Exploring the unitary limit: from few nucleons to few atoms

A. Kievsky

INFN, Sezione di Pisa (Italy)

Collaborators

- M. Gattobigio INLN & Nice University, Nice (France)
- M. Viviani INFN & Pisa University, Pisa (Italy)
- E. Garrido CSIC, Madrid (Spain)
- A. Deltuva ITPA, Vilnius (Lithuania)
- L. Girlanda Universita' del Salento, Lecce (Italy)

Exploring the unitary limit: from few nucleons to few atoms

A. Kievsky

INFN, Sezione di Pisa (Italy)

Collaborators

- M. Gattobigio INLN & Nice University, Nice (France)
- M. Viviani INFN & Pisa University, Pisa (Italy)
- E. Garrido CSIC, Madrid (Spain)
- A. Deltuva ITPA, Vilnius (Lithuania)
- L. Girlanda Universita' del Salento, Lecce (Italy)

Inputs from V. Efimov

- The two-nucleon system is close to the unitary limit in both states S = 0, 1
- The two scattering lengths are large: $a_0 \approx -23$ fm and $a_1 \approx 5.4$ fm
- The unitary limit constrains many aspects of the few-nucleon system
- These constrains appear in the theory called pionless
- The Hamiltonian includes a two-body contact term (controlled by a_S) and a three-body contact term (controlled by the ³H binding energy)
- This last term is related to the three-body parameter

Many of these aspects were discussed at the same time in which big efforts were done to construct NN potentials and developed method to solve the few-nucleon problem

Inputs from V. Efimov

- The two-nucleon system is close to the unitary limit in both states S = 0, 1
- The two scattering lengths are large: $a_0 \approx -23$ fm and $a_1 \approx 5.4$ fm
- The unitary limit constrains many aspects of the few-nucleon system
- These constrains appear in the theory called pionless
- The Hamiltonian includes a two-body contact term (controlled by a_S) and a three-body contact term (controlled by the ³H binding energy)
- This last term is related to the three-body parameter

Many of these aspects were discussed at the same time in which big efforts were done to construct NN potentials and developed method to solve the few-nucleon problem

A. Kievsky (INFN-Pisa)

Potential models

- In the eighties and ninties NN potentials describing a large set of NN data appear
- First models: Reid Soft Core, AV14, Bonn A and Bonn B
- These potentials describe or n-p data or p-p data but not both
- The second generation of NN potentials include CSB describing around 5000 data points with a χ^2 per datum close to 1
- Examples are: AV18 and CD Bonn
- Finally potentials from ChPT appear with similar accuracy but consistently describing two and three-boy forces

These potentials do not include an explicit indication to the fact that the two-nucleon system is close to the unitary limit

Potential models

- In the eighties and ninties NN potentials describing a large set of NN data appear
- First models: Reid Soft Core, AV14, Bonn A and Bonn B
- These potentials describe or n-p data or p-p data but not both
- The second generation of NN potentials include CSB describing around 5000 data points with a χ^2 per datum close to 1
- Examples are: AV18 and CD Bonn
- Finally potentials from ChPT appear with similar accuracy but consistently describing two and three-boy forces

These potentials do not include an explicit indication to the fact that the two-nucleon system is close to the unitary limit

There are two aspects

- Efimov physics put in evidence universal aspects of the few-nucleon system
- potential models are very detailed and cover to some extent universal behavior
- are these two descriptions compatible?
- There are some resistence in nuclear physics to move the system from the physical point
- This is done in trapped atoms experimentally and theoretically
- We can learn from this sector of phyics and transfer some ideas to nuclear physics

There are two aspects

- Efimov physics put in evidence universal aspects of the few-nucleon system
- potential models are very detailed and cover to some extent universal behavior
- are these two descriptions compatible?
- There are some resistence in nuclear physics to move the system from the physical point
- This is done in trapped atoms experimentally and theoretically
- We can learn from this sector of phyics and transfer some ideas to nuclear physics

