FBS16, KITP Santa Barbara

Three-body collisions at low energies

Shina Tan, Georgia Institute of Technology
funded by the NSF \& Sloan

Overview

- Lesson from two-body collisions
- Wave function of 3 particles colliding
- Applications of D
- Numerical results of D
- Extensions \& Open questions

Main References

- Braaten and Nieto, Eur. Phys. J. B 11, 143 (1999)
(Effective field theory for low-energy bosons)
- ST, Phys. Rev. A 78, 013636 (2008) (defined three-body scattering hypervolume D, related it to few-body and many-body physics, and calculated D for hard-sphere bosons, etc)
- Shangguo Zhu and ST (calculated D for soft-sphere bosons and for weak potentials)

Lesson from two-body collisions

Consider 2 particles colliding at low energy, $E \approx 0$
Strategy: study the collision at ZERO ENERGY first, (and then make small corrections if necessary)

2 particles colliding in s-wave:
Outside of the range of interaction we have

$$
\phi(s)=1-\frac{a}{s}
$$

a : two-body scattering length

3 particles colliding at $E \approx 0$

Consider 3 identical bosons with short-range interactions for simplicity.
At low energy, interaction usually dominated by
0 orbital angular momentum
To begin with, consider zero energy collision:
$\left[-\nabla_{1}^{2}-\nabla_{2}^{2}-\nabla_{3}^{2}+V\left(s_{1}\right)+V\left(s_{2}\right)+V\left(s_{3}\right)+V_{3}\left(s_{1}, s_{2}, s_{3}\right)\right] \phi=0$
can't solve it analytically so we'll do expansions

Asymptotic expansions of the three-body wave function ϕ

"111"-expansion:
when $\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3$ go to infinity simultaneously, expand ϕ in powers of $1 / \rho$, where

$$
\rho \equiv \sqrt{\frac{s_{1}^{2}+s_{2}^{2}+s_{3}^{2}}{2}}
$$

"21"-expansion:
when two bosons are maintained at a fixed distance s, but the third boson is far away, expand ϕ in powers of $1 / R$.

The "111"-expansion

When $s 1, s 2, s 3$ go to infinity simultaneously:

$$
\begin{aligned}
& \phi=1+\left(\sum_{i=1}^{3}-\frac{a}{s_{i}}+\frac{4 a^{2} \theta_{i}}{\pi R_{i} s_{i}}-\frac{2 w a^{3}}{\pi \rho^{2} s_{i}}+\frac{8 \sqrt{3} w a^{4}\left(\ln \frac{e^{\gamma} \rho}{|a|}-1-\theta_{i} \cot 2 \theta_{i}\right)}{\pi^{2} \rho^{4}}\right)-\frac{\sqrt{3} D}{8 \pi^{3} \rho^{4}}+\cdots+O\left(\rho^{-8}\right) \\
& \rho \equiv \sqrt{\frac{s_{1}^{2}+s_{2}^{2}+s_{3}^{2}}{2}}, \quad \theta_{i} \equiv \arctan \left(\frac{2 R_{i}}{\sqrt{3} s_{i}}\right) \quad w \equiv \frac{4 \pi}{3}-\sqrt{3}=2.4567 \cdots \\
& \text { (hyperradius) }
\end{aligned}
$$

D : three-body scattering hypervolume (dimension: length raised to the 4th power)

The " 21 "-expansion

When s is fixed, but R goes to infinity:
$\phi=\left(1-\frac{2 a}{R}+\frac{2 w a^{2}}{\pi R^{2}}-\frac{4 w a^{3}}{\pi R^{3}}+\frac{24 \sqrt{3} w a^{4}\left(\ln \frac{e^{\gamma} R}{|a|}-\frac{3}{2}\right)-\xi_{1}}{\pi^{2} R^{4}}\right) \phi(s)+\frac{3 w a^{2}}{\pi R^{4}} f(s)$
$+\left(-\frac{15 a}{2 R^{3}}+\frac{40(2 \pi-3 \sqrt{3}) a^{2}}{\pi R^{4}}\right) \phi_{\hat{\mathbf{R}}}^{(d)}(\mathbf{s})+\cdots+O\left(R^{-8}\right)$
$\xi_{1} \equiv \frac{\sqrt{3}}{8 \pi} D-8\left(\sqrt{3}-\frac{\pi}{3}\right) w a^{4}-\frac{3 \pi w}{2} a^{3} r_{s}$
r_{S} : two-body effective range

$$
\begin{aligned}
& {\left[-2 \nabla^{2}+V(s)\right] f(s)=\phi(s), \text { all } s} \\
& \quad f(s)=-\frac{s^{2}}{6}+\frac{a s}{2}-\frac{a r_{s}}{2}, \quad s>r_{0}
\end{aligned}
$$

Connection to the Effective-Field Theory

Lagrangian density of EFT:

$$
\mathcal{L}=\cdots-\frac{1}{36} g_{3} \psi^{*} \psi^{*} \psi^{*} \psi \psi \psi+\cdots
$$

