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1. Introduction and Motivation
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Introduction and Motivation
An exquisite control over the external and internal
degrees of freedom of atoms developed over decades
lead to the realization of Bose-Einstein Condensation in
dilute alkali gases at nK temperatures.

Worldwide ≈ 170 atom trap experiments
Condensed Species:
H,Li,Na,K,Rb, Cs, Y b,He⋆, Cr, ..., Dy

Key tools available:
Laser and evaporative cooling
Magnetic, electric and optical dipole traps
Optical lattices and atom chips
Feshbach resonances (mag-opt-conf) for tuning of
interaction
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Introduction and Motivation

⇒ Matter wave physics has been and still is a rapidly
developing field with an extremely rich diversity !

DIFFERENT DIRECTIONS (INCOMPLETE !):
Atom laser
Nonlinear excitations: Solitons, vortices etc.
Quantum phase transitions (Mott insulator, Kosterlitz-Thouless,...) and superfluidity
Various directions in strongly interacting systems: Disorder, correlations, ’exotic’
lattices, etc.
Ultracold spinor gases, Fermi gases, Bose-Fermi mixtures
Quantum simulations
Single atom control and processing
Quantum information processing
Ultracold molecules
Ultracold Rydberg atoms
First applications: Sensoring of magnetic fields and accelerations,...
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Introduction and Motivation
Enormous degree of control concerning preparation,
processing and detection of ultracold atoms !

Weak to strongly correlated many-body systems:

BEC nonlinear mean-field physics (solitons, vortices,
collective modes,...)
Strongly correlated many-body physics (quantum
phases: MI etc.; Kondo- and impurity physics,
disorder, Hubbard model physics, high Tc
superconductors,...)

Few-body regime:
Novel mechanisms of transport and tunneling
Atomtronics (Switches, diodes, transistors, ....)
Quantum information processing

In particular: Links between these regimes !
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Introduction: Some facts

Hamiltonian: H =
∑

i

(
p2
i

2mi
+ V (ri)

)
+ 1

2

∑
i,j,i ̸=j W (ri − rj)

V is the trap potential: harmonic, optical lattice, etc.

W describes interactions: contact gδ(ri − rj), dipolar, etc.

Dynamics is governed by TDSE: i!∂tΨ(r1, ..., rN , t) = HΨ(r1, ..., rN , t)

Ideal Bose-Einstein condensate: no interaction g = 0 ⇒ Macroscopic matter wave.

Φ(r1, ..., rN ) =
N∏

i=1

φ(ri)

Hartree product: bosonic exchange symmetry.

Interaction g ̸= 0: Mean-field description leads to Gross-Pitaevskii equation with cubic
nonlinearity, exact for N → ∞, g → 0.
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Introduction: Some facts

Finite, and in particular ’stronger’ interactions:
Correlations are ubiquitous

A multiconfigurational ansatz is necessary

Ψ(r1, ..., rN , t) =
∑

i

ciΦi(r1, ..., rN , t)

⇒ Ideal laboratory for exploring the dynamics of
correlations (beyond mean-field):

Preparation of correlated initial states
Spreading of localized/delocalized correlations ?
Time-dependent ’management’ and control of correlations ?
Is there universality in correlation dynamics ?
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Introduction and Motivation

Calls for a versatile tool to explore the (nonequilibrium)
quantum dynamics of ultracold bosons: Wish list

Take account of all correlations (numerically exact)
Applies to different dimensionality
Time-dependent Hamiltonian: Driving
Weak to strong interactions (short and long-range)
Few- to many-body systems
Mixed systems: different species, mixed
dimensionality
Efficient and fast
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Introduction and Motivation

Multi-Layer Multi-Configuration Time-Dependent Hartree
for Bosons (ML-MCTDHB) is a significant step in this
direction !