A B F A B F

Exploring the unitary limit with potential models

- Potential models are constructed at the physical point using many data points
- Moving from the physical point the original potential is modified
- For example the strength can be modified
- Equivalent soft potentails can be constructed
- Efimov physics is a zero-range interaction theory
- In this context potentials can be consider a regularization of contact interactions

scaling and unitary limits

• in the scaling limit the range of the interaction is zero

 $\phi_d = C_d e^{-k_d r}$ $\phi_0 = C_0 (r - a)$ $\phi_k = C_k (\sin kr - \tan \delta \cos kr)$

• which is the relation between k_d , a and tan δ ?

orthogonality of the states

$$\int_0^\infty \phi_d \phi_0 = 0 \to k_d^{-1} = a_B = a$$

$$\int_{0}^{\infty} \phi_{d} \phi_{k} = 0 \rightarrow k \cot \delta = -1/a_{B} = -1/a$$

In the scaling limit $a - a_B = 0$

A. Kievsky (INFN-Pisa)

scaling and unitary limits

• in the scaling limit the range of the interaction is zero

 $\phi_d = C_d e^{-k_d r}$ $\phi_0 = C_0 (r - a)$ $\phi_k = C_k (\sin kr - \tan \delta \cos kr)$

• which is the relation between k_d , a and tan δ ?

orthogonality of the states

$$\int_0^\infty \phi_d \phi_0 = 0 \to k_d^{-1} = a_B = a$$

$$\int_0^\infty \phi_d \phi_k = 0 \to k \cot \delta = -1/a_B = -1/a$$

In the scaling limit $a - a_B = 0$

A. Kievsky (INFN-Pisa)

• close to the unitary limit $E_2 = \hbar^2 / ma_B^2 \approx 0$ but $a \neq a_B$

we make the following model. As before

 $\phi_d = C_d e^{-k_d r}$ $\phi_0 = C_0 (r - a)$ $\phi_k = C_k (\sin kr - \tan \delta \cos kr)$

orthogonality of the states inside a cutoff r_B

$$\int_{r_B}^{\infty} \phi_d \phi_0 = 0 \to a - a_B = r_B$$

$$\int_{r_B}^{\infty} \phi_{d} \phi_{k} = 0
ightarrow k \cot \delta = -1/a + (r_{B}a_{B}/a)k^{2}$$

Therefore $a - a_B = r_B$ and $ar_{eff} = 2r_b a_B$

• close to the unitary limit $E_2 = \hbar^2 / ma_B^2 \approx 0$ but $a \neq a_B$

we make the following model. As before

 $\phi_d = C_d e^{-k_d r}$ $\phi_0 = C_0 (r - a)$ $\phi_k = C_k (\sin kr - \tan \delta \cos kr)$

orthogonality of the states inside a cutoff r_B

$$\int_{r_B}^{\infty} \phi_d \phi_0 = 0 \rightarrow a - a_B = r_B$$

$$\int_{r_{B}} \phi_{d} \phi_{k} = 0 \rightarrow k \cot \delta = -1/a + (r_{B}a_{B}/a)k^{2}$$

Therefore $a - a_B = r_B$ and $ar_{eff} = 2r_b a_B$

 $r \propto$

- r_B takes into account the short range physics
- in nuclear physics, in the triplet state S = 1, $E_2 = 2.2245$ MeV, therefore $a_B = 4.3$ fm and $a_1 = 5.4$ fm
- *r*_B = 1.1fm
- in the helium-helium system, $E_2 = 1.3$ mK, therefore $a_B = 182a_0$ and $a = 189a_0$

•
$$r_B = 7.2a_0$$

constructing a soft two-body potential

$$V(r) = V_0 e^{-r^2/r_0^2}$$

 V_0 and r_0 fixed to describe E_2 and a at the physical point

- The unitary limit is explored by varying V_0
- This procedure results in a path along which $r_B \approx constant$

