation, for the following discussions in the
presence of spin-orbit coupled Fermi sea, we will only
consider the dressed trimer in the Q = 0 sector.

Trimer, molecule and polaron in the presence of a

Fermi sea.– When the impurity is immersed in a spin-
orbit coupled Fermi sea, we consider the following ansatz
for the trimer dressed by particle-hole excitations [11, 13]

|T0i =
X

k�k0
�

0
���kk0b

†
�k�k0a

†
k�a

†
k0

�

|FSi
N�2

+
X

k�k0
�

k00
�q⌫

0
����⌫kk0k00qb

†
q�k�k0�k00a

†
k�a

†
k0

�

a†
k00

�

aq⌫ |FSiN�2,

(4)

where |FSi
N

represents a spin-orbit coupled Fermi sea
with N atoms. For the summations above, we have
⇠k�, ⇠k0

�

, ⇠k00
�

> E
F

, and ⇠q⌫ < E
F

, where E
F

is the
Fermi energy of the spin-orbit coupled fermions. The first
term on the right-hand side of Eq. (4) represents a bare
trimer on top of the Fermi sea, and the second term ac-
counts for contributions from a single pair of particle-hole
fluctuations. We expect the energy of the dressed trimer
could be estimated fairly accurately at this level [31].
Moreover, our ansatz recovers the exact few-body wave
function when the fermion density is sent to zero.

Minimizing the energy functional hT0|H � E
T

�
2E

F

|T0i, we get a set of coupled equations for F�

k and

G��⌫

kk0q, where F�

k =
P

k0
�

 ��

kk0 , and G��⌫

kk0q =  ��

kk0 +

3
P

k00
�

 ���⌫

kk0k00q. We then make the decomposition F�

k =
P

m

F�

m

(k) cos(m�
k

), G��⌫

kk0q =
P

m

G��⌫

m

(k, k0, q, k̂ · k̂0, k̂ ·
q̂) cos(m�

k

). Due to the conservation of quantum num-
ber m, one can solve E

T

in any given m-sector. Note
that the trimer energy E

T

is relative to the Fermi en-
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FIG. 2: (Color online) Energies of dressed molecule (blue
solid) and polaron (black dashed) relative to the energy of
dressed trimer as functions of Eb. For all three states, the
energy reference is the total energy of a spin-orbit coupled
Fermi sea of N atoms. Inset: Energy of the dressed trimer.
Here, the Fermi energy is EF = Eth + 0.05E0, and the mass
ratio ⌘ = 1. The red circle marker at Eb ⇡ 1.54E0 indi-
cates a first-order transition between molecular states with
di↵erent CoM momentum, and the black square marker at
Eb ⇡ 3.03E0 indicates a second-order transition between MQ

and M0. The CoM momentum of the polaron is always zero
for the parameters that we consider.

ergy of a spin-orbit coupled Fermi sea of N atoms. To
further simplify the numerics, we make the approxima-
tion |q| = k0, i.e. the hole excitation occurs only on the
degenerate ring of the single-particle ground state. This
approximation should be particularly good for a dilute
gas with a small Fermi energy.

Similar to the few-body case, as E
b

increases the e↵ect
of SOC becomes less important. The ground state of the
system in the strong-coupling limit should be a molecular
state dressed by particle-hole excitations. We consider a
dressed-molecular ansatz up to a single pair of particle-
hole excitations [7, 10]

|MQi =
X

k�

0
��

k(Q)b†Q�ka
†
k�|FSiN�1

+
X0

k�k0
�q⌫

���⌫

kk0q(Q)b†Q�k�k0+qa
†
k�a

†
k0

�

aq⌫ |FSiN�1.

(5)

In the thermodynamic limit, |MQi corresponds to
a particle-hole-dressed Bardeen-Cooper-Schie↵er pairing
state in the large polarization limit for Q = 0, and a
Fulde-Ferrell-Larkin-Ovchinnikov state if Q is finite.

When the interaction is weak, one should also consider
the possibility of a polaron [7, 10]

|PQi =
⇣
�Qb†Q +

X

k�q⌫

0
��⌫

kq(Q)b†Q+q�ka
†
k�aq⌫

⌘
|FSi

N

.

(6)

In the thermodynamic limit, the polaron corresponds to
a particle-hole-dressed normal state.
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FIG. 3: (Color online) (a) Phase boundaries between the
dressed trimer state (T0), the dressed molecular state with
zero (M0) and finite (MQ) total momentum, and the polaron
with zero total momentum (P0). The red diamond indicates

the few-body transition point between | (3)
0 i and | (2)

0 i at
Eb ⇡ 1.65E0. (b) Phase boundaries between the bare trimer
(T (b)), the bare molecule (M (b)), and the normal state (N).
(c) Energies of trimer (red) and molecule (blue) as functions
of EF at Eb = 1.65E0. The solid (dashed) lines are energies
of dressed (bare) states. Here the mass ratio ⌘ = 1.

In Fig. 2, we show energies of the dressed trimer, the
dressed molecule, and the polaron as functions of E

b

at
a typical Fermi energy E

F

= E
th

+ 0.05E0. Consistent
with our expectation, the ground state is the polaron and
the dressed molecular state, respectively, in the weak-
and the strong-coupling limit. Importantly, the dressed
trimer is stable over a fairly large parameter region with
E

b

2 [0.66, 3.43]E0, which is considerably broadened as
compared to the few-body case (Fig. 1(a)).
Phase diagrams and e↵ects of Fermi sea.– In Fig. 3(a),

we map out the phase diagram involving all di↵erent
states on the E

F

–E
b

plane. Remarkably, we find that,
as E

F

increases from E
th

in the low-density limit, the
dressed trimer (T0) becomes more stable against the
drssed molecule (M0). As E

F

further increases, T0 gives
way to the polaron (P0). Furthermore, a molecular state
with a finite CoM momentum (M

Q

) emerges in a narrow
region surrounded by P0, M0 and T0.
The enhanced stability of trimer against molecule as

shown in Fig. 3(a) can be understood by examining two
key e↵ects caused by the presence of Fermi-sea atoms:
(i) the Pauli-blocking, which prohibits scatterings within
the Fermi sea; and (ii) particle-hole fluctuations, which
lead to excitations out of the Fermi sea. The impact
of (i) can be analyzed by keeping only the first terms
in Eqs. (4,5,6) and studying the phase diagram of the
resulting bare states. In Fig. 3(b), we see that an in-
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FIG. 2: (Color online) Energies of dressed molecule (blue
solid) and polaron (black dashed) relative to the energy of
dressed trimer as functions of Eb. For all three states, the
energy reference is the total energy of a spin-orbit coupled
Fermi sea of N atoms. Inset: Energy of the dressed trimer.
Here, the Fermi energy is EF = Eth + 0.05E0, and the mass
ratio ⌘ = 1. The red circle marker at Eb ⇡ 1.54E0 indi-
cates a first-order transition between molecular states with
di↵erent CoM momentum, and the black square marker at
Eb ⇡ 3.03E0 indicates a second-order transition between MQ

and M0. The CoM momentum of the polaron is always zero
for the parameters that we consider.

ergy of a spin-orbit coupled Fermi sea of N atoms. To
further simplify the numerics, we make the approxima-
tion |q| = k0, i.e. the hole excitation occurs only on the
degenerate ring of the single-particle ground state. This
approximation should be particularly good for a dilute
gas with a small Fermi energy.

Similar to the few-body case, as E
b

increases the e↵ect
of SOC becomes less important. The ground state of the
system in the strong-coupling limit should be a molecular
state dressed by particle-hole excitations. We consider a
dressed-molecular ansatz up to a single pair of particle-
hole excitations [7, 10]

|MQi =
X

k�

0
��

k(Q)b†Q�ka
†
k�|FSiN�1

+
X0

k�k0
�q⌫

���⌫

kk0q(Q)b†Q�k�k0+qa
†
k�a

†
k0

�

aq⌫ |FSiN�1.

(5)

In the thermodynamic limit, |MQi corresponds to
a particle-hole-dressed Bardeen-Cooper-Schie↵er pairing
state in the large polarization limit for Q = 0, and a
Fulde-Ferrell-Larkin-Ovchinnikov state if Q is finite.

When the interaction is weak, one should also consider
the possibility of a polaron [7, 10]

|PQi =
⇣
�Qb†Q +

X

k�q⌫

0
��⌫

kq(Q)b†Q+q�ka
†
k�aq⌫

⌘
|FSi

N

.

(6)

In the thermodynamic limit, the polaron corresponds to
a particle-hole-dressed normal state.
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dressed trimer state (T0), the dressed molecular state with
zero (M0) and finite (MQ) total momentum, and the polaron
with zero total momentum (P0). The red diamond indicates

the few-body transition point between | (3)
0 i and | (2)

0 i at
Eb ⇡ 1.65E0. (b) Phase boundaries between the bare trimer
(T (b)), the bare molecule (M (b)), and the normal state (N).
(c) Energies of trimer (red) and molecule (blue) as functions
of EF at Eb = 1.65E0. The solid (dashed) lines are energies
of dressed (bare) states. Here the mass ratio ⌘ = 1.