$g_{3} \equiv g_{3}(\kappa)$: running coupling constant
Braaten and Nieto, Eur. Phys. J. B 11, 143 (1999)

I found $\quad g_{3}\left(|a|^{-1}\right)=6\left(D+12 \pi^{2} a^{3} r_{s}+977.736695 a^{4}\right)$

Application of D : 3-body scattering amplitude (first investigated by Braaten and Nieto in 1999) incoming momenta: $\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3} \quad$ outgoing momenta: $\mathbf{q}_{1}^{\prime}, \mathbf{q}_{2}^{\prime}, \mathbf{q}_{3}^{\prime}$

$$
\begin{aligned}
& \text { T-matrix element: } \mathrm{T}\left(\mathbf{q}_{1}^{\prime} \mathbf{q}_{2}^{\prime} \mathbf{q}_{3}^{\prime} ; \mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}\right)=\sum_{s=-2}^{\infty} \mathrm{T}^{(s)}\left(\mathbf{q}_{1}^{\prime} \mathbf{q}_{2}^{\prime} \mathbf{q}_{3}^{\prime} ; \mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}\right) \\
& \mathbf{q}_{1}+\mathbf{q}_{2}+\mathbf{q}_{3}=\mathbf{q}_{1}^{\prime}+\mathbf{q}_{2}^{\prime}+\mathbf{q}_{3}^{\prime}=0 ; \quad E=\frac{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}{2 m}=\frac{{q_{1}^{\prime}}^{2}+q_{2}^{\prime 2}+{q_{3}^{\prime}}^{2}}{2 m} \\
& \mathrm{~T}^{(-2)}=64 \pi^{2} a^{2} \sum_{i, j=1}^{3} G_{\mathbf{q}_{j}^{\prime} \mathbf{q}_{i}}^{E} \quad \mathrm{~T}^{(-1)}=\sum_{i, j=1}^{3}\left[-512 \pi^{3} a^{3} c_{1}^{E}\left(\mathbf{q}_{j}^{\prime}, \mathbf{q}_{i}\right)-\mathrm{i} 64 \pi^{2} a^{3}\left(p_{j}^{\prime}+p_{i}\right) G_{\mathbf{q}_{j}^{\prime} \mathbf{q}_{i}}^{E}\right] \\
& \mathrm{T}^{(0)}=-6\left[D-24 \pi w(7 \pi / \sqrt{3}-8) a^{4}-36 \pi^{2} a^{3} r_{s}\right] \\
& \quad+64 \pi^{2} a^{3} \sum_{i, j=1}^{3}\left[32 \pi^{2} a c_{2}^{E}\left(\mathbf{q}_{j}^{\prime}, \mathbf{q}_{i},|a|^{-1}\right)+\left(r_{s} / 2-a\right)\left(p_{j}^{\prime 2}+p_{i}^{2}\right) G_{\mathbf{q}_{j}^{\prime} \mathbf{q}_{i}}^{E}-a p_{j}^{\prime} p_{i} G_{\mathbf{q}_{j}^{\prime} \mathbf{q}_{i}}^{E}+\mathbf{i} 8 \pi a\left(p_{j}^{\prime}+p_{i}\right) c_{1}^{E}\left(\mathbf{q}_{j}^{\prime}, \mathbf{q}_{i}\right)\right]
\end{aligned}
$$

where $G_{\mathbf{q}^{\prime} \mathbf{q}}^{E} \equiv\left(q^{\prime 2}+\mathbf{q}^{\prime} \cdot \mathbf{q}+q^{2}-E / m-\mathbf{i} \epsilon\right)^{-1}$

$$
c_{1}^{E}\left(\mathbf{q}^{\prime}, \mathbf{q}\right) \equiv \int \frac{d^{3} k}{(2 \pi)^{3}} G_{\mathbf{q}^{\prime} \mathbf{k}}^{E} G_{\mathbf{k} \mathbf{q}}^{E}
$$

$c_{2}^{E}\left(\mathbf{q}^{\prime}, \mathbf{q}, \kappa\right) \equiv \lim _{K \rightarrow \infty}-\frac{w}{16 \pi^{3}} \ln \frac{K}{\kappa}+\int_{k<K} \frac{d^{3} k}{(2 \pi)^{3}} G_{\mathbf{q}^{\prime} \mathbf{k}}^{E}\left(2 c_{1}^{E}(\mathbf{k}, \mathbf{q})-\frac{\sqrt{3 k^{2} / 4-E / m-\mathrm{i} \epsilon}}{4 \pi} G_{\mathbf{k q}}^{E}\right)$