In the following: Some selected diverse applications to
ultracold bosonic systems.
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2. Methodology: The ML-MCTDHB
Approach

– p.12/78



The ML-MCTDHB Method

aim: numerically exact solution of the time-dependent Schrödinger equation

for a quite general class of interacting many-body systems

history: [H-D Meyer.WIREs Comp. Mol. Sci. 2, 351 (2012).]

MCTDH (1990): few distinguishable DOFs, quantum molecular dynamics

ML-MCTDH (2003): more distinguishable DOFs, distinct subsystems

MCTDHF (2003): indistinguishable fermions

MCTDHB (2007): indistinguishable bosons

idea:
use a time-dependent, optimally moving basis in the many-body Hilbert space

– p.13/78



Hierarchy within ML-MCTDHB
We make an ansatz for the state of the total system |Ψt⟩ with time-dependencies on
different layers:

top layer |Ψt⟩ =
∑M1

i1=1 ...
∑MS

iS=1 Ai1,...,iS (t)
S⊗

σ=1
|ψ(σ)

iσ
(t)⟩

species layer |ψ(σ)
k (t)⟩ =

∑
n⃗|Nσ

Cσ
k;n⃗(t) |n⃗⟩(t)

particle layer |φ(σ)
k (t)⟩ =

∑nσ
i=1 B

σ
k;i(t)|ui⟩

.

xC yC zCxA xB

NA NB NC

MA MB

MC

mA mB mC

MA MB MC,x MC,y MC,z

Mc Lachlan variational principle: Propagate the ansatz |Ψt⟩ ≡ |Ψ({λit})⟩, λit ∈ C
according to i∂t|Ψt⟩ = |Θt⟩ with |Θt⟩ ∈ span{ ∂

∂λk
t
|Ψ({λit})⟩} minimizing the

error functional |||Θt⟩ − Ĥ|Ψt⟩||2

[AD McLachlan. Mol. Phys. 8, 39 (1963).]

In this sense, we obtain a variationally optimally moving basis!

Dynamical truncation of Hilbert space on all layers

Single species, single orbital on particle layer → Gross-Pitaevskii equation !
(Nonlinear excitations: Solitons, vortices,...)
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The ML-MCTDHB equations of motion

top layer EOM:

i∂tAi1,...,iS =
M1∑

j1=1

...

MS∑

jS=1

⟨ψ(1)
i1

...ψ(S)
iS

| Ĥ |ψ(1)
j1

...ψ(S)
jS

⟩Aj1,...,jS

with |ψ(1)
j1

...ψ
(S)
jS

⟩ ≡ |ψ(1)
j1

⟩ ⊗ ...⊗ |ψ(S)
jS

⟩

⇒ system of coupled linear ODEs with time-dependent coefficients due to the
time-dependence in |ψ(σ)

j (t)⟩ and |φ(σ)
j (t)⟩

⇒ reminiscent of the Schrödinger equation in matrix representation

species layer EOM:

i∂tC
σ
i;n⃗ = ⟨n⃗|(1− P̂ spec

σ )
Mσ∑

j,k=1

∑

m⃗|Nσ

[(ρspecσ )−1]ij⟨Ĥ⟩σ,specjk |m⃗⟩ Cσ
k;m⃗

⇒ system of coupled non-linear ODEs with time-dependent coefficients due to the
time-dependence of the |φ(σ)

j (t)⟩ and of the top layer coefficients
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The ML-MCTDHB equations of motion

particle layer EOM:

i∂t|φ(σ)
i ⟩ = (1− P̂ part

σ )
mσ∑

j,k=1

[(ρpartσ )−1]ij⟨Ĥ⟩σ,partjk |φ(σ)
k ⟩

⇒ system of coupled non-linear partial integro-differential equations
(ODEs, if projected on |u(σ)

k ⟩, respectively) with time-dependent
coefficients due to time-dependence of the Cσ

i;n⃗ and Ai1,...,iS

Lowest layer representations:

Discrete Variable Representation (DVR):

implemented DVRs: harmonic, sine (hardwall b.c.), exponential (periodic b.c.),
radial harmonic, Laguerre

Fast Fourier Transform

Stationary states via improved relaxation involving imaginary time propagation !