In Fig. 2, we show energies of the dressed trimer, the
dressed molecule, and the polaron as functions of E

b

at
a typical Fermi energy E

F

= E
th

+ 0.05E0. Consistent
with our expectation, the ground state is the polaron and
the dressed molecular state, respectively, in the weak-
and the strong-coupling limit. Importantly, the dressed
trimer is stable over a fairly large parameter region with
E

b

2 [0.66, 3.43]E0, which is considerably broadened as
compared to the few-body case (Fig. 1(a)).
Phase diagrams and e↵ects of Fermi sea.– In Fig. 3(a),

we map out the phase diagram involving all di↵erent
states on the E

F

–E
b

plane. Remarkably, we find that,
as E

F

increases from E
th

in the low-density limit, the
dressed trimer (T0) becomes more stable against the
drssed molecule (M0). As E

F

further increases, T0 gives
way to the polaron (P0). Furthermore, a molecular state
with a finite CoM momentum (M

Q

) emerges in a narrow
region surrounded by P0, M0 and T0.
The enhanced stability of trimer against molecule as

shown in Fig. 3(a) can be understood by examining two
key e↵ects caused by the presence of Fermi-sea atoms:
(i) the Pauli-blocking, which prohibits scatterings within
the Fermi sea; and (ii) particle-hole fluctuations, which
lead to excitations out of the Fermi sea. The impact
of (i) can be analyzed by keeping only the first terms
in Eqs. (4,5,6) and studying the phase diagram of the
resulting bare states. In Fig. 3(b), we see that an in-
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FIG. 1: (Color online) (a) Trimer (red solid) and dimer (blue
dashed) energies in a three-body system as functions of Eb.
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and trimer (red) as functions of Eb.

and ak� annihilates an atom in the Fermi sea with spin
� and massm

a

; ↵ is the strength of Rashba SOC; U is the
bare interaction between the impurity and spin-up atoms,
which can be renormalized as 1/U = �(1/V )

P
k 1/(Eb

+
(1 + ⌘)~2k2/m

a

); V and E
b

are respectively the quanti-
zation area and two-body binding energy in 2D. Finally
we denote the mass ratio as ⌘ = m

a

/m
b

.
Diagonalizing the single-particle Hamiltonian of a spin-

orbit coupled fermion, we have the creation operators of
the helicity states a†

k� =
P

�

��k�a
†
k�, with the eigen ener-

gies ⇠k± = ~2/2m
a

(|k|±k0)2+E
th

. Here, � = ±, �"k± =

e�i�k/2/
p
2, �#k± = ±ei�k/2/

p
2, �

k

= arg(k
x

, k
y

),
k0 = m

a

↵/~2, and the ground-state threshold energy
E

th

= �m
a

↵2/2~2. The single-particle ground state un-
der the Rashba SOC has a U(1) degeneracy along a circle
in momentum space with a radius k0. In the following,
we will use k0 and E0 = |E

th

| as the units of wave vector
and energy, respectively.

Trimer and dimer in the few-body sector.– We first ex-
amine a three-body system with an impurity and two
fermions in the helicity states. The wave function of a
trimer can be written as

| (3)
Q i =

X

k�k0
�

 ��

kk0(Q)b†Q�k�k0a
†
k�a

†
k0

�

|0i, (2)

where Q is the center-of-mass (CoM) momentum of the
trimer. The trimer energy E3, relative to the three-
body threshold 2E

th

, can be calculated by solving the

Schrödinger’s equationH| (3)
Q i = (E3+2E

th

)| (3)
Q i. Sim-

ilarly, we can evaluate the dimer energy, relative to the
two-body threshold E

th

, through its wave function

| (2)
Q i =

X

k�

 �

k(Q)b†Q�ka
†
k�|0i. (3)

We compare trimer and dimer energies for the equal
mass case ⌘ = 1 in Fig. 1. Apparently, the trimer
is stable over a considerable interaction range with

E
b

2 [0, 1.66]E0. Similar to the three-dimensional
case, the stabilization of the trimer here is directly re-
lated to the SOC-induced U(1) degeneracy of the single-
particle ground state, which particularly favors three-
body, rather than two-body, scatterings in the low-energy
subspace [30]. Remarkably, the trimer energy is univer-
sally determined by the physical parameters (E

b

, ↵ and
⌘), and is robust against short-range details of the inter-
action potential. For such a universal trimer, the mo-
mentum distribution of the spin-orbit coupled fermions
has the largest weight on the U(1)-degenerate ring with a
radius k = k0 [31]. With increasing E

b

, the SOC physics
becomes less dominant compared to interaction e↵ects,
and the dimer eventually takes over the trimer as the
ground state for E

b

� 1.66E0 (Fig. 1(a)).
In 2D, both the trimer and the dimer can acquire a

finite CoM momentum Q (Fig. 1(b)). However, as the

energy di↵erence between | (3)
Q=0i and the ground-state

| (3)
Q i is typically quite small up to the trimer-dimer tran-

sition (Fig. 1(c)), it is su�cient to estimate the trimer-
dimer transition using a zero-momentum trimer. Based
on this observation, for the following discussions in the
presence of spin-orbit coupled Fermi sea, we will only
consider the dressed trimer in the Q = 0 sector.

Trimer, molecule and polaron in the presence of a

Fermi sea.– When the impurity is immersed in a spin-
orbit coupled Fermi sea, we consider the following ansatz
for the trimer dressed by particle-hole excitations [11, 13]

|T0i =
X

k�k0
�

0
���kk0b

†
�k�k0a

†
k�a

†
k0

�

|FSi
N�2

+
X

k�k0
�

k00
�q⌫

0
����⌫kk0k00qb

†
q�k�k0�k00a

†
k�a

†
k0

�

a†
k00

�

aq⌫ |FSiN�2,

(4)

where |FSi
N

represents a spin-orbit coupled Fermi sea
with N atoms. For the summations above, we have
⇠k�, ⇠k0

�

, ⇠k00
�

> E
F

, and ⇠q⌫ < E
F

, where E
F

is the
Fermi energy of the spin-orbit coupled fermions. The first
term on the right-hand side of Eq. (4) represents a bare
trimer on top of the Fermi sea, and the second term ac-
counts for contributions from a single pair of particle-hole
fluctuations. We expect the energy of the dressed trimer
could be estimated fairly accurately at this level [31].
Moreover, our ansatz recovers the exact few-body wave
function when the fermion density is sent to zero.

Minimizing the energy functional hT0|H � E
T

�
2E

F

|T0i, we get a set of coupled equations for F�

k and

G��⌫

kk0q, where F�

k =
P

k0
�

 ��

kk0 , and G��⌫

kk0q =  ��

kk0 +

3
P

k00
�

 ���⌫

kk0k00q. We then make the decomposition F�

k =
P

m

F�

m

(k) cos(m�
k

), G��⌫

kk0q =
P

m

G��⌫

m

(k, k0, q, k̂ · k̂0, k̂ ·
q̂) cos(m�

k

). Due to the conservation of quantum num-
ber m, one can solve E

T

in any given m-sector. Note
that the trimer energy E

T

is relative to the Fermi en-
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FIG. 2: (Color online) Energies of dressed molecule (blue
solid) and polaron (black dashed) relative to the energy of
dressed trimer as functions of Eb. For all three states, the
energy reference is the total energy of a spin-orbit coupled
Fermi sea of N atoms. Inset: Energy of the dressed trimer.
Here, the Fermi energy is EF = Eth + 0.05E0, and the mass
ratio ⌘ = 1. The red circle marker at Eb ⇡ 1.54E0 indi-
cates a first-order transition between molecular states with
di↵erent CoM momentum, and the black square marker at
Eb ⇡ 3.03E0 indicates a second-order transition between MQ

and M0. The CoM momentum of the polaron is always zero
for the parameters that we consider.

ergy of a spin-orbit coupled Fermi sea of N atoms. To
further simplify the numerics, we make the approxima-
tion |q| = k0, i.e. the hole excitation occurs only on the
degenerate ring of the single-particle ground state. This
approximation should be particularly good for a dilute
gas with a small Fermi energy.

Similar to the few-body case, as E
b

increases the e↵ect
of SOC becomes less important. The ground state of the
system in the strong-coupling limit should be a molecular
state dressed by particle-hole excitations. We consider a
dressed-molecular ansatz up to a single pair of particle-
hole excitations [7, 10]

|MQi =
X

k�

0
��

k(Q)b†Q�ka
†
k�|FSiN�1

+
X0

k�k0
�q⌫

���⌫

kk0q(Q)b†Q�k�k0+qa
†
k�a

†
k0

�

aq⌫ |FSiN�1.

(5)

In the thermodynamic limit, |MQi corresponds to
a particle-hole-dressed Bardeen-Cooper-Schie↵er pairing
state in the large polarization limit for Q = 0, and a
Fulde-Ferrell-Larkin-Ovchinnikov state if Q is finite.

When the interaction is weak, one should also consider
the possibility of a polaron [7, 10]

|PQi =
⇣
�Qb†Q +

X

k�q⌫

0
��⌫

kq(Q)b†Q+q�ka
†
k�aq⌫

⌘
|FSi

N

.

(6)

In the thermodynamic limit, the polaron corresponds to
a particle-hole-dressed normal state.
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FIG. 3: (Color online) (a) Phase boundaries between the
dressed trimer state (T0), the dressed molecular state with
zero (M0) and finite (MQ) total momentum, and the polaron
with zero total momentum (P0). The red diamond indicates

the few-body transition point between | (3)
0 i and | (2)

0 i at
Eb ⇡ 1.65E0. (b) Phase boundaries between the bare trimer
(T (b)), the bare molecule (M (b)), and the normal state (N).
(c) Energies of trimer (red) and molecule (blue) as functions
of EF at Eb = 1.65E0. The solid (dashed) lines are energies
of dressed (bare) states. Here the mass ratio ⌘ = 1.

