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Trends in nuclear physics

Inputs from V. Efimov
The two-nucleon system is close to the unitary limit in both states
S = 0, 1

The two scattering lengths are large: a0 ≈ −23fm and a1 ≈ 5.4fm

The unitary limit constrains many aspects of the few-nucleon
system

These constrains appear in the theory called pionless

The Hamiltonian includes a two-body contact term (controlled by
aS) and a three-body contact term (controlled by the 3H binding
energy)

This last term is related to the three-body parameter

Many of these aspects were discussed at the same time in which big
efforts were done to construct NN potentials and developed method to
solve the few-nucleon problem
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Trends in nuclear physics

Potential models
In the eighties and ninties NN potentials describing a large set of
NN data appear

First models: Reid Soft Core, AV14, Bonn A and Bonn B

These potentials describe or n-p data or p-p data but not both

The second generation of NN potentials include CSB describing
around 5000 data points with a χ2 per datum close to 1

Examples are: AV18 and CD Bonn

Finally potentials from ChPT appear with similar accuracy but
consistently describing two and three-boy forces

These potentials do not include an explicit indication to the fact that the
two-nucleon system is close to the unitary limit

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 3 / 32
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There are two aspects
Efimov physics put in evidence universal aspects of the
few-nucleon system

potential models are very detailed and cover to some extent
universal behavior

are these two descriptions compatible?

There are some resistence in nuclear physics to move the system
from the physical point

This is done in trapped atoms experimentally and theoretically

We can learn from this sector of phyics and transfer some ideas to
nuclear physics

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 4 / 32



university-logo

There are two aspects
Efimov physics put in evidence universal aspects of the
few-nucleon system

potential models are very detailed and cover to some extent
universal behavior

are these two descriptions compatible?

There are some resistence in nuclear physics to move the system
from the physical point

This is done in trapped atoms experimentally and theoretically

We can learn from this sector of phyics and transfer some ideas to
nuclear physics

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 4 / 32



university-logo

Exploring the unitary limit with potential models

Potential models are constructed at the physical point using many
data points

Moving from the physical point the original potential is modified

For example the strength can be modified

Equivalent soft potentails can be constructed

Efimov physics is a zero-range interaction theory

In this context potentials can be consider a regularization of
contact interactions

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 5 / 32
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Universality in the two-body system

scaling and unitary limits
in the scaling limit the range of the interaction is zero

φd = Cde−kd r

φ0 = C0(r − a)

φk = Ck(sin kr − tan δ cos kr)

which is the relation between kd , a and tan δ?

orthogonality of the states
∫

∞

0
φdφ0 = 0 → k−1

d = aB = a

∫
∞

0
φdφk = 0 → k cot δ = −1/aB = −1/a

In the scaling limit a − aB = 0
A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 6 / 32
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Universality in the two-body system

close to the unitary limit E2 = ~
2/ma2

B ≈ 0 but a 6= aB

we make the following model. As before

φd = Cde−kd r

φ0 = C0(r − a)

φk = Ck(sin kr − tan δ cos kr)

orthogonality of the states inside a cutoff rB
∫

∞

rB

φdφ0 = 0 → a − aB = rB

∫
∞

rB

φdφk = 0 → k cot δ = −1/a + (rBaB/a)k2

Therefore a − aB = rB and areff = 2rbaB

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 7 / 32
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rB takes into account the short range physics

in nuclear physics, in the triplet state S = 1,
E2 = 2.2245MeV, therefore aB = 4.3fm and a1 = 5.4fm

rB = 1.1fm

in the helium-helium system, E2 = 1.3mK, therefore aB = 182a0

and a = 189a0

rB = 7.2a0

constructing a soft two-body potential

V (r) = V0e−r2/r2
0

V0 and r0 fixed to describe E2 and a at the physical point

The unitary limit is explored by varying V0

This procedure results in a path along which rB ≈ constant

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 8 / 32
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Towards the unitary limit
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with ru the effective range at the unitary limit and rB = a − aB

The physics around the unitary limit can be studied with a
two-parameter potential
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Zero-Range vs. Finite-Range Effects
Zero-Range Equations: E2 = ~