Application of D :

ground state energy of 3 bosons in a large volume

$$
\begin{aligned}
E=\frac{12 \pi a}{L^{3}}[1 & +2.83729748 \frac{a}{L}+9.72533081 \frac{a^{2}}{L^{2}}+\left(-39.30783036 \ln \frac{L}{|a|}+95.85272360\right) \frac{a^{3}}{L^{3}} \\
& \left.+\frac{3 \pi a^{2} r_{s}}{L^{3}}+\left(-669.16804795 \ln \frac{L}{|a|}+810.05328680\right) \frac{a^{4}}{L^{4}}+53.48179751 \frac{a^{3} r_{s}}{L^{4}}\right]
\end{aligned}
$$

$$
+\frac{D}{L^{6}}+17.02378488 \frac{a D}{L^{7}}+O\left(L^{-8}\right)
$$

$O\left(L^{-6}\right)$: Beane, Detmold, Savage, 2007; ST 2007

Application of D :

ground state energy of dilute Bose-Einstein condensates

$$
\frac{E}{N}=\frac{4 \pi n a}{2}\left[1+\frac{128}{15 \sqrt{\pi}}\left(n a^{3}\right)^{1 / 2}+8 w n a^{3} \ln \left(n a^{3}\right)+n a^{3} \mathcal{E}_{3}^{\prime}\right]+o\left(n^{2}\right)
$$

4th term: known to depend on 3-body parameter and many-body physics by T. T. Wu in 1959.
Many-body contributions calculated by Braaten and Nieto 1999.
I did independent calculations and found

$$
\mathcal{E}_{3}^{\prime}=\frac{D}{12 \pi a^{4}}+\frac{\pi r_{s}}{a}+118.498920346444
$$

Application of D : ground state energy of dilute BEC with $a=0$

$$
\frac{E}{N}=\frac{D n^{2}}{6}+o\left(n^{2}\right)
$$

Gross-Pitaevskii equation becomes:

$$
i \frac{\partial}{\partial t} \Psi=-\nabla^{2} \Psi+\frac{D}{2}|\Psi|^{4} \Psi+V_{\text {trap }}(\mathbf{r}) \Psi
$$

Applications of D : many more things to be learned

Equation of state of Bose gases at finite temperatures; Critical temperature;
Dynamical properties;
Few-body systems in LOOSE traps (cf somewhat related works by Blume, Johnson, Tiesinga and others);
Interferometric properties of cold atoms;

D for three HARD spheres

pairwise potential: $V(s)= \begin{cases}0, & s>a \\ +\infty, & s<a\end{cases}$

$$
D=(1761.5430 \pm 0.0024) a^{4} \text { for hard-sphere bosons }
$$

ST, 2008

D for three SOFT spheres

Extensions \& Open questions

When there are two-body bound states, D is complex
$\operatorname{Im} D$: determines the three-body recombination rate
cf Braaten, Hammer, Mehen, PRL 88, 040401 (2002)

Extensions \& Open questions

At large hyperradii, $\rho \gg r_{0},|a|$, can we calculate ϕ to high precision for ALL shapes of the triangle?

If we can, the numerical solution of the
 3-body Schrödinger eq will be greatly simplified.

$$
\begin{aligned}
\phi= & 1+\left(\sum_{i=1}^{3}-\frac{a}{s_{i}}+\frac{4 a^{2} \theta_{i}}{\pi R_{i} s_{i}}-\frac{2 w a^{3}}{\pi \rho^{2} s_{i}}+\frac{8 \sqrt{3} w a^{4}\left(\ln \frac{e^{\gamma} \rho}{|a|}-1-\theta_{i} \cot 2 \theta_{i}\right)}{\pi^{2} \rho^{4}}\right)-\frac{\sqrt{3} D}{8 \pi^{3} \rho^{4}}+\cdots+O\left(\rho^{-8}\right) \\
\phi= & \left(1-\frac{2 a}{R}+\frac{2 w a^{2}}{\pi R^{2}}-\frac{4 w a^{3}}{\pi R^{3}}+\frac{24 \sqrt{3} w a^{4}\left(\ln \frac{e^{\gamma} R}{|a|}-\frac{3}{2}\right)-\xi_{1}}{\pi^{2} R^{4}}\right) \phi(s)+\frac{3 w a^{2}}{\pi R^{4}} f(s) \\
& +\left(-\frac{15 a}{2 R^{3}}+\frac{40(2 \pi-3 \sqrt{3}) a^{2}}{\pi R^{4}}\right) \phi_{\hat{\mathbf{R}}}^{(d)}(\mathbf{s})+\cdots+O\left(R^{-8}\right)
\end{aligned}
$$

Extensions \& Open questions

If the bosons interact with pairwise Van der Waals potential

$$
V(s)=-\frac{r_{v d w}^{4}}{m s^{6}}
$$

which supports infinitely many two-body bound states, do we have a universal function of the following form?

$$
D=D\left(r_{v d w}, a\right)
$$

cf universality of a_{-}in the Efimov physics.
Do we need to introduce 3-body phase(s) at $\rho \ll r_{v d w}$?

Three-body wave function highly oscillatory at small distances, so Schrödinger eq hard to solve numerically

Extensions \& Open questions

Heteronuclear systems
(eg, two heavy and one light atoms)

Three-body collisions in lower spatial dimensions