- r_B takes into account the short range physics
- in nuclear physics, in the triplet state S = 1, $E_2 = 2.2245$ MeV, therefore $a_B = 4.3$ fm and $a_1 = 5.4$ fm
- *r*_B = 1.1fm
- in the helium-helium system, $E_2 = 1.3$ mK, therefore $a_B = 182a_0$ and $a = 189a_0$
- $r_B = 7.2a_0$

constructing a soft two-body potential

$$V(r) = V_0 e^{-r^2/r_0^2}$$

 V_0 and r_0 fixed to describe E_2 and a at the physical point

- The unitary limit is explored by varying V₀
- This procedure results in a path along which $r_B \approx constant$

- r_B takes into account the short range physics
- in nuclear physics, in the triplet state S = 1, $E_2 = 2.2245$ MeV, therefore $a_B = 4.3$ fm and $a_1 = 5.4$ fm
- *r*_B = 1.1fm
- in the helium-helium system, $E_2 = 1.3$ mK, therefore $a_B = 182a_0$ and $a = 189a_0$
- $r_B = 7.2a_0$

constructing a soft two-body potential

$$V(r) = V_0 e^{-r^2/r_0^2}$$

 V_0 and r_0 fixed to describe E_2 and a at the physical point

- The unitary limit is explored by varying V₀
- This procedure results in a path along which $r_B \approx constant$

Towards the unitary limit

with r_u the effective range at the unitary limit and $r_B = a - a_B$ The physics around the unitary limit can be studied with a two-parameter potential

A. Kievsky (INFN-Pisa)

Zero-Range vs. Finite-Range Effects Zero-Range Equations: $E_2 = \hbar^2/ma^2$ $E_3^n/(\hbar^2/ma^2) = \tan^2 \xi$ $\kappa_* a = e^{\pi (n-n_*)/s_0} e^{-\Delta(\xi)/2s_0}/\cos \xi$

Finite-Range Equations: $E_2 = \hbar^2 / ma_B^2$ from $V(r) = V_0 e^{-r^2/r_0^2}$

$$E_3^n/E_2 = \tan^2 \xi$$

$$\kappa_*^n a_B = e^{-\widetilde{\Delta}_n(\xi)/2s_0}/\cos \xi$$

$$\widetilde{\Delta}_n(\xi) = s_0 \ln \left(\frac{E_3^n + E_2}{\hbar^2(\kappa_*^n)^2/m}\right)$$

 $\Delta_n(\xi) \to \Delta(\xi)$ for n > 0Gaussians with variable strength define the same $\widetilde{\Delta}_n(\xi)$

A. Kievsky (INFN-Pisa)

Universality in few-body systems

Zero-Range vs. Finite-Range Effects Zero-Range Equations: $E_2 = \hbar^2/ma^2$ $E_3^n/(\hbar^2/ma^2) = \tan^2 \xi$ $\kappa_* a = e^{\pi (n-n_*)/s_0} e^{-\Delta(\xi)/2s_0}/\cos \xi$

Finite-Range Equations: $E_2 = \hbar^2 / ma_B^2$ from $V(r) = V_0 e^{-r^2/r_0^2}$

$$E_3^n/E_2 = \tan^2 \xi$$

$$\kappa_*^n a_B = e^{-\widetilde{\Delta}_n(\xi)/2s_0}/\cos \xi$$

$$\widetilde{\Delta}_n(\xi) = s_0 \ln \left(\frac{E_3^n + E_2}{\hbar^2(\kappa_*^n)^2/m}\right)$$

 $\Delta_n(\xi) \to \Delta(\xi)$ for n > 0Gaussians with variable strength define the same $\widetilde{\Delta}_n(\xi)$

A. Kievsky (INFN-Pisa)

Universality in few-body systems

э.