2/ma2

En
3 /(~2/ma2) = tan2 ξ

κ∗a = eπ(n−n∗)/s0 e−∆(ξ)/2s0/ cos ξ

Finite-Range Equations: E2 = ~
2/ma2

B from V (r) = V0e−r2/r2
0

En
3 /E2 = tan2 ξ

κn
∗
aB = e−

e∆n(ξ)/2s0/ cos ξ

∆̃n(ξ) = s0 ln
(

En
3 + E2

~2(κn
∗
)2/m

)

∆̃n(ξ) → ∆(ξ) for n > 0
Gaussians with variable strength define the same ∆̃n(ξ)

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 10 / 32
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Using ∆̃0(ξ)

The three-body parameter κ∗ for the helium trimer

The product κ∗aB is a function of ξ (E3/E2 = tan2 ξ)

To determine ξ we use experimental results E3 = 126mK and
E2 = 1.3mK. Accordingly tan2 ξ = 97.0

Using a Gaussian potential with variable strength it is possible to
determine the same value of ξ. Therefore

[κ∗aB]exp = [κ∗aB]gaussian

and
[κ∗]

exp = [κ∗aB]gaussian/[aB]exp

application to the helium trimer: [κ∗]
exp = 0.044a−1

0

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 12 / 32
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The value of a−

Finite-Range Equations at ξ = −π

En
3 /(~2/ma2

B) = 0

κ∗a−

B = −e−
e∆(−π)/2s0 = −2.483

atomic species with van der Waals tail
The helium trimer as example:

a−

B = −2.483/κ∗ = −56.4a0

a− = rB + a−

B = −49a0

a−/ℓ ≈ −49/5.1 = −9.6

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 13 / 32
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Extension to N=4
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Zero-Range Equations for N = 4

Finite-Range Equations: E2 = ~
2/ma2

B from V (r)

En,m
4 /E2 = tan2 ξ

κn,m
4 aB = e−

e∆n,m
4 (ξ)/2s0/ cos ξ

∆̃n,m
4 (ξ) = s0 ln

(
En,m

4 + E2

~2(κn,m
4 )2/m

)

Zero-Range Equations: E2 = ~
2/ma2

En,m
4 /(~2/ma2) = tan2 ξ

κm
∗

a = eπ(n−n∗)/s0 e−∆m
4 (ξ)/2s0/ cos ξ

with κ0
∗
/κ1

∗
= 4.6003
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Propagation of universal behavior with N
In collaboration with. A. Polls, B. Julia Diaz and N. Timofeyuk

Saturation properties of helium drops
We define a soft potential model to describe E3

It consists in a two- plus a three-body term V = V (i , j) + W (i , j , k)

V (i , j) = V0e−r2
ij /r2

0

W (i , j , k) = W0e−ρ2
ijk /ρ2

0

W0 is determined from E3

ρ0 is taken as a parameter

E/N is calculated for increasing values of N as a function the ρ0

the saturation properties are determined from a liquid drop
formula:
EN/N = Ev + Esx + Ecx2 with x = N−1/3

In general drops with N around 100 is sufficient to determine Ev

and Es

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 16 / 32
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drops with N ≤ 10
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drops with N ≤ 10
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drops with N ≤ 112
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drops with N = 4
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Propagation of universal behavior with N

Saturation properties of helium drops
Using the appropriate value of ρ0

we obtain (in K):
EN/N = 6.79 − 18.0x + 9.98x2

To be compared to the results of the LM2M2 potential:
EN/N = 7.02 − 18.8x + 11.2x2

The experimental result is 7.12 K

for the surface tension t = Es/4πr2
0 (∞)

the experimental value is 0.29 KA2

with the gaussian soft potential the result is 0.27 KA2

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 21 / 32
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1/2-spin 1/2-isospin fermions close to the unitary limit
The 2N system in s-wave
This is a two-channel system with spin S = 0 and S = 1. For two
nucleons the physical values are:
Ed = −2.2245 MeV, aB = 4.318 fm
a1 = 5.424 ± 0.003 fm reff

1 = 1.760 ± 0.005 fm
a0 = −23.740 ± 0.020 fm reff

0 = 2.77 ± 0.05 fm

moving the system to the unitary limit
The S = 1 channel:

a gaussian V1e−r2/r2
1 with V1 and r1 fixed to describe a1 and aB (or

reff
1 ). Then V1 is varied.

The S = 0 channel:

a gaussian V0e−r2/r2
0 is used with V0 fixed to describe a fixed value

of the ratio a1/a0. First we use r0 = r1, in this case when a1 = a0

the system is a three-boson system.

A. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 22 / 32
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Three-body spectrum with spin-isospin symmetry

Finite-Range Equations: E2 = ~
2/ma2

B from V1(r)

En
3 /E2 = tan2 ξ

κn
∗
aB = e−

e∆3(ξ,φ)/2s0/ cos ξ

∆̃n(ξ, φ) = s0 ln
(

En
3 + E2

~2(κn
∗
)2/m

)

a1

a0
= tan φ

For n > 0 ∆̃n(ξ, φ) → ∆(ξ, φ)
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Comments on the two-channel plot

Studying a three-boson system using finite-range potentials, the
first excited state does not dispapear onto the two-body threshold

In the two-channel system the excited state disappears on the
two-body threshold as the ratio a0/a1 varies.

The analysis of the nuclear plane produces a binding energy at
the unitary limit of Eu ≈ 3.6 MeV.

However at the nuclear point the binding energy of E3 ≈ 10.2 MeV
is far from the experimental value of 8.5 MeV

A three-body force has to be included

using a more realistic potential model and varying the depth, the
unitary limit can be reached.

The value obtained has been Eu ≈ 2.8 MeV.
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Working on the nuclear point
The 2N sector
Low Energy data:
Ed = −2.2245 MeV
a1 = 5.424 ± 0.003 fm reff

1 = 1.760 ± 0.005 fm
a0 = −23.740 ± 0.020 fm reff

0 = 2.77 ± 0.05 fm

Constructing LO 2N potential
Two parameters corresponding to the l = 0 partial waves with S = 0, 1:
V0(r) = −V0e−r2/r2

0 , V1(r) = −V1e−r2/r2
1

V0[MeV] r0[fm] a0[fm] reff
0 [fm] V1[MeV] r1[fm] a1[fm] reff

1 [fm]
53.255 1.40 −23.741 2.094 79.600 1.40 5.309 1.622
42.028 1.57 −23.745 2.360 65.750 1.57 5.423 1.776
40.413 1.60 −23.745 2.407 63.712 1.60 5.447 1.802
37.900 1.65 −23.601 2.487 60.575 1.65 5.482 1.846
33.559 1.75 −23.745 2.644 55.036 1.75 5.548 1.930
30.932 1.82 −23.746 2.756
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Working on the nuclear point
The 3N sector

V0[MeV] r0[fm] V1[MeV] r1[fm] E0
3 [MeV] E1

3 [MeV] 2and [fm]
53.255 1.40 79.600 1.40 −12.40 −2.191 −2.175
42.028 1.57 65.750 1.57 −10.83 −2.199 −1.236
40.413 1.60 63.712 1.60 −10.59 −2.197 −1.097
37.900 1.65 60.575 1.65 −10.22 −2.199 −0.860
33.559 1.75 55.036 1.75 −9.584 −2.201
30.932 1.82 65.750 1.57 −9.715 −0.285
Exp. −8.482 0.645 ± 0.010

Introducing a Three-Body Force
We choose a simple (two-parameter) form:

W (ρ) = W0e−ρ2/ρ2
0

with ρ2 = 2
3(r2

12 + r2
23 + r2

31)

W0 and ρ0 fixed to describe E(3H) and 2andA. Kievsky (INFN-Pisa) Universality in few-body systems KITP, November 2016 28 / 32
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The N=4 ground and excited state
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Summary of the LO potential
LO Ed B(3H) B(3He) B(3He∗) 2and

-2.225 -8.480 -28.41 -8.29 0.652
Exp. -2.225 -8.482 -28.296 -8.10 0.645
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LO potential
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A=3 low energy scattering

No bad for a 4-parameter 2N potential + 2-parameter 3N potential!
next step (in progress)→ 6He and 6Li ground states
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Conclusions

The physics around the unitary limit has been studied using
potential with variable depth

In this region a two-parameter potential captures most of the
dynamics

Finite-range effects have been analyzed through the level
functions ∆̃n(ξ)

The zero-range universal function has been obtained as a limiting
case n > 0

A zero-range equation has been proposed for four bosons

The Efimov plot for three 1/2-spin-isospin fermions has been
analyzed

A detailed study on the nuclear physics point has been performed
using gaussian two- and three-body potentials

Work in progress: Study of universality for the N-boson system
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