S Krönke, L Cao, O Vendrell, P S, New J. Phys. 15, 063018 (2013).

L Cao, S Krönke, O Vendrell, P S, J. Chem. Phys. 139, 134103 (2013).
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3. Tunneling mechanisms in the
double and triple well

– p.17/78



Few-boson systems - Perspectives

Extensive experimental control of few-boson systems
possible: Loading, processing and detection
[I. Bloch et al, Nature 448, 1029 (2007)]

Bottom-up understanding of tunneling processes and
mechanisms
Atomtronics perspective providing us with
controllable atom transport on individual atom level:

Diodes, transistors, capacitors, sources and
drains

Double well, triple well, waveguides, etc.
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Symmetric Double Well

General remarks

DW: Paradigm for fundamental quantum process: Tunneling !

Bose-Einstein condensates
Observation of Josephson oscillations (Milburn 1997, Albiez 2005, Smerzi
1997)
Nonlinear self-trapping (Albiez 2005, Anker 2005, Javanainen 1986)

Optical lattices
Repulsively bound atom-pairs moving in a lattice (Winkler, 2006)
Mechanism: First and second order tunneling (Fölling, 2007)

Above addresses exclusively the weak interaction regime

What about the few-body tunneling dynamics as we follow the
pathway from weak to strong interactions ?
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From Uncorrelated to Pair Tunneling

Setup and Perspective
Preparation of the initial state Ψ(0) with a population imbalance

Add a linear external potential and let the system relax to its ground state
Ψ(d>0)

0

Ramp down asymmetry d to d(t) → 0 nonadiabatically

Conceptually clearest situation: N = 2 atoms, tunneling versus few-body
spectrum versus two-body correlations

More complicated dynamics of N = 3, 4, . . . atoms

t=0

t>0
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From Uncorrelated to Pair Tunneling

Overview of Features
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g = 0: Atoms Rabi-oscillate between wells monitored by
pR(t) = ⟨Θ(x)⟩Ψ(t) =

∫∞
0 ρ(x; t)dx or the population imbalance

δ = pR − pL = 2pR − 1.

pR harmonically oscillates between 1 and 0.
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From Uncorrelated to Pair Tunneling

Overview of Features
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g = 0.2 - Naive expectation: Tunneling is enhanced due to repulsive interaction.

Facts:
For short times: minute small amplitude oscillations
Complete population transfer on much longer time scales T/2 ∼ 300

Tunneling oscillations have become a two-mode process.

g = 1.3: Tunneling period becomes as large as 2× 103: Few-body analog of quantum

self-trapping
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From Uncorrelated to Pair Tunneling

Overview of Features
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g = 4.7: Time evolution becomes more complex: pR doesnt capture this !

g = 25 (near fermionization limit) again a simple picture: Tunneling with Rabi
period is superimposed by a faster, large-amplitude motion. Strongly repulsive
atoms coherently tunnel back and forth as a fragmented pair.
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SPECTRAL ANALYSIS
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Spectral Analysis

Understanding of the very different time scales of the
dynamics ⇔ Analyze the evolution of the spectrum
{Em(g)}
g = 0: Occupy lowest doublet ⇒ N + 1 energies
{Em = E0 +m∆(0) | m = 0, . . . , N} with energy gap
(width of lowest band) ∆(0) = ϵ

(0)
1 − ϵ

(0)
0
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Spectral Analysis
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Small g: Lowest band approximation
Ψ(t) =

∑
m e−iEmtcmΨm ⇒ Imbalance δ(t) ≡ ⟨Θ(x)−Θ(−x)⟩Ψ(t) gives

δ(t) = δ(01) cos(ω01t) + δ(12) cos(ω12t)

ωmn = Em − En and δ(mn) = 4⟨Ψm|Θ(x)|Ψn⟩cmcn
Note: (mn) = (02)-contribution vanishes due to symmetry.
g = 0: Single mode with Rabi frequency ω01 = ω12 = ∆(0)

g ! 0 Equidistance is lifted: Additional small beat frequency ω01 − ω12

Further increasing g: Upper E1,2(g) form a neardegenerate doublet and the
gap to E0 increases
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Spectral Analysis
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Small g: Lowest band approximation with Imbalance

δ(t) = δ(01) cos(ω01t) + δ(12) cos(ω12t)

For t ≪ T12 ≡ 2π/ω12, we only see an oscillation period T01 ≪ T12, offset by
δ(12).