The three-body parameter κ_* for the helium trimer

- The product $\kappa_* a_B$ is a function of ξ ($E_3/E_2 = \tan^2 \xi$)
- To determine ξ we use experimental results $E_3 = 126$ mK and $E_2 = 1.3$ mK. Accordingly tan² $\xi = 97.0$
- Using a Gaussian potential with variable strength it is possible to determine the same value of *ξ*. Therefore

$$\left[\kappa_* \pmb{a}_{\pmb{B}}
ight]^{\pmb{exp}} = \left[\kappa_* \pmb{a}_{\pmb{B}}
ight]^{m{gaussian}}$$

and

$$[\kappa_*]^{exp} = [\kappa_* a_B]^{gaussian} / [a_B]^{exp}$$

• application to the helium trimer: $[\kappa_*]^{exp} = 0.044a_0^{-1}$

(日)

The value of a_

Finite-Range Equations at $\xi = -\pi$

$$E_3^n/(\hbar^2/ma_B^2) = 0$$

 $\kappa_* a_B^- = -\mathrm{e}^{-\widetilde{\Delta}(-\pi)/2s_0} = -2.483$

atomic species with van der Waals tail

The helium trimer as example:

3

The value of a_

Finite-Range Equations at $\xi = -\pi$

$$E_3^n/(\hbar^2/ma_B^2) = 0$$

 $\kappa_* a_B^- = -\mathrm{e}^{-\widetilde{\Delta}(-\pi)/2s_0} = -2.483$

atomic species with van der Waals tail

The helium trimer as example:

$$a_B^- = -2.483/\kappa_* = -56.4a_0$$

 $a_- = r_B + a_B^- = -49a_0$
 $a_-/\ell \approx -49/5.1 = -9.6$

э

Extension to N=4

Zero-Range Equations for N = 4

Finite-Range Equations: $E_2 = \hbar^2 / ma_B^2$ from V(r) $E_4^{n,m}/E_2 = \tan^2 \xi$ $\kappa_4^{n,m}a_B = e^{-\widetilde{\Delta}_4^{n,m}(\xi)/2s_0} / \cos \xi$ $\widetilde{\Delta}_4^{n,m}(\xi) = s_0 \ln \left(\frac{E_4^{n,m} + E_2}{\hbar^2(\kappa_4^{n,m})^2/m}\right)$

Zero-Range Equations: $E_2 = \hbar^2 / ma^2$

$$E_4^{n,m}/(\hbar^2/ma^2) = \tan^2 \xi$$

$$\kappa_*^m a = e^{\pi (n-n_*)/s_0} e^{-\Delta_4^m(\xi)/2s_0}/\cos \xi$$

with $\kappa_*^0/\kappa_*^1 = 4.6003$

3

(日)

Zero-Range Equations for N = 4

Finite-Range Equations: $E_2 = \hbar^2 / ma_B^2$ from V(r) $E_4^{n,m}/E_2 = \tan^2 \xi$ $\kappa_4^{n,m} a_B = e^{-\widetilde{\Delta}_4^{n,m}(\xi)/2s_0} / \cos \xi$ $\widetilde{\Delta}_4^{n,m}(\xi) = s_0 \ln \left(\frac{E_4^{n,m} + E_2}{\hbar^2 (\kappa_4^{n,m})^2 / m}\right)$

Zero-Range Equations: $E_2 = \hbar^2 / ma^2$

$$E_4^{n,m}/(\hbar^2/ma^2) = \tan^2 \xi$$

$$\kappa_*^m a = e^{\pi(n-n_*)/s_0} e^{-\Delta_4^m(\xi)/2s_0} / \cos \xi$$

with $\kappa_*^0 / \kappa_*^1 = 4.6003$

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Propagation of universal behavior with N