In Fig. 2, we show energies of the dressed trimer, the
dressed molecule, and the polaron as functions of E

b

at
a typical Fermi energy E

F

= E
th

+ 0.05E0. Consistent
with our expectation, the ground state is the polaron and
the dressed molecular state, respectively, in the weak-
and the strong-coupling limit. Importantly, the dressed
trimer is stable over a fairly large parameter region with
E

b

2 [0.66, 3.43]E0, which is considerably broadened as
compared to the few-body case (Fig. 1(a)).
Phase diagrams and e↵ects of Fermi sea.– In Fig. 3(a),

we map out the phase diagram involving all di↵erent
states on the E

F

–E
b

plane. Remarkably, we find that,
as E

F

increases from E
th

in the low-density limit, the
dressed trimer (T0) becomes more stable against the
drssed molecule (M0). As E

F

further increases, T0 gives
way to the polaron (P0). Furthermore, a molecular state
with a finite CoM momentum (M

Q

) emerges in a narrow
region surrounded by P0, M0 and T0.
The enhanced stability of trimer against molecule as

shown in Fig. 3(a) can be understood by examining two
key e↵ects caused by the presence of Fermi-sea atoms:
(i) the Pauli-blocking, which prohibits scatterings within
the Fermi sea; and (ii) particle-hole fluctuations, which
lead to excitations out of the Fermi sea. The impact
of (i) can be analyzed by keeping only the first terms
in Eqs. (4,5,6) and studying the phase diagram of the
resulting bare states. In Fig. 3(b), we see that an in-
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FIG. 2: (Color online) Energies of dressed molecule (blue
solid) and polaron (black dashed) relative to the energy of
dressed trimer as functions of Eb. For all three states, the
energy reference is the total energy of a spin-orbit coupled
Fermi sea of N atoms. Inset: Energy of the dressed trimer.
Here, the Fermi energy is EF = Eth + 0.05E0, and the mass
ratio ⌘ = 1. The red circle marker at Eb ⇡ 1.54E0 indi-
cates a first-order transition between molecular states with
di↵erent CoM momentum, and the black square marker at
Eb ⇡ 3.03E0 indicates a second-order transition between MQ

and M0. The CoM momentum of the polaron is always zero
for the parameters that we consider.

ergy of a spin-orbit coupled Fermi sea of N atoms. To
further simplify the numerics, we make the approxima-
tion |q| = k0, i.e. the hole excitation occurs only on the
degenerate ring of the single-particle ground state. This
approximation should be particularly good for a dilute
gas with a small Fermi energy.

Similar to the few-body case, as E
b

increases the e↵ect
of SOC becomes less important. The ground state of the
system in the strong-coupling limit should be a molecular
state dressed by particle-hole excitations. We consider a
dressed-molecular ansatz up to a single pair of particle-
hole excitations [7, 10]

|MQi =
X
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0
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†
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+
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k�k0
�q⌫

���⌫

kk0q(Q)b†Q�k�k0+qa
†
k�a

†
k0

�

aq⌫ |FSiN�1.

(5)

In the thermodynamic limit, |MQi corresponds to
a particle-hole-dressed Bardeen-Cooper-Schie↵er pairing
state in the large polarization limit for Q = 0, and a
Fulde-Ferrell-Larkin-Ovchinnikov state if Q is finite.

When the interaction is weak, one should also consider
the possibility of a polaron [7, 10]

|PQi =
⇣
�Qb†Q +

X

k�q⌫

0
��⌫

kq(Q)b†Q+q�ka
†
k�aq⌫

⌘
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.

(6)

In the thermodynamic limit, the polaron corresponds to
a particle-hole-dressed normal state.
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FIG. 3: (Color online) (a) Phase boundaries between the
dressed trimer state (T0), the dressed molecular state with
zero (M0) and finite (MQ) total momentum, and the polaron
with zero total momentum (P0). The red diamond indicates

the few-body transition point between | (3)
0 i and | (2)

0 i at
Eb ⇡ 1.65E0. (b) Phase boundaries between the bare trimer
(T (b)), the bare molecule (M (b)), and the normal state (N).
(c) Energies of trimer (red) and molecule (blue) as functions
of EF at Eb = 1.65E0. The solid (dashed) lines are energies
of dressed (bare) states. Here the mass ratio ⌘ = 1.

In Fig. 2, we show energies of the dressed trimer, the
dressed molecule, and the polaron as functions of E

b

at
a typical Fermi energy E

F

= E
th

+ 0.05E0. Consistent
with our expectation, the ground state is the polaron and
the dressed molecular state, respectively, in the weak-
and the strong-coupling limit. Importantly, the dressed
trimer is stable over a fairly large parameter region with
E

b

2 [0.66, 3.43]E0, which is considerably broadened as
compared to the few-body case (Fig. 1(a)).
Phase diagrams and e↵ects of Fermi sea.– In Fig. 3(a),

we map out the phase diagram involving all di↵erent
states on the E

F

–E
b

plane. Remarkably, we find that,
as E

F

increases from E
th

in the low-density limit, the
dressed trimer (T0) becomes more stable against the
drssed molecule (M0). As E

F

further increases, T0 gives
way to the polaron (P0). Furthermore, a molecular state
with a finite CoM momentum (M

Q

) emerges in a narrow
region surrounded by P0, M0 and T0.
The enhanced stability of trimer against molecule as

shown in Fig. 3(a) can be understood by examining two
key e↵ects caused by the presence of Fermi-sea atoms:
(i) the Pauli-blocking, which prohibits scatterings within
the Fermi sea; and (ii) particle-hole fluctuations, which
lead to excitations out of the Fermi sea. The impact
of (i) can be analyzed by keeping only the first terms
in Eqs. (4,5,6) and studying the phase diagram of the
resulting bare states. In Fig. 3(b), we see that an in-
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FIG. 1: (Color online) (a) Trimer (red solid) and dimer (blue
dashed) energies in a three-body system as functions of Eb.
(b) Trimer and dimer energies near the transition point. The
black-dotted line shows the energy of the zero-momentum
trimer, which is very close to that of the ground-state trimer
with a finite momentum. (c) Total momenta of dimer (blue)
and trimer (red) as functions of Eb.

and ak� annihilates an atom in the Fermi sea with spin
� and massm

a

; ↵ is the strength of Rashba SOC; U is the
bare interaction between the impurity and spin-up atoms,
which can be renormalized as 1/U = �(1/V )

P
k 1/(Eb

+
(1 + ⌘)~2k2/m

a

); V and E
b

are respectively the quanti-
zation area and two-body binding energy in 2D. Finally
we denote the mass ratio as ⌘ = m

a

/m
b

.
Diagonalizing the single-particle Hamiltonian of a spin-

orbit coupled fermion, we have the creation operators of
the helicity states a†

k� =
P

�

��k�a
†
k�, with the eigen ener-

gies ⇠k± = ~2/2m
a

(|k|±k0)2+E
th

. Here, � = ±, �"k± =

e�i�k/2/
p
2, �#k± = ±ei�k/2/

p
2, �

k

= arg(k
x

, k
y

),
k0 = m

a

↵/~2, and the ground-state threshold energy
E

th

= �m
a

↵2/2~2. The single-particle ground state un-
der the Rashba SOC has a U(1) degeneracy along a circle
in momentum space with a radius k0. In the following,
we will use k0 and E0 = |E

th

| as the units of wave vector
and energy, respectively.

Trimer and dimer in the few-body sector.– We first ex-
amine a three-body system with an impurity and two
fermions in the helicity states. The wave function of a
trimer can be written as

| (3)
Q i =

X

k�k0
�

 ��

kk0(Q)b†Q�k�k0a
†
k�a

†
k0

�

|0i, (2)

where Q is the center-of-mass (CoM) momentum of the
trimer. The trimer energy E3, relative to the three-
body threshold 2E

th

, can be calculated by solving the

Schrödinger’s equationH| (3)
Q i = (E3+2E

th

)| (3)
Q i. Sim-

ilarly, we can evaluate the dimer energy, relative to the
two-body threshold E

th

, through its wave function

| (2)
Q i =

X

k�

 �

k(Q)b†Q�ka
†
k�|0i. (3)

We compare trimer and dimer energies for the equal
mass case ⌘ = 1 in Fig. 1. Apparently, the trimer
is stable over a considerable interaction range with

E
b

2 [0, 1.66]E0. Similar to the three-dimensional
case, the stabilization of the trimer here is directly re-
lated to the SOC-induced U(1) degeneracy of the single-
particle ground state, which particularly favors three-
body, rather than two-body, scatterings in the low-energy
subspace [30]. Remarkably, the trimer energy is univer-
sally determined by the physical parameters (E

b

, ↵ and
⌘), and is robust against short-range details of the inter-
action potential. For such a universal trimer, the mo-
mentum distribution of the spin-orbit coupled fermions
has the largest weight on the U(1)-degenerate ring with a
radius k = k0 [31]. With increasing E

b

, the SOC physics
becomes less dominant compared to interaction e↵ects,
and the dimer eventually takes over the trimer as the
ground state for E

b

� 1.66E0 (Fig. 1(a)).
In 2D, both the trimer and the dimer can acquire a

finite CoM momentum Q (Fig. 1(b)). However, as the

energy di↵erence between | (3)
Q=0i and the ground-state

| (3)
Q i is typically quite small up to the trimer-dimer tran-

sition (Fig. 1(c)), it is su�cient to estimate the trimer-
dimer transition using a zero-momentum trimer. Based
on this observation, for the following discussions in the
presence of spin-orbit coupled Fermi sea, we will only
consider the dressed trimer in the Q = 0 sector.