Longer timescale: Slow tunneling of period T12 modulated by T01 oscillations.

Small initial imbalances:
∣∣δ(01)/δ(12)

∣∣ ∝ |c0/c2| ≫ 1; i.e. for short times we
observe the few-body analog of Josephson tunneling

Almost complete imbalance: |δ(12)| dominates ⇒ Extremely long tunnling times
(⇔ self-trapping)

Ab initio picture for the few-body counterpart of the crossover from Rabi
oscillations to self-trapping.
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Spectral Analysis
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Stronger Interactions g: Two-frequency description breaks down as the gap to
higher-lying states melts.

Quasi-degenerate doublet will break up again: Imbalance dynamics:
“self-trapping” scenario will give way to much shorter tunnel periods again.
States emerging from higher bands will be admixed: Multi-band dynamics.
This most clearly manifests towards fermionization, g = 25

g → ∞: Free fermions. An analysis of the imbalance dynamics yields for two
atoms: Only participating frequencies are ∆(0) (the lowest-band Rabi frequency)
and ∆(1) (the larger tunnel splitting of the first excited band).

Link of the strongly interacting dynamics to the noninteracting Rabi oscillations.
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ROLE OF CORRELATIONS
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Role of Correlations
Two-body correlation density ρ2(x1, x2; t∗) at equilibrium points t∗, for g = 0 (t∗ = 44)

and pair probability p2(t) = ⟨Θ(x1)Θ(x2) +Θ(−x1)Θ(−x2)⟩t
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g = 0: Noninteracting bosons tunnel independently: Starting in one well, at the
equilibrium point (pL,R(t∗)

!
= 1

2 ), the probability for finding them in the same and
different wells is equal.
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Role of Correlations
ρ2(x1, x2; t∗) for g = 0.2 (t∗ = 128) and p2(t)
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Weak interactions: Pair probability stays close to 100%. Both atoms can
essentially be found in the same well in the course of tunneling, they tunnel as
pairs.

In terms of eigenstate analysis: While the g = 0 eigenstates Ψ1,2 are delocalized,
at intermediate g = 0.2 they have basically evolved into superpositions
|NL = 2, NR = 0⟩± |0, 2⟩ of pair states localized in each well. In this light, the
dynamics solely consists in shuffling the population back and forth between these
two pair states.
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Role of Correlations

ρ2(x1, x2; t∗) for g = 0.2 (t∗ = 128) and p2(t)
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Fast (small-amplitude) modulations of pR encountered in are linked to temporary
reductions of the pair number p2: Attempted one-body tunneling.
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Role of Correlations
ρ2(x1, x2; t∗) for g = 25 (t∗ = 53) and p2(t)
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g = 25: Two-body density pattern is fully fragmented, both in-well as well as at
equilibrium point.

Higher-band excited states also reflect in the evolution of p2(t), which is
determined by the two modes ω± = ∆(0) ±∆(1).

p2 passes through just about any value from 1 (pair) to almost zero (complete
isolation). In analogy to free fermions, it is again tempting to understand this
involved pattern as two fermions tunneling independently with different
frequencies. – p.33/78



TRIPLE WELL
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Triple Well: Interband Tunneling

Here: Bottom-up approach of understanding the
tunneling mechanisms !