In collaboration with. A. Polls, B. Julia Diaz and N. Timofeyuk

Saturation properties of helium drops

- We define a soft potential model to describe E₃
- It consists in a two- plus a three-body term V = V(i,j) + W(i,j,k)
- $V(i,j) = V_0 e^{-r_{ij}^2/r_0^2}$
- $W(i, j, k) = W_0 e^{-\rho_{ijk}^2/\rho_0^2}$
- W_0 is determined from E_3
- ρ₀ is taken as a parameter
- E/N is calculated for increasing values of N as a function the ρ_0
- the saturation properties are determined from a liquid drop formula:

 $E_N/N = E_v + E_s x + E_c x^2$ with $x = N^{-1/3}$

 In general drops with N around 100 is sufficient to determine E_v and E_s

drops with $N \leq 10$

A. Kievsky (INFN-Pisa)

KITP, November 2016 17 / 32

drops with $N \leq 10$

A. Kievsky (INFN-Pisa)

KITP, November 2016 18 / 32

drops with $N \le 112$

A. Kievsky (INFN-Pisa)

drops with N = 4

A. Kievsky (INFN-Pisa)

KITP, November 2016 20 / 32

Propagation of universal behavior with N

Saturation properties of helium drops

- Using the appropriate value of ρ₀
- we obtain (in K): $E_N/N = 6.79 - 18.0x + 9.98x^2$
- To be compared to the results of the LM2M2 potential: $E_N/N = 7.02 - 18.8x + 11.2x^2$
- The experimental result is 7.12 K

• for the surface tension $t = E_s/4\pi r_0^2(\infty)$ the experimental value is 0.29 KA² with the gaussian soft potential the result is 0.27 KA²

(日)

Propagation of universal behavior with N

Saturation properties of helium drops

- Using the appropriate value of ρ₀
- we obtain (in K): $E_N/N = 6.79 - 18.0x + 9.98x^2$
- To be compared to the results of the LM2M2 potential: $E_N/N = 7.02 - 18.8x + 11.2x^2$
- The experimental result is 7.12 K
- for the surface tension $t = E_s/4\pi r_0^2(\infty)$ the experimental value is 0.29 KA² with the gaussian soft potential the result is 0.27 KA²

(日)

1/2-spin 1/2-isospin fermions close to the unitary limit The 2N system in s-wave

This is a two-channel system with spin S = 0 and S = 1. For two nucleons the physical values are:

 $E_d = -2.2245 \text{ MeV}, a_B = 4.318 \text{ fm}$

 $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{\text{eff}} = 2.77 \pm 0.05 \text{ fm}$

 $a_1 = 5.424 \pm 0.003 \text{ fm}$ $r_1^{\text{eff}} = 1.760 \pm 0.005 \text{ fm}$

• The S = 1 channel:

• The S = 0 channel:

a gaussian $V_0 e^{-r^2/r_0^2}$ is used with V_0 fixed to describe a fixed value of the ratio a_1/a_0 . First we use $r_0 = r_1$, in this case when $a_1 = a_0$

1/2-spin 1/2-isospin fermions close to the unitary limit The 2N system in s-wave

This is a two-channel system with spin S = 0 and S = 1. For two nucleons the physical values are:

 $E_d = -2.2245 \text{ MeV}, a_B = 4.318 \text{ fm}$ $a_1 = 5.424 \pm 0.003 \text{ fm}$ $r_1^{\text{eff}} = 1.760 \pm 0.005 \text{ fm}$

 $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{eff} = 2.77 \pm 0.05 \text{ fm}$

moving the system to the unitary limit

• The S = 1 channel:

a gaussian $V_1 e^{-r^2/r_1^2}$ with V_1 and r_1 fixed to describe a_1 and a_B (or r_1^{eff}). Then V_1 is varied.