Trimer, molecule and polaron in the presence of a

Fermi sea.– When the impurity is immersed in a spin-
orbit coupled Fermi sea, we consider the following ansatz
for the trimer dressed by particle-hole excitations [11, 13]
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X
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(4)

where |FSi
N

represents a spin-orbit coupled Fermi sea
with N atoms. For the summations above, we have
⇠k�, ⇠k0

�

, ⇠k00
�

> E
F

, and ⇠q⌫ < E
F

, where E
F

is the
Fermi energy of the spin-orbit coupled fermions. The first
term on the right-hand side of Eq. (4) represents a bare
trimer on top of the Fermi sea, and the second term ac-
counts for contributions from a single pair of particle-hole
fluctuations. We expect the energy of the dressed trimer
could be estimated fairly accurately at this level [31].
Moreover, our ansatz recovers the exact few-body wave
function when the fermion density is sent to zero.

Minimizing the energy functional hT0|H � E
T

�
2E

F

|T0i, we get a set of coupled equations for F�

k and

G��⌫

kk0q, where F�

k =
P

k0
�

 ��

kk0 , and G��⌫

kk0q =  ��

kk0 +

3
P

k00
�

 ���⌫

kk0k00q. We then make the decomposition F�

k =
P

m

F�

m

(k) cos(m�
k

), G��⌫

kk0q =
P

m

G��⌫

m

(k, k0, q, k̂ · k̂0, k̂ ·
q̂) cos(m�

k

). Due to the conservation of quantum num-
ber m, one can solve E

T

in any given m-sector. Note
that the trimer energy E

T

is relative to the Fermi en-

We consider 2D case for simplicity. 
In few-body sector:

trimer 

dimer 

Trimer	  stabliza6on 

Eb:	  2-‐body	  binding	  energy	  in	  2D	  
E0:	  SOC	  energy 

Eb ∈ [0,1.65]E0



In the presence of SOC Fermi sea, 
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FIG. 2: (Color online) Energies of dressed molecule (blue
solid) and polaron (black dashed) relative to the energy of
dressed trimer as functions of Eb. For all three states, the
energy reference is the total energy of a spin-orbit coupled
Fermi sea of N atoms. Inset: Energy of the dressed trimer.
Here, the Fermi energy is EF = Eth + 0.05E0, and the mass
ratio ⌘ = 1. The red circle marker at Eb ⇡ 1.54E0 indi-
cates a first-order transition between molecular states with
di↵erent CoM momentum, and the black square marker at
Eb ⇡ 3.03E0 indicates a second-order transition between MQ

and M0. The CoM momentum of the polaron is always zero
for the parameters that we consider.

ergy of a spin-orbit coupled Fermi sea of N atoms. To
further simplify the numerics, we make the approxima-
tion |q| = k0, i.e. the hole excitation occurs only on the
degenerate ring of the single-particle ground state. This
approximation should be particularly good for a dilute
gas with a small Fermi energy.

Similar to the few-body case, as E
b

increases the e↵ect
of SOC becomes less important. The ground state of the
system in the strong-coupling limit should be a molecular
state dressed by particle-hole excitations. We consider a
dressed-molecular ansatz up to a single pair of particle-
hole excitations [7, 10]

|MQi =
X

k�

0
��

k(Q)b†Q�ka
†
k�|FSiN�1

+
X0

k�k0
�q⌫

���⌫

kk0q(Q)b†Q�k�k0+qa
†
k�a

†
k0

�

aq⌫ |FSiN�1.

(5)

In the thermodynamic limit, |MQi corresponds to
a particle-hole-dressed Bardeen-Cooper-Schie↵er pairing
state in the large polarization limit for Q = 0, and a
Fulde-Ferrell-Larkin-Ovchinnikov state if Q is finite.

When the interaction is weak, one should also consider
the possibility of a polaron [7, 10]

|PQi =
⇣
�Qb†Q +

X

k�q⌫

0
��⌫

kq(Q)b†Q+q�ka
†
k�aq⌫

⌘
|FSi

N

.

(6)

In the thermodynamic limit, the polaron corresponds to
a particle-hole-dressed normal state.
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FIG. 3: (Color online) (a) Phase boundaries between the
dressed trimer state (T0), the dressed molecular state with
zero (M0) and finite (MQ) total momentum, and the polaron
with zero total momentum (P0). The red diamond indicates

the few-body transition point between | (3)
0 i and | (2)

0 i at
Eb ⇡ 1.65E0. (b) Phase boundaries between the bare trimer
(T (b)), the bare molecule (M (b)), and the normal state (N).
(c) Energies of trimer (red) and molecule (blue) as functions
of EF at Eb = 1.65E0. The solid (dashed) lines are energies
of dressed (bare) states. Here the mass ratio ⌘ = 1.

In Fig. 2, we show energies of the dressed trimer, the
dressed molecule, and the polaron as functions of E

b

at
a typical Fermi energy E

F

= E
th

+ 0.05E0. Consistent
with our expectation, the ground state is the polaron and
the dressed molecular state, respectively, in the weak-
and the strong-coupling limit. Importantly, the dressed
trimer is stable over a fairly large parameter region with
E

b

2 [0.66, 3.43]E0, which is considerably broadened as
compared to the few-body case (Fig. 1(a)).
Phase diagrams and e↵ects of Fermi sea.– In Fig. 3(a),

we map out the phase diagram involving all di↵erent
states on the E

F

–E
b

plane. Remarkably, we find that,
as E

F

increases from E
th

in the low-density limit, the
dressed trimer (T0) becomes more stable against the
drssed molecule (M0). As EF

further increases, T0 gives
way to the polaron (P0). Furthermore, a molecular state
with a finite CoM momentum (M

Q

) emerges in a narrow
region surrounded by P0, M0 and T0.
The enhanced stability of trimer against molecule as

shown in Fig. 3(a) can be understood by examining two
key e↵ects caused by the presence of Fermi-sea atoms:
(i) the Pauli-blocking, which prohibits scatterings within
the Fermi sea; and (ii) particle-hole fluctuations, which
lead to excitations out of the Fermi sea. The impact
of (i) can be analyzed by keeping only the first terms
in Eqs. (4,5,6) and studying the phase diagram of the
resulting bare states. In Fig. 3(b), we see that an in-

Fermi-‐sea	  favors	  trimer	  stabliza6on!	   
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FIG. 2: (Color online) Energies of dressed molecule (blue
solid) and polaron (black dashed) relative to the energy of
dressed trimer as functions of Eb. For all three states, the
energy reference is the total energy of a spin-orbit coupled
Fermi sea of N atoms. Inset: Energy of the dressed trimer.
Here, the Fermi energy is EF = Eth + 0.05E0, and the mass
ratio ⌘ = 1. The red circle marker at Eb ⇡ 1.54E0 indi-
cates a first-order transition between molecular states with
di↵erent CoM momentum, and the black square marker at
Eb ⇡ 3.03E0 indicates a second-order transition between MQ

and M0. The CoM momentum of the polaron is always zero
for the parameters that we consider.

ergy of a spin-orbit coupled Fermi sea of N atoms. To
further simplify the numerics, we make the approxima-
tion |q| = k0, i.e. the hole excitation occurs only on the
degenerate ring of the single-particle ground state. This
approximation should be particularly good for a dilute
gas with a small Fermi energy.

Similar to the few-body case, as E
b

increases the e↵ect
of SOC becomes less important. The ground state of the
system in the strong-coupling limit should be a molecular
state dressed by particle-hole excitations. We consider a
dressed-molecular ansatz up to a single pair of particle-
hole excitations [7, 10]

|MQi =
X
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†
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+
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†
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†
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�

aq⌫ |FSiN�1.

(5)

In the thermodynamic limit, |MQi corresponds to
a particle-hole-dressed Bardeen-Cooper-Schie↵er pairing
state in the large polarization limit for Q = 0, and a
Fulde-Ferrell-Larkin-Ovchinnikov state if Q is finite.

When the interaction is weak, one should also consider
the possibility of a polaron [7, 10]

|PQi =
⇣
�Qb†Q +

X

k�q⌫

0
��⌫

kq(Q)b†Q+q�ka
†
k�aq⌫

⌘
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N
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(6)

In the thermodynamic limit, the polaron corresponds to
a particle-hole-dressed normal state.
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FIG. 3: (Color online) (a) Phase boundaries between the
dressed trimer state (T0), the dressed molecular state with
zero (M0) and finite (MQ) total momentum, and the polaron
with zero total momentum (P0). The red diamond indicates

the few-body transition point between | (3)
0 i and | (2)

0 i at
Eb ⇡ 1.65E0. (b) Phase boundaries between the bare trimer
(T (b)), the bare molecule (M (b)), and the normal state (N).
(c) Energies of trimer (red) and molecule (blue) as functions
of EF at Eb = 1.65E0. The solid (dashed) lines are energies
of dressed (bare) states. Here the mass ratio ⌘ = 1.