Triple well is minimal system analog of a
source-gate-drain junction for atomtronics
Triple well shows novel tunneling scenarios ⇔ Impact
on transport
Strong correlation effects beyond single band
approximation !
Beyond the well-known suppression of tunneling:
Multiple windows of enhanced tunneling i.e. revivals
of tunneling: Interband tunneling involving higher
bands !
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Setup, computational approach and analysis tool
Hamiltonian

H =
N∑

j=1

−
!2

2M
∂2xj

+
N∑

j=1

Vtr(xj) +
1

2

∑

j ̸=k

g1Dδ(xj − xk)

Number-state representation including interaction effects !

|Ψ⟩ =
∑

N,i

Ci
N |NL, NM , NR⟩i

⟨x|NL, NM , NR⟩i = SφiN (x − rN )
⎛

⎝
N∑

j=1

−
!2

2M
∂2xj

+
N∑

j=1

W (xj) + VI(x)

⎞

⎠φiN (x) = eiNφ
i
N (x)

Three bosons: Single, pair and triple modes.
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Interband Tunneling: Single boson tunneling
Three bosons initially in the left well: Ψ ≈ |3, 0, 0⟩0
(a) g = 0.1 and (b) g = 3.26

Single boson tunneling to middle and
right well via |3, 0, 0⟩0 ⇔ |2, 1, 0⟩1 ⇔
|2, 0, 1⟩1 i.e. via first-excited states !
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Interband Tunneling: Single boson tunneling
Three bosons initially in the middle well: Ψ ≈ |0, 3, 0⟩0
(a) g = 9.85

Single boson tunneling to left and right
well via |0, 3, 0⟩0 ⇔ |1, 2, 0⟩3 ⇔
|0, 2, 1⟩3 i.e. via second-excited states
!
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Interband Tunneling: Two boson tunneling
Three bosons initially in the middle well: Ψ ≈ |0, 3, 0⟩0
(a) g = 5.8

Two boson tunneling to the left and right
well via |0, 3, 0⟩0 ⇔ |1, 1, 1⟩6 i.e. two
first-excited states !

Cao et al, NJP 13, 033032 (2011)
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4. Collective dynamics at the
crossover from few- to many-body

systems
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Collective Dynamics...

Follow a bottom-up approach in the emergence of
collective dynamics with increasing atom number: From
few to many.

Prototype example and first application of ML-MCTDHB.

Quench-induced breathing dynamics of ultracold bosons
in a harmonic trap.

Answer the question:
Discrete structure and frequency spectrum transform
into collective behaviour
Correlations change the simple mean-field picture
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Start with two atoms...
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Rich breathing spectrum: Infinite sets of bands around 2nΩ
- but strongly suppressed !
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A more detailed view...
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Full breathing/beating mode spectrum up to 20
quanta at any interaction strength up to ≈ 6Ω.
Inset: detailed view on the lowest band.
Frequencies: ω2i,2I,2j,2J which refers to the frequency
arising from ⟨Φ2Iφ2i| X̂2 |Φ2Jφ2j⟩.
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Moving up to 140 atoms...
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Moving up to 140 atoms...
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Many-body versus mean-field breathing mode frequency.

See: R. Schmitz, S. Krönke, L. Cao and P.S., PRA 88, 043601 (2013)
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5. Multi-mode quench dynamics in
optical lattices
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Main features

Focus: Correlated non-equilibrium dynamics of in
one-dimensional finite lattices following a sudden
interaction quench from weak (SF) to strong interactions!

Phenomenology: Emergence of density-wave tunneling,
breathing and cradle-like processes.

Mechanisms: Interplay of intrawell and interwell dynamics
involving higher excited bands.

Resonance phenomena: Coupling of density-wave and
cradle modes leads to a corresponding beating
phenomenon !

⇒ Effective Hamiltonian description and tunability.
Incommensurate filling factor ν > 1(ν < 1)
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Post quench dynamics....