• The S = 0 channel:

1/2-spin 1/2-isospin fermions close to the unitary limit The 2N system in s-wave

This is a two-channel system with spin S = 0 and S = 1. For two nucleons the physical values are:

 $E_d = -2.2245 \text{ MeV}, a_B = 4.318 \text{ fm}$ $a_1 = 5.424 \pm 0.003 \text{ fm}$ $r_1^{eff} = 1.760 \pm 0.005 \text{ fm}$

 $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{eff} = 2.77 \pm 0.05 \text{ fm}$

moving the system to the unitary limit

• The S = 1 channel:

a gaussian $V_1 e^{-r^2/r_1^2}$ with V_1 and r_1 fixed to describe a_1 and a_B (or r_1^{eff}). Then V_1 is varied.

• The S = 0 channel:

a gaussian $V_0 e^{-r^2/r_0^2}$ is used with V_0 fixed to describe a fixed value of the ratio a_1/a_0 . First we use $r_0 = r_1$, in this case when $a_1 = a_0$ the system is a three-boson system.

KITP, November 2016 23 / 32

Three-body spectrum with spin-isospin symmetry

Finite-Range Equations: $E_2 = \hbar^2 / ma_B^2$ from $V_1(r)$ $E_2^n/E_2 = \tan^2 \varepsilon$ $\kappa_*^n a_{\mathsf{B}} = \mathrm{e}^{-\widetilde{\Delta}_3(\xi,\phi)/2s_0}/\cos\xi$ $\widetilde{\Delta}_n(\xi,\phi) = \mathbf{s}_0 \ln \left(\frac{E_3^n + E_2}{\hbar^2 (\kappa_n^n)^2 / m} \right)$ $\frac{a_1}{a_0} = \tan \phi$ $\widetilde{\Delta}_n(\xi,\phi) \to \Delta(\xi,\phi)$ For n > 0

(日)

A. Kievsky (INFN-Pisa)

KITP, November 2016 25 / 32

Comments on the two-channel plot

- Studying a three-boson system using finite-range potentials, the first excited state does not dispapear onto the two-body threshold
- In the two-channel system the excited state disappears on the two-body threshold as the ratio a₀/a₁ varies.
- The analysis of the nuclear plane produces a binding energy at the unitary limit of $E_u \approx 3.6$ MeV.
- However at the nuclear point the binding energy of $E_3 \approx 10.2$ MeV is far from the experimental value of 8.5 MeV
- A three-body force has to be included
- using a more realistic potential model and varying the depth, the unitary limit can be reached.
- The value obtained has been $E_u \approx 2.8$ MeV.

3

(日)

Working on the nuclear point

The 2N sector

Low Energy data: $E_d = -2.2245 \text{ MeV}$ $a_1 = 5.424 \pm 0.003 \text{ fm}$ $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{eff} = 2.77 \pm 0.05 \text{ fm}$

Constructing LO 2N potential

Two parameters corresponding to the I = 0 partial waves with S = 0, 1: $V_0(r) = -V_0 e^{-r^2/r_0^2}, V_1(r) = -V_1 e^{-r^2/r_1^2}$

V ₀ [MeV]	<i>r</i> ₀ [fm]	<i>a</i> ₀[fm]	r ₀ ^{eff} [fm]	V ₁ [MeV]	<i>r</i> ₁ [fm]	<i>a</i> ₁[fm]	<i>r</i> ^{eff} [fm]
53.255	1.40	-23.741	2.094	79.600	1.40	5.309	1.622
42.028	1.57	-23.745	2.360	65.750	1.57	5.423	1.776
40.413	1.60	-23.745	2.407	63.712	1.60	5.447	1.802
37.900	1.65	-23.601	2.487	60.575	1.65	5.482	1.846
33.559	1.75	-23.745	2.644	55.036	1.75	5.548	1.930
30.932	1.82	-23.746	2.756				