In Fig. 2, we show energies of the dressed trimer, the
dressed molecule, and the polaron as functions of E

b

at
a typical Fermi energy E

F

= E
th

+ 0.05E0. Consistent
with our expectation, the ground state is the polaron and
the dressed molecular state, respectively, in the weak-
and the strong-coupling limit. Importantly, the dressed
trimer is stable over a fairly large parameter region with
E

b

2 [0.66, 3.43]E0, which is considerably broadened as
compared to the few-body case (Fig. 1(a)).
Phase diagrams and e↵ects of Fermi sea.– In Fig. 3(a),

we map out the phase diagram involving all di↵erent
states on the E

F

–E
b

plane. Remarkably, we find that,
as E

F

increases from E
th

in the low-density limit, the
dressed trimer (T0) becomes more stable against the
drssed molecule (M0). As E

F

further increases, T0 gives
way to the polaron (P0). Furthermore, a molecular state
with a finite CoM momentum (M

Q

) emerges in a narrow
region surrounded by P0, M0 and T0.
The enhanced stability of trimer against molecule as

shown in Fig. 3(a) can be understood by examining two
key e↵ects caused by the presence of Fermi-sea atoms:
(i) the Pauli-blocking, which prohibits scatterings within
the Fermi sea; and (ii) particle-hole fluctuations, which
lead to excitations out of the Fermi sea. The impact
of (i) can be analyzed by keeping only the first terms
in Eqs. (4,5,6) and studying the phase diagram of the
resulting bare states. In Fig. 3(b), we see that an in-
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FIG. 2: (Color online) Energies of dressed molecule (blue
solid) and polaron (black dashed) relative to the energy of
dressed trimer as functions of Eb. For all three states, the
energy reference is the total energy of a spin-orbit coupled
Fermi sea of N atoms. Inset: Energy of the dressed trimer.
Here, the Fermi energy is EF = Eth + 0.05E0, and the mass
ratio ⌘ = 1. The red circle marker at Eb ⇡ 1.54E0 indi-
cates a first-order transition between molecular states with
di↵erent CoM momentum, and the black square marker at
Eb ⇡ 3.03E0 indicates a second-order transition between MQ

and M0. The CoM momentum of the polaron is always zero
for the parameters that we consider.

ergy of a spin-orbit coupled Fermi sea of N atoms. To
further simplify the numerics, we make the approxima-
tion |q| = k0, i.e. the hole excitation occurs only on the
degenerate ring of the single-particle ground state. This
approximation should be particularly good for a dilute
gas with a small Fermi energy.

Similar to the few-body case, as E
b

increases the e↵ect
of SOC becomes less important. The ground state of the
system in the strong-coupling limit should be a molecular
state dressed by particle-hole excitations. We consider a
dressed-molecular ansatz up to a single pair of particle-
hole excitations [7, 10]

|MQi =
X
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0
��
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+
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aq⌫ |FSiN�1.

(5)

In the thermodynamic limit, |MQi corresponds to
a particle-hole-dressed Bardeen-Cooper-Schie↵er pairing
state in the large polarization limit for Q = 0, and a
Fulde-Ferrell-Larkin-Ovchinnikov state if Q is finite.

When the interaction is weak, one should also consider
the possibility of a polaron [7, 10]

|PQi =
⇣
�Qb†Q +

X

k�q⌫

0
��⌫

kq(Q)b†Q+q�ka
†
k�aq⌫

⌘
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(6)

In the thermodynamic limit, the polaron corresponds to
a particle-hole-dressed normal state.
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FIG. 3: (Color online) (a) Phase boundaries between the
dressed trimer state (T0), the dressed molecular state with
zero (M0) and finite (MQ) total momentum, and the polaron
with zero total momentum (P0). The red diamond indicates

the few-body transition point between | (3)
0 i and | (2)

0 i at
Eb ⇡ 1.65E0. (b) Phase boundaries between the bare trimer
(T (b)), the bare molecule (M (b)), and the normal state (N).
(c) Energies of trimer (red) and molecule (blue) as functions
of EF at Eb = 1.65E0. The solid (dashed) lines are energies
of dressed (bare) states. Here the mass ratio ⌘ = 1.

In Fig. 2, we show energies of the dressed trimer, the
dressed molecule, and the polaron as functions of E

b

at
a typical Fermi energy E

F

= E
th

+ 0.05E0. Consistent
with our expectation, the ground state is the polaron and
the dressed molecular state, respectively, in the weak-
and the strong-coupling limit. Importantly, the dressed
trimer is stable over a fairly large parameter region with
E

b

2 [0.66, 3.43]E0, which is considerably broadened as
compared to the few-body case (Fig. 1(a)).
Phase diagrams and e↵ects of Fermi sea.– In Fig. 3(a),

we map out the phase diagram involving all di↵erent
states on the E

F

–E
b

plane. Remarkably, we find that,
as E

F

increases from E
th

in the low-density limit, the
dressed trimer (T0) becomes more stable against the
drssed molecule (M0). As EF

further increases, T0 gives
way to the polaron (P0). Furthermore, a molecular state
with a finite CoM momentum (M

Q

) emerges in a narrow
region surrounded by P0, M0 and T0.
The enhanced stability of trimer against molecule as

shown in Fig. 3(a) can be understood by examining two
key e↵ects caused by the presence of Fermi-sea atoms:
(i) the Pauli-blocking, which prohibits scatterings within
the Fermi sea; and (ii) particle-hole fluctuations, which
lead to excitations out of the Fermi sea. The impact
of (i) can be analyzed by keeping only the first terms
in Eqs. (4,5,6) and studying the phase diagram of the
resulting bare states. In Fig. 3(b), we see that an in-

(dressed)	  trimer	  stabliza6on 



Fermi sea favors trimer against dimer:
Ø  Pauli-blocking effect (?)

Ø  Particle-hole fluctuation (?)
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solid) and polaron (black dashed) relative to the energy of
dressed trimer as functions of Eb. For all three states, the
energy reference is the total energy of a spin-orbit coupled
Fermi sea of N atoms. Inset: Energy of the dressed trimer.
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cates a first-order transition between molecular states with
di↵erent CoM momentum, and the black square marker at
Eb ⇡ 3.03E0 indicates a second-order transition between MQ

and M0. The CoM momentum of the polaron is always zero
for the parameters that we consider.

ergy of a spin-orbit coupled Fermi sea of N atoms. To
further simplify the numerics, we make the approxima-
tion |q| = k0, i.e. the hole excitation occurs only on the
degenerate ring of the single-particle ground state. This
approximation should be particularly good for a dilute
gas with a small Fermi energy.

Similar to the few-body case, as E
b

increases the e↵ect
of SOC becomes less important. The ground state of the
system in the strong-coupling limit should be a molecular
state dressed by particle-hole excitations. We consider a
dressed-molecular ansatz up to a single pair of particle-
hole excitations [7, 10]
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(5)

In the thermodynamic limit, |MQi corresponds to
a particle-hole-dressed Bardeen-Cooper-Schie↵er pairing
state in the large polarization limit for Q = 0, and a
Fulde-Ferrell-Larkin-Ovchinnikov state if Q is finite.

When the interaction is weak, one should also consider
the possibility of a polaron [7, 10]
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In the thermodynamic limit, the polaron corresponds to
a particle-hole-dressed normal state.
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FIG. 3: (Color online) (a) Phase boundaries between the
dressed trimer state (T0), the dressed molecular state with
zero (M0) and finite (MQ) total momentum, and the polaron
with zero total momentum (P0). The red diamond indicates

the few-body transition point between | (3)
0 i and | (2)

0 i at
Eb ⇡ 1.65E0. (b) Phase boundaries between the bare trimer
(T (b)), the bare molecule (M (b)), and the normal state (N).
(c) Energies of trimer (red) and molecule (blue) as functions
of EF at Eb = 1.65E0. The solid (dashed) lines are energies
of dressed (bare) states. Here the mass ratio ⌘ = 1.

In Fig. 2, we show energies of the dressed trimer, the
dressed molecule, and the polaron as functions of E

b

at
a typical Fermi energy E

F

= E
th

+ 0.05E0. Consistent
with our expectation, the ground state is the polaron and
the dressed molecular state, respectively, in the weak-
and the strong-coupling limit. Importantly, the dressed
trimer is stable over a fairly large parameter region with
E

b

2 [0.66, 3.43]E0, which is considerably broadened as
compared to the few-body case (Fig. 1(a)).
Phase diagrams and e↵ects of Fermi sea.– In Fig. 3(a),

we map out the phase diagram involving all di↵erent
states on the E

F

–E
b

plane. Remarkably, we find that,
as E

F

increases from E
th

in the low-density limit, the
dressed trimer (T0) becomes more stable against the
drssed molecule (M0). As EF

further increases, T0 gives
way to the polaron (P0). Furthermore, a molecular state
with a finite CoM momentum (M

Q

) emerges in a narrow
region surrounded by P0, M0 and T0.
The enhanced stability of trimer against molecule as

shown in Fig. 3(a) can be understood by examining two
key e↵ects caused by the presence of Fermi-sea atoms:
(i) the Pauli-blocking, which prohibits scatterings within
the Fermi sea; and (ii) particle-hole fluctuations, which
lead to excitations out of the Fermi sea. The impact
of (i) can be analyzed by keeping only the first terms
in Eqs. (4,5,6) and studying the phase diagram of the
resulting bare states. In Fig. 3(b), we see that an in-
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FIG. 2: (Color online) Energies of dressed molecule (blue
solid) and polaron (black dashed) relative to the energy of
dressed trimer as functions of Eb. For all three states, the
energy reference is the total energy of a spin-orbit coupled
Fermi sea of N atoms. Inset: Energy of the dressed trimer.
Here, the Fermi energy is EF = Eth + 0.05E0, and the mass
ratio ⌘ = 1. The red circle marker at Eb ⇡ 1.54E0 indi-
cates a first-order transition between molecular states with
di↵erent CoM momentum, and the black square marker at
Eb ⇡ 3.03E0 indicates a second-order transition between MQ

and M0. The CoM momentum of the polaron is always zero
for the parameters that we consider.

ergy of a spin-orbit coupled Fermi sea of N atoms. To
further simplify the numerics, we make the approxima-
tion |q| = k0, i.e. the hole excitation occurs only on the
degenerate ring of the single-particle ground state. This
approximation should be particularly good for a dilute
gas with a small Fermi energy.

