Many interacting fermions in a 1D harmonic trap: a quantum-chemical treatment

Tomasz Grining, Michał Tomza, Michał Lesiuk, Pietro Massignan, Maciej Lewenstein, Robert Moszynski

> University of Warsaw, Poland ICFO - The Institute of Photonic Sciences, Spain

KITP, Santa Barbara, 2.12.2016

Application of quantum chemistry methods to trapped Fermi gases

- T. Grining, M. Tomza, M. Lesiuk, M. Przybytek, M. Musial, P. Massignan, M. Lewenstein, R. Moszynski, *Many interacting fermions in a one-dimensional harmonic trap: a quantum-chemical treatment*, New J. Phys. 17, 115001 (2015)
- T. Grining, M. Tomza, M. Lesiuk, M. Przybytek, M. Musial, R. Moszynski, M. Lewenstein, P. Massignan, *Crossover between few and many fermions in a harmonic trap*, Phys. Rev. A 92, 061601(R) (2015)

The model Hamiltonian describing N structureless spin-1/2 fermions in a one-dimensional harmonic trap reads

$$\hat{H} = -\frac{1}{2m} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} + \frac{1}{2} m \omega^2 \sum_{i=1}^{N} x_i^2 + g \sum_{i < j} \delta(x_i - x_j) \qquad (1)$$

where *m* is the mass of the atom, ω is the frequency of the trap and *g* is the interaction strength.

Fundamentals of the many-body method

- If a set of one-particle functions $\{\phi_n\}$ spans the one-particle Hilbert space $L^2(\mathbb{R}^3)$, then the set of all *N*-particle determinants constructed from this one-particle set $\{\Phi_I\}$ span the antisymmetric part of the *N* particle Hilbert space $\mathcal{A}L^2(\mathbb{R}^{3N})$
- Algebraic approximation $\{\phi_n\}_{n=1}^{n_b} \rightarrow \{\Phi_I\}_{I=1}^{\approx n_b!}$ accuracy critically depends on n_b and analytical structure of ϕ_n as compared to the two-body solution

Basis set, convergence, and extrapolation

• finite (n_b) number of single-particle functions of the form:

$$\varphi_n(x_i) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m\omega}{\pi}\right)^{1/4} e^{-\frac{m\omega x_i^2}{2}} H_n\left(\sqrt{m\omega}x_i\right) \qquad (2)$$

• rigorously proven for two-body Hamiltonian

$$E_{\infty} - E_{n_b} = \operatorname{const} \times \left(\frac{1}{\sqrt{n_b}} + \frac{g}{\pi} \frac{1}{n_b} \right) + \mathcal{O}\left(n_b^{-\frac{3}{2}} \right).$$
 (3)

many-body case: three-terms extrapolation formula

$$E_{\infty} - E_{n_b} = \frac{A}{\sqrt{n_b}} + \frac{B}{n_b}$$
(4)

Full Configuration Interaction

Wave function of the form:

$$\Psi = (1 + \hat{C})\Phi = \Phi + c_{\rho_i}^{\alpha_i} e_{\alpha_i}^{\rho_i} \Phi + \ldots + \frac{1}{(N!)^2} c_{\rho_1 \ldots \rho_N}^{\alpha_1 \ldots \alpha_N} e_{\alpha_1 \ldots \alpha_N}^{\rho_1 \ldots \rho_N} \Phi$$
(5)

were Φ is the Slater determinant, $e_{\alpha_1...\alpha_k}^{\rho_1...\rho_k}$ are the *k*-tuple excitation operators (e.g. $e_{\alpha}^{\rho} = a_{\rho}^{\dagger}a_{\alpha}, a_{\rho}^{\dagger}, a_{\alpha}$ defined with respect to the Fermi vacuum Φ) and coefficients $c_{\rho_1...\rho_k}^{\alpha_1...\alpha_k}$ are variationally optimized.

$$E = \frac{\langle \Psi | \hat{H} \Psi \rangle}{\langle \Psi | \Psi \rangle} \tag{6}$$

Cutting the number of excitations resulting in the loss of size-consistency.

Coupled Cluster

Full CC equivalent to full CI, as the wave function is of the form:

$$\Psi = e^{\hat{T}} \Phi$$
, where $e^{\hat{T}} = 1 + \hat{C}$ (7)

Possible cutoff in included excitations (preserving size-consistency):

•
$$\hat{T} = \hat{T}_1 + \hat{T}_2$$
 — CCSD,
• $\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3$ — CCSDT,
• $\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3 + \hat{T}_4$ — CCSDTQ.

Energy expression (nonvariational):

$$E = \langle \Phi | e^{-\hat{T}} \hat{H} e^{\hat{T}} \Phi \rangle \tag{8}$$

Equations for \hat{T} :

$$0 = \langle e^{\rho_k \dots \rho_k}_{\alpha_k \dots \alpha_k} \Phi | e^{-\hat{T}} \hat{H} e^{\hat{T}} \Phi \rangle, \quad k = 1, \dots, N$$
(9)

Convergence of the FCI results with the basis set size

Importance of the convergence in the unitary limit

Convergence of the CC results with the level of excitation

Comparison with Jochim Selim's experiments

Wenz et al., Science 342, 457 (2013); Zürn et al., Phys. Rev. Lett. 111, 175302 (2013)

Approaching many-body limit

Crossover between few and many fermions

Crossover between few and many fermions

BCS pairing gap and chemical potential

$$\Delta_N = E_N - (E_{N+1} + E_{N-1})/2, \qquad \Delta_\infty = 8E_F \sqrt{-\frac{\gamma}{2\pi^3}} \exp\left(\frac{\pi^2}{\gamma}\right)$$

$$\mu_{N} = E_{N+1} - E_{N}$$

Open questions (work in progress)

Can coupled cluster methods in many-fermion physics describe:

- Explicitly correlated approaches?
- Degenerate systems?
- Unitary limit?
- 2D and 3D?
- Periodic systems?
- Excited states?