Fluctuations δρ(x, t) of the one-body density for weaker
(a) and stronger (b) quench: Spatiotemporal oscillations.
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cradle

breathing
over-barrier

20 403010
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b

c

Density
waves and
their tunnel-
ing.

s.f.

m.f.
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Mode analysis

Density tunneling mode: Global ’envelope’ breathing
Identification of relevant tunneling branches
(number state analysis)
Fidelity analysis shows 3 relevant frequencies:
pair and triple mode processes
Transport of correlations and dynamical bunching
antibunching transitions

On-site breathing and craddle mode: Similar analysis
possible involving now higher excitations
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Craddle and tunneling mode interaction
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Fourier spectrum of the intrawell-asymmetry ∆ρL(ω):

Avoided crossing of tunneling and craddle mode !

⇒ Beating of the craddle mode - resonant enhancement.
S.I. Mistakidis, L. Cao and P. S., JPB 47, 225303 (2014), PRA 91, 033611 (2015)
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6. Many-body processes in black and
grey matter-wave solitons
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Setup and preparation

N weakly interacting bosons in a one-dimensional
box
Initial many-body state: Little depletion, density and
phase as close as possible to dark soliton in the
dominant natural orbital
Preparation: Robust phase and density engineering
scheme.
CARR ET AL, PRL 103, 140403 (2009); PRA 80, 053612
(2009); PRA 63, 051601 (2001); RUOSTEKOSKI ET AL, PRL
104, 194192 (2010)
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Density dynamics
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Evolution of contrast and depletion
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Natural orbital dynamics
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Localized two-body correlations
Two-body correlation function g2(x1, x2; t) for a black soliton
(first row) and a grey soliton β = 0.5 (second) at times
t = 0.0 (first column), t = 2.5τ (second) and t = 5τ (third).
S. Krönke and P.S., PRA 91, 053614 (2015)
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7. Correlated dynamics of a single
atom coupling to an ensemble
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Setup and preparation

Bipartite system: impurity atom plus ensemble of e.g. bosons of different
mF = ±1 trapped in optical dipole trap

Application of external magnetic field gradient separates species

Initialization in a displaced ground ie. coherent state via RF pulse to mF = 0 for
impurity atom.

⇒ Single atom collisionally coupled to an atomic reservoir: Energy and correlation
transfer - entanglement evolution.

J. KNÖRZER, S. KRÖNKE AND P.S., NJP 17, 053001 (2015)
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Energy transfer

Spatiotemporally localized inter-species coupling:
Focus on long-time behaviour over many cycles.
Energy transfer cycles with varying particle number
of the ensemble
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One-body densities

Time-evolution of densities for the two species (ensemble-top, impurity-bottom) for
first eight impurity oscillations.

Impurity atom initiates oscillatory density modulations in ensemble atoms.

Backaction on impurity atom.
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Coherence analysis

Time-evolution of normalized excess energy ∆B
t with

Husimi distribution QB
t (z, z

∗) = 1
π ⟨z|ρ̂Bt |z⟩ , z ∈ C of

reduced density ρ̂Bt at certain time instants.
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Coherence measure

Distance (operator norm) to closest coherent state,
as a function of time for different atom numbers in
the ensemble.
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Correlation analysis

(a) Short-time evolution of the von Neumann entanglement entropy SvN(t) and
inter-species interaction energy EAB

int (t) = ⟨ĤAB⟩t.

(b) Long-time evolution of S̄vN(t). for NA = 2 (blue solid line), NA = 4 (red,
dashed) and NA = 10 (black, dotted).

J. KNÖRZER, S. KRÖNKE AND P.S., NJP 17, 053001 (2015)
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8. Atom-ion hybrid systems:
Structure and dynamics
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Experiment:

B. Ruff, T. Kroker, J. Franz, T. Lampe, M. Neundorf, J.
Simonet, P. Wessels, K. Sengstock and M. Drescher

Theory:

J. Schurer, A. Negretti and P. Schmelcher
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Motivation

Focusing on the physics of ions in a gas of trapped
ultracold atoms: Hybrid atom-ion systems.