Similar to the few-body case, as E
b

increases the e↵ect
of SOC becomes less important. The ground state of the
system in the strong-coupling limit should be a molecular
state dressed by particle-hole excitations. We consider a
dressed-molecular ansatz up to a single pair of particle-
hole excitations [7, 10]
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(5)

In the thermodynamic limit, |MQi corresponds to
a particle-hole-dressed Bardeen-Cooper-Schie↵er pairing
state in the large polarization limit for Q = 0, and a
Fulde-Ferrell-Larkin-Ovchinnikov state if Q is finite.

When the interaction is weak, one should also consider
the possibility of a polaron [7, 10]

|PQi =
⇣
�Qb†Q +
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In the thermodynamic limit, the polaron corresponds to
a particle-hole-dressed normal state.
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FIG. 3: (Color online) (a) Phase boundaries between the
dressed trimer state (T0), the dressed molecular state with
zero (M0) and finite (MQ) total momentum, and the polaron
with zero total momentum (P0). The red diamond indicates

the few-body transition point between | (3)
0 i and | (2)

0 i at
Eb ⇡ 1.65E0. (b) Phase boundaries between the bare trimer
(T (b)), the bare molecule (M (b)), and the normal state (N).
(c) Energies of trimer (red) and molecule (blue) as functions
of EF at Eb = 1.65E0. The solid (dashed) lines are energies
of dressed (bare) states. Here the mass ratio ⌘ = 1.

In Fig. 2, we show energies of the dressed trimer, the
dressed molecule, and the polaron as functions of E

b

at
a typical Fermi energy E

F

= E
th

+ 0.05E0. Consistent
with our expectation, the ground state is the polaron and
the dressed molecular state, respectively, in the weak-
and the strong-coupling limit. Importantly, the dressed
trimer is stable over a fairly large parameter region with
E

b

2 [0.66, 3.43]E0, which is considerably broadened as
compared to the few-body case (Fig. 1(a)).
Phase diagrams and e↵ects of Fermi sea.– In Fig. 3(a),

we map out the phase diagram involving all di↵erent
states on the E

F

–E
b

plane. Remarkably, we find that,
as E

F

increases from E
th

in the low-density limit, the
dressed trimer (T0) becomes more stable against the
drssed molecule (M0). As EF

further increases, T0 gives
way to the polaron (P0). Furthermore, a molecular state
with a finite CoM momentum (M

Q

) emerges in a narrow
region surrounded by P0, M0 and T0.
The enhanced stability of trimer against molecule as

shown in Fig. 3(a) can be understood by examining two
key e↵ects caused by the presence of Fermi-sea atoms:
(i) the Pauli-blocking, which prohibits scatterings within
the Fermi sea; and (ii) particle-hole fluctuations, which
lead to excitations out of the Fermi sea. The impact
of (i) can be analyzed by keeping only the first terms
in Eqs. (4,5,6) and studying the phase diagram of the
resulting bare states. In Fig. 3(b), we see that an in-
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solid) and polaron (black dashed) relative to the energy of
dressed trimer as functions of Eb. For all three states, the
energy reference is the total energy of a spin-orbit coupled
Fermi sea of N atoms. Inset: Energy of the dressed trimer.
Here, the Fermi energy is EF = Eth + 0.05E0, and the mass
ratio ⌘ = 1. The red circle marker at Eb ⇡ 1.54E0 indi-
cates a first-order transition between molecular states with
di↵erent CoM momentum, and the black square marker at
Eb ⇡ 3.03E0 indicates a second-order transition between MQ

and M0. The CoM momentum of the polaron is always zero
for the parameters that we consider.

ergy of a spin-orbit coupled Fermi sea of N atoms. To
further simplify the numerics, we make the approxima-
tion |q| = k0, i.e. the hole excitation occurs only on the
degenerate ring of the single-particle ground state. This
approximation should be particularly good for a dilute
gas with a small Fermi energy.

Similar to the few-body case, as E
b

increases the e↵ect
of SOC becomes less important. The ground state of the
system in the strong-coupling limit should be a molecular
state dressed by particle-hole excitations. We consider a
dressed-molecular ansatz up to a single pair of particle-
hole excitations [7, 10]
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(5)

In the thermodynamic limit, |MQi corresponds to
a particle-hole-dressed Bardeen-Cooper-Schie↵er pairing
state in the large polarization limit for Q = 0, and a
Fulde-Ferrell-Larkin-Ovchinnikov state if Q is finite.

When the interaction is weak, one should also consider
the possibility of a polaron [7, 10]

|PQi =
⇣
�Qb†Q +
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In the thermodynamic limit, the polaron corresponds to
a particle-hole-dressed normal state.
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FIG. 3: (Color online) (a) Phase boundaries between the
dressed trimer state (T0), the dressed molecular state with
zero (M0) and finite (MQ) total momentum, and the polaron
with zero total momentum (P0). The red diamond indicates

the few-body transition point between | (3)
0 i and | (2)

0 i at
Eb ⇡ 1.65E0. (b) Phase boundaries between the bare trimer
(T (b)), the bare molecule (M (b)), and the normal state (N).
(c) Energies of trimer (red) and molecule (blue) as functions
of EF at Eb = 1.65E0. The solid (dashed) lines are energies
of dressed (bare) states. Here the mass ratio ⌘ = 1.

In Fig. 2, we show energies of the dressed trimer, the
dressed molecule, and the polaron as functions of E

b

at
a typical Fermi energy E

F

= E
th

+ 0.05E0. Consistent
with our expectation, the ground state is the polaron and
the dressed molecular state, respectively, in the weak-
and the strong-coupling limit. Importantly, the dressed
trimer is stable over a fairly large parameter region with
E

b

2 [0.66, 3.43]E0, which is considerably broadened as
compared to the few-body case (Fig. 1(a)).
Phase diagrams and e↵ects of Fermi sea.– In Fig. 3(a),

we map out the phase diagram involving all di↵erent
states on the E

F

–E
b

plane. Remarkably, we find that,
as E

F

increases from E
th

in the low-density limit, the
dressed trimer (T0) becomes more stable against the
drssed molecule (M0). As EF

further increases, T0 gives
way to the polaron (P0). Furthermore, a molecular state
with a finite CoM momentum (M

Q

) emerges in a narrow
region surrounded by P0, M0 and T0.
The enhanced stability of trimer against molecule as

shown in Fig. 3(a) can be understood by examining two
key e↵ects caused by the presence of Fermi-sea atoms:
(i) the Pauli-blocking, which prohibits scatterings within
the Fermi sea; and (ii) particle-hole fluctuations, which
lead to excitations out of the Fermi sea. The impact
of (i) can be analyzed by keeping only the first terms
in Eqs. (4,5,6) and studying the phase diagram of the
resulting bare states. In Fig. 3(b), we see that an in-
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FIG. 2: (Color online) Energies of dressed molecule (blue
solid) and polaron (black dashed) relative to the energy of
dressed trimer as functions of Eb. For all three states, the
energy reference is the total energy of a spin-orbit coupled
Fermi sea of N atoms. Inset: Energy of the dressed trimer.
Here, the Fermi energy is EF = Eth + 0.05E0, and the mass
ratio ⌘ = 1. The red circle marker at Eb ⇡ 1.54E0 indi-
cates a first-order transition between molecular states with
di↵erent CoM momentum, and the black square marker at
Eb ⇡ 3.03E0 indicates a second-order transition between MQ

and M0. The CoM momentum of the polaron is always zero
for the parameters that we consider.

ergy of a spin-orbit coupled Fermi sea of N atoms. To
further simplify the numerics, we make the approxima-
tion |q| = k0, i.e. the hole excitation occurs only on the
degenerate ring of the single-particle ground state. This
approximation should be particularly good for a dilute
gas with a small Fermi energy.

Similar to the few-body case, as E
b

increases the e↵ect
of SOC becomes less important. The ground state of the
system in the strong-coupling limit should be a molecular
state dressed by particle-hole excitations. We consider a
dressed-molecular ansatz up to a single pair of particle-
hole excitations [7, 10]
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(5)

In the thermodynamic limit, |MQi corresponds to
a particle-hole-dressed Bardeen-Cooper-Schie↵er pairing
state in the large polarization limit for Q = 0, and a
Fulde-Ferrell-Larkin-Ovchinnikov state if Q is finite.