A. Kievsky (INFN-Pisa)

Working on the nuclear point

The 3N sector

V_0 [MeV]	<i>r</i> ₀ [fm]	V_1 [MeV]	<i>r</i> ₁ [fm]	<i>E</i> ₃ ⁰ [MeV]	$E_{3}^{1}[MeV]$	² a _{nd} [fm]
53.255	1.40	79.600	1.40	-12.40	-2.191	-2.175
42.028	1.57	65.750	1.57	-10.83	-2.199	-1.236
40.413	1.60	63.712	1.60	-10.59	-2.197	-1.097
37.900	1.65	60.575	1.65	-10.22	-2.199	-0.860
33.559	1.75	55.036	1.75	-9.584	-2.201	
30.932	1.82	65.750	1.57	-9.715		-0.285
Exp.				-8.482		0.645 ± 0.010

Introducing a Three-Body Force

We choose a simple (two-parameter) form:

$$W(\rho) = W_0 e^{-\rho^2/\rho_0^2}$$

with $\rho^2 = \frac{2}{3}(r_{12}^2 + r_{23}^2 + r_{31}^2)$

Working on the nuclear point

The 3N sector

V_0 [MeV]	<i>r</i> ₀ [fm]	V_1 [MeV]	<i>r</i> ₁ [fm]	$E_{3}^{0}[MeV]$	$E_{3}^{1}[MeV]$	² a _{nd} [fm]
53.255	1.40	79.600	1.40	-12.40	-2.191	-2.175
42.028	1.57	65.750	1.57	-10.83	-2.199	-1.236
40.413	1.60	63.712	1.60	-10.59	-2.197	-1.097
37.900	1.65	60.575	1.65	-10.22	-2.199	-0.860
33.559	1.75	55.036	1.75	-9.584	-2.201	
30.932	1.82	65.750	1.57	-9.715		-0.285
Exp.				-8.482		0.645 ± 0.010

Introducing a Three-Body Force

We choose a simple (two-parameter) form:

$$W(\rho) = W_0 \mathrm{e}^{-\rho^2/\rho_0^2}$$

with $\rho^2 = \frac{2}{3}(r_{12}^2 + r_{23}^2 + r_{31}^2)$

$$V(r) = [V(S=1)+V(S=0)]*exp(-r^{2}/r_{1}^{2})+W_{0}*exp(-\rho^{2}/\rho_{0}^{2})$$

KITP, November 2016 29/32

The N=4 ground and excited state

Summary of the LO potential $^{2}a_{nd}$ LO $B(^{3}H)$ $B(^{3}\text{He})$ $B(^{3}\text{He}^{*})$ E_d -2.225 -8.480 -28.41-8.29 0.652 Exp. -2.225-8.482 -28.296 -8.10 0.645

A=3 low energy scattering

No bad for a 4-parameter 2*N* potential + 2-parameter 3*N* potential! next step (in progress) \rightarrow ⁶He and ⁶Li ground states

A. Kievsky (INFN-Pisa)

Universality in few-body systems

KITP, November 2016 31 / 32

Conclusions

- The physics around the unitary limit has been studied using potential with variable depth
- In this region a two-parameter potential captures most of the dynamics
- Finite-range effects have been analyzed through the level functions Δ_n(ξ)
- The zero-range universal function has been obtained as a limiting case n > 0
- A zero-range equation has been proposed for four bosons
- The Efimov plot for three 1/2-spin-isospin fermions has been analyzed
- A detailed study on the nuclear physics point has been performed using gaussian two- and three-body potentials
- Work in progress: Study of universality for the N-boson system

э

Conclusions

- The physics around the unitary limit has been studied using potential with variable depth
- In this region a two-parameter potential captures most of the dynamics
- Finite-range effects have been analyzed through the level functions Δ_n(ξ)
- The zero-range universal function has been obtained as a limiting case n > 0
- A zero-range equation has been proposed for four bosons
- The Efimov plot for three 1/2-spin-isospin fermions has been analyzed
- A detailed study on the nuclear physics point has been performed using gaussian two- and three-body potentials
- Work in progress: Study of universality for the N-boson system

э