When the interaction is weak, one should also consider
the possibility of a polaron [7, 10]

|PQi =
⇣
�Qb†Q +
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In the thermodynamic limit, the polaron corresponds to
a particle-hole-dressed normal state.
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FIG. 3: (Color online) (a) Phase boundaries between the
dressed trimer state (T0), the dressed molecular state with
zero (M0) and finite (MQ) total momentum, and the polaron
with zero total momentum (P0). The red diamond indicates

the few-body transition point between | (3)
0 i and | (2)

0 i at
Eb ⇡ 1.65E0. (b) Phase boundaries between the bare trimer
(T (b)), the bare molecule (M (b)), and the normal state (N).
(c) Energies of trimer (red) and molecule (blue) as functions
of EF at Eb = 1.65E0. The solid (dashed) lines are energies
of dressed (bare) states. Here the mass ratio ⌘ = 1.

In Fig. 2, we show energies of the dressed trimer, the
dressed molecule, and the polaron as functions of E

b

at
a typical Fermi energy E

F

= E
th

+ 0.05E0. Consistent
with our expectation, the ground state is the polaron and
the dressed molecular state, respectively, in the weak-
and the strong-coupling limit. Importantly, the dressed
trimer is stable over a fairly large parameter region with
E

b

2 [0.66, 3.43]E0, which is considerably broadened as
compared to the few-body case (Fig. 1(a)).
Phase diagrams and e↵ects of Fermi sea.– In Fig. 3(a),

we map out the phase diagram involving all di↵erent
states on the E

F

–E
b

plane. Remarkably, we find that,
as E

F

increases from E
th

in the low-density limit, the
dressed trimer (T0) becomes more stable against the
drssed molecule (M0). As E

F

further increases, T0 gives
way to the polaron (P0). Furthermore, a molecular state
with a finite CoM momentum (M

Q

) emerges in a narrow
region surrounded by P0, M0 and T0.
The enhanced stability of trimer against molecule as

shown in Fig. 3(a) can be understood by examining two
key e↵ects caused by the presence of Fermi-sea atoms:
(i) the Pauli-blocking, which prohibits scatterings within
the Fermi sea; and (ii) particle-hole fluctuations, which
lead to excitations out of the Fermi sea. The impact
of (i) can be analyzed by keeping only the first terms
in Eqs. (4,5,6) and studying the phase diagram of the
resulting bare states. In Fig. 3(b), we see that an in-

It is the p-h fluctuation that favors trimer!  
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FIG. 4: (Color online) Phase diagram on the ⌘–Eb plane with
a fixed EF = Eth + 0.05E0. The black dots indicates the
boundary between trimer (toward the upper left) and dimer
(toward the lower right) in the few-body sector.

creasing E
F

would favor bare molecules rather than bare
trimers in the low-density limit. This behavior can be
traced back to the SOC-induced trimer formation, where
trimers are facilitated by the U(1) spectral symmetry of
the single-particle ground states. When these states are
blocked by the Fermi sea, the trimer would become un-
stable. In contrast, when SOC is absent, Pauli blocking
would favor trimer over dimer [11, 13]. This is because
the three-body scattering, which has much larger phase
space than the two-body scattering, is a↵ected less by
the e↵ect of (i). The special role of Pauli blocking in our
system further underscores the uniqueness of the SOC-
induced trimer formation.

From the phase boundaries in Fig. 3(a) and (b), it is
apparent that e↵ect (ii) plays a decisive role in stabiliz-
ing the dressed trimer. To see this explicitly, we plot
the energies of molecules and trimers with increasing E

F

at the trimer-dimer transition in the zero-density limit
(Fig. 3(c)). For the bare states with only e↵ect (i), both
the molecule and the trimer energies would increase with
E

F

, while the bare trimer is higher in energy. However,
when e↵ect (ii) is included, both energies would decrease
with increasing E

F

, while the dressed trimer is lower in
energy. An intuitive picture is that by involving states
below the Fermi sea into the scattering process, particle-
hole fluctuations partially recover the lost symmetries in
the low-energy subspace, which are crucially important
for the trimer formation.

So far, we have only considered the equal mass case
⌘ = 1. When ⌘ increases, i.e., when the impurity becomes
lighter, the trimer should become more stable. In Fig. 4,
we show the phase diagram on the ⌘–E

b

plane at a fixed
low Fermi energy E

F

= E
th

+ 0.05E0. In this case, the
trimer already emerges as the ground state of the system
when ⌘ is as small as 0.5. From the trimer-dimer phase
boundaries in the few-body sector and in the presence of
a Fermi sea (see Fig. 4), we see that the presence of a
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FIG. 5: (Color online) Contour plot of momentum-resolved
r.f. spectra for (a) the dressed trimer at Eb = 3.2E0, (b) the
dressed molecule at Eb = 3.6E0, and (c) the polaron states
at Eb = 0.5E0. The intensity is shown in the logarithmic
scale. (d) The total r.f. spectra for the dressed trimer (red
solid), the dressed molecule (blue dash-dotted), and the po-
laron (black dotted) states. We have taken EF = Eth+0.05E0

and ⌘ = 1. In the polaron spectra, we have assumed a
momentum-dependent Gaussian broadening [31], such that
the contribution from the impurity residue, which carries most
weight of the spectra, becomes visible.

Fermi sea further stabilizes the universal trimer.

Detection.– The various states discussed here can be
detected using the r.f. spectroscopy. By applying the
r.f. field Hrf = V0

P
k(c

†
kbk + H.c.) to excite the impu-

rity atom to a bystander state (with creation operator
c†k), one can obtain crucial information on the binding
energy, the momentum distribution and the low-energy
excitations of the impurity state. The total r.f. spectrum
can be evaluated as �(!) = 2⇡/~

P
f

|hf |Hrf |ii|2�(~! +
E

i

� E
f

), where i (f) labels the initial (final) state. In
the momentum-resolved r.f. spectroscopy, the population
transfer at a given momentum k

x

can be experimentally
probed, which can be calculated by leaving out the inte-
gration over k

x

in the summation of final states [31].

In Fig. 5, we show both the total and the momentum-
resolved r.f. spectra for di↵erent states. While the large
impurity residue in the polaron leads to a pronounced
peak at the threshold (Fig. 5(c)(d)), the molecular state
exhibits unique sharp edges in the momentum-resolved
spectra (Fig. 5(b)) and a double-peak structure in the
total spectra (Fig. 5(d)). These are due to the ring-
topology of the Fermi sea, and consequently, the exis-
tence of two Fermi momenta [31]. Finally, while similar
in the overall profile as the polaron spectra, the trimer
spectra have less pronounced peaks and richer fine struc-
tures. These distinctive signatures should allow us to dif-
ferentiate the impurity states in cold-atoms experiments.
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FIG. 4: (Color online) Phase diagram on the ⌘–Eb plane with
a fixed EF = Eth + 0.05E0. The black dots indicates the
boundary between trimer (toward the upper left) and dimer
(toward the lower right) in the few-body sector.

creasing E
F

would favor bare molecules rather than bare
trimers in the low-density limit. This behavior can be
traced back to the SOC-induced trimer formation, where
trimers are facilitated by the U(1) spectral symmetry of
the single-particle ground states. When these states are
blocked by the Fermi sea, the trimer would become un-
stable. In contrast, when SOC is absent, Pauli blocking
would favor trimer over dimer [11, 13]. This is because
the three-body scattering, which has much larger phase
space than the two-body scattering, is a↵ected less by
the e↵ect of (i). The special role of Pauli blocking in our
system further underscores the uniqueness of the SOC-
induced trimer formation.

From the phase boundaries in Fig. 3(a) and (b), it is
apparent that e↵ect (ii) plays a decisive role in stabiliz-
ing the dressed trimer. To see this explicitly, we plot
the energies of molecules and trimers with increasing E

F

at the trimer-dimer transition in the zero-density limit
(Fig. 3(c)). For the bare states with only e↵ect (i), both
the molecule and the trimer energies would increase with
E

F

, while the bare trimer is higher in energy. However,
when e↵ect (ii) is included, both energies would decrease
with increasing E

F

, while the dressed trimer is lower in
energy. An intuitive picture is that by involving states
below the Fermi sea into the scattering process, particle-
hole fluctuations partially recover the lost symmetries in
the low-energy subspace, which are crucially important
for the trimer formation.

So far, we have only considered the equal mass case
⌘ = 1. When ⌘ increases, i.e., when the impurity becomes
lighter, the trimer should become more stable. In Fig. 4,
we show the phase diagram on the ⌘–E

b

plane at a fixed
low Fermi energy E

F

= E
th

+ 0.05E0. In this case, the
trimer already emerges as the ground state of the system
when ⌘ is as small as 0.5. From the trimer-dimer phase
boundaries in the few-body sector and in the presence of
a Fermi sea (see Fig. 4), we see that the presence of a
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FIG. 5: (Color online) Contour plot of momentum-resolved
r.f. spectra for (a) the dressed trimer at Eb = 3.2E0, (b) the
dressed molecule at Eb = 3.6E0, and (c) the polaron states
at Eb = 0.5E0. The intensity is shown in the logarithmic
scale. (d) The total r.f. spectra for the dressed trimer (red
solid), the dressed molecule (blue dash-dotted), and the po-
laron (black dotted) states. We have taken EF = Eth+0.05E0

and ⌘ = 1. In the polaron spectra, we have assumed a
momentum-dependent Gaussian broadening [31], such that
the contribution from the impurity residue, which carries most
weight of the spectra, becomes visible.

Fermi sea further stabilizes the universal trimer.

Detection.– The various states discussed here can be
detected using the r.f. spectroscopy. By applying the
r.f. field Hrf = V0

P
k(c

†
kbk + H.c.) to excite the impu-

rity atom to a bystander state (with creation operator
c†k), one can obtain crucial information on the binding
energy, the momentum distribution and the low-energy
excitations of the impurity state. The total r.f. spectrum
can be evaluated as �(!) = 2⇡/~

P
f

|hf |Hrf |ii|2�(~! +
E

i

� E
f

), where i (f) labels the initial (final) state. In
the momentum-resolved r.f. spectroscopy, the population
transfer at a given momentum k

x

can be experimentally
probed, which can be calculated by leaving out the inte-
gration over k

x

in the summation of final states [31].

In Fig. 5, we show both the total and the momentum-
resolved r.f. spectra for di↵erent states. While the large
impurity residue in the polaron leads to a pronounced
peak at the threshold (Fig. 5(c)(d)), the molecular state
exhibits unique sharp edges in the momentum-resolved
spectra (Fig. 5(b)) and a double-peak structure in the
total spectra (Fig. 5(d)). These are due to the ring-
topology of the Fermi sea, and consequently, the exis-
tence of two Fermi momenta [31]. Finally, while similar
in the overall profile as the polaron spectra, the trimer
spectra have less pronounced peaks and richer fine struc-
tures. These distinctive signatures should allow us to dif-
ferentiate the impurity states in cold-atoms experiments.
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, while the dressed trimer is lower in
energy. An intuitive picture is that by involving states
below the Fermi sea into the scattering process, particle-
hole fluctuations partially recover the lost symmetries in
the low-energy subspace, which are crucially important
for the trimer formation.

So far, we have only considered the equal mass case
⌘ = 1. When ⌘ increases, i.e., when the impurity becomes
lighter, the trimer should become more stable. In Fig. 4,
we show the phase diagram on the ⌘–E
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when ⌘ is as small as 0.5. From the trimer-dimer phase
boundaries in the few-body sector and in the presence of
a Fermi sea (see Fig. 4), we see that the presence of a

1 2 3 4 5 6
h̄ω/E0

0

1

2

3

4

Γ
(ω

)

-2 -1 0 1 2
kx/k0

3

4

5

6
h̄
ω
/E

0

-6

0

6

-2 -1 0 1 2
kx/k0

4

5

6

h̄
ω
/E

0

-6

0

6

-2 -1 0 1 2
kx/k0

1

2

3

h̄
ω
/E

0

-6

0

6

(b)

(d)(c)

(a)

FIG. 5: (Color online) Contour plot of momentum-resolved
r.f. spectra for (a) the dressed trimer at Eb = 3.2E0, (b) the
dressed molecule at Eb = 3.6E0, and (c) the polaron states
at Eb = 0.5E0. The intensity is shown in the logarithmic
scale. (d) The total r.f. spectra for the dressed trimer (red
solid), the dressed molecule (blue dash-dotted), and the po-
laron (black dotted) states. We have taken EF = Eth+0.05E0

and ⌘ = 1. In the polaron spectra, we have assumed a
momentum-dependent Gaussian broadening [31], such that
the contribution from the impurity residue, which carries most
weight of the spectra, becomes visible.

Fermi sea further stabilizes the universal trimer.

Detection.– The various states discussed here can be
detected using the r.f. spectroscopy. By applying the
r.f. field Hrf = V0

P
k(c

†
kbk + H.c.) to excite the impu-

rity atom to a bystander state (with creation operator
c†k), one can obtain crucial information on the binding
energy, the momentum distribution and the low-energy
excitations of the impurity state. The total r.f. spectrum
can be evaluated as �(!) = 2⇡/~
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), where i (f) labels the initial (final) state. In
the momentum-resolved r.f. spectroscopy, the population
transfer at a given momentum k

x

can be experimentally
probed, which can be calculated by leaving out the inte-
gration over k

x

in the summation of final states [31].

In Fig. 5, we show both the total and the momentum-
resolved r.f. spectra for di↵erent states. While the large
impurity residue in the polaron leads to a pronounced
peak at the threshold (Fig. 5(c)(d)), the molecular state
exhibits unique sharp edges in the momentum-resolved
spectra (Fig. 5(b)) and a double-peak structure in the
total spectra (Fig. 5(d)). These are due to the ring-
topology of the Fermi sea, and consequently, the exis-
tence of two Fermi momenta [31]. Finally, while similar
in the overall profile as the polaron spectra, the trimer
spectra have less pronounced peaks and richer fine struc-
tures. These distinctive signatures should allow us to dif-
ferentiate the impurity states in cold-atoms experiments.
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would favor bare molecules rather than bare
trimers in the low-density limit. This behavior can be
traced back to the SOC-induced trimer formation, where
trimers are facilitated by the U(1) spectral symmetry of
the single-particle ground states. When these states are
blocked by the Fermi sea, the trimer would become un-
stable. In contrast, when SOC is absent, Pauli blocking
would favor trimer over dimer [11, 13]. This is because
the three-body scattering, which has much larger phase
space than the two-body scattering, is a↵ected less by
the e↵ect of (i). The special role of Pauli blocking in our
system further underscores the uniqueness of the SOC-
induced trimer formation.

From the phase boundaries in Fig. 3(a) and (b), it is
apparent that e↵ect (ii) plays a decisive role in stabiliz-
ing the dressed trimer. To see this explicitly, we plot
the energies of molecules and trimers with increasing E
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at the trimer-dimer transition in the zero-density limit
(Fig. 3(c)). For the bare states with only e↵ect (i), both
the molecule and the trimer energies would increase with
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, while the bare trimer is higher in energy. However,
when e↵ect (ii) is included, both energies would decrease
with increasing E

F

, while the dressed trimer is lower in
energy. An intuitive picture is that by involving states
below the Fermi sea into the scattering process, particle-
hole fluctuations partially recover the lost symmetries in
the low-energy subspace, which are crucially important
for the trimer formation.

So far, we have only considered the equal mass case
⌘ = 1. When ⌘ increases, i.e., when the impurity becomes
lighter, the trimer should become more stable. In Fig. 4,
we show the phase diagram on the ⌘–E
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plane at a fixed
low Fermi energy E
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+ 0.05E0. In this case, the
trimer already emerges as the ground state of the system
when ⌘ is as small as 0.5. From the trimer-dimer phase
boundaries in the few-body sector and in the presence of
a Fermi sea (see Fig. 4), we see that the presence of a
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r.f. spectra for (a) the dressed trimer at Eb = 3.2E0, (b) the
dressed molecule at Eb = 3.6E0, and (c) the polaron states
at Eb = 0.5E0. The intensity is shown in the logarithmic
scale. (d) The total r.f. spectra for the dressed trimer (red
solid), the dressed molecule (blue dash-dotted), and the po-
laron (black dotted) states. We have taken EF = Eth+0.05E0

and ⌘ = 1. In the polaron spectra, we have assumed a
momentum-dependent Gaussian broadening [31], such that
the contribution from the impurity residue, which carries most
weight of the spectra, becomes visible.

Fermi sea further stabilizes the universal trimer.

Detection.– The various states discussed here can be
detected using the r.f. spectroscopy. By applying the
r.f. field Hrf = V0

P
k(c

†
kbk + H.c.) to excite the impu-

rity atom to a bystander state (with creation operator
c†k), one can obtain crucial information on the binding
energy, the momentum distribution and the low-energy
excitations of the impurity state. The total r.f. spectrum
can be evaluated as �(!) = 2⇡/~
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), where i (f) labels the initial (final) state. In
the momentum-resolved r.f. spectroscopy, the population
transfer at a given momentum k

x

can be experimentally
probed, which can be calculated by leaving out the inte-
gration over k
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in the summation of final states [31].

In Fig. 5, we show both the total and the momentum-
resolved r.f. spectra for di↵erent states. While the large
impurity residue in the polaron leads to a pronounced
peak at the threshold (Fig. 5(c)(d)), the molecular state
exhibits unique sharp edges in the momentum-resolved
spectra (Fig. 5(b)) and a double-peak structure in the
total spectra (Fig. 5(d)). These are due to the ring-
topology of the Fermi sea, and consequently, the exis-
tence of two Fermi momenta [31]. Finally, while similar
in the overall profile as the polaron spectra, the trimer
spectra have less pronounced peaks and richer fine struc-
tures. These distinctive signatures should allow us to dif-
ferentiate the impurity states in cold-atoms experiments.



Summary 
--- Three-body physics with SOC

•  Universal trimers at smaller mass ratios and 
negative a_s

•  Universal Borromean binding induced by 
spectral symmetry 

•  Three-body correlation enhanced by many-body 
environment



Open questions 

Ø  Trimer formation from hyperspherical approach?

Ø  SOC with reduced symmetry? (realistic to expt)

Ø  SOC effect in low-D? (dimensional crossover)

Ø  SOC + high partial waves? (new effect)

Ø  More in “Few-to-Many”? (polaron, BEC…) 

SOC --- a new ingredient to few-body physics 
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