Controlled state-dependent atom-ion scattering
Novel tunneling and state-dependent transport
processes
Spin-dependent interactions
Emulate condensed matter systems on a finite scale,
including dynamics: polarons, charge-phonon
coupling, ... PRL 111, 080501 (2013)

Mesoscopic molecular ions and ion-induced density
bubbles - PRL 89, 093001 (2002); PRA 81, 041601 (2010)
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Challenges and Developments

Atom-ion interaction introduces an additional length

scale R∗ =
√

2C4µ
!2

’Molecular’ bound states

Our toolbox: ML-MCTDHB
Modelling of ultracold atom-ion collisions:

Quantum defect theory links defect parameters to
asymptotic scattering properties: Covering a
broad range of scattering behaviour
Model potential: V (z) = V0e−γz2 − 1

z4+ 1
ω
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First: Static strongly trapped ion

Ground state of a localized ion in a cloud of ultracold
atoms in a harmonic trap

J. SCHURER ET AL, PRA 90, 033601 (2014)

Thomas-Fermi profile
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Next: Sudden creation of the ion

Laser pulse creates an ion immersed into a bosonic
ensemble of atoms
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Recent progress: Background
Impact of many-body correlations on the dynamics of an
ion-controlled bosonic Josephson junction

Bosonic Josephson junction: Rabi oscillations versus
macroscopic quantum self-trapping - suppression of
tunneling.

Add an ion: Coupling between the wells can be
controlled by the ionic spin state. Ion-bosons
entanglement.

R. GERRITSMA ET AL,
PRL 109, 083024 (2012)

Unknown impact of many-
body correlations on this
process !
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Ion controlled bosonic Josephson junction

Controlled tunneling dynamics for the many-body
interacting case: Bosonic ensemble is chosen in the
self-trapping regime.

Tunneling regime Self-trapping regime
Ion state 1 Ion state 2

One-body density ρ(z, t) as well as left well pL and right well pR occupation

Principally: Ion-controlled BJJ is still operational
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Ion controlled bosonic Josephson junction

One-body density ρ(z, t) as well as left well pL and right well pR occupation

Major interaction effects present:
Damping of low frequency oscillations (collapse
and revival): Singlet analysis with two relevant
modes.
Fast frequency oscillations: In pL and pR, mostly
due to the ion-bound component. Many modes
participate.
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Ion controlled bosonic Josephson junction

Build up of correlations: Natural population analysis
indicates degree of fragmentation !

Tunneling regime Self-trapping regime

Hierarchy of natural orbitals

1. Orbital: Expected TR and STR behaviour
2. Orbital: Mirror image
3. Orbital: Ion bound state dominated contribution

⇒ Entanglement protocol !

J. SCHURER, PRA 93, 063602 (2016); HIGHLIGHTED
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In progress: Mesoscopic charged molecules in a BEC
Challenges:

Include Motion of Ion
Many-Body Bound States

Main Observations:

Formation of Ionic Molecule
Stabilizing by Shell-Structure
Formation
Dissociation
Strong Self-Localization of Ion
Formation of Thomas-Fermi Bath
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9. Concluding remarks
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Conclusions

ML-MCTDHB is a versatile efficient tool for the
nonequilibrium dynamics of ultracold bosons.
Few- to many-body systems can be covered: Shown
here for the emergence of collective behaviour.
Many-mode correlation dynamics: From quench to
driving.
Beyond mean-field effects in nonlinear excitations.
Open systems dynamics, impurity and polaron
dynamics, etc.
Mixtures !
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Reduced density-operator propagation: method development

Aim: correlated non-equilibrium quantum dynamics of many ultracold bosonic atoms

Approach:
focus on dynamics of few-particle
reduced density operators ρ̂n

represent ρ̂n w.r.t. dynamically
optimized basis (MCTDHB theory)
→ BBGKY hierarchy for the matrix

elements of ρ̂n
→ EOM for basis states

bosonic cumulant expansion for
hierarchy truncation

Resulting theory:
number of atoms becomes a parameter

dynamically optimized basis
→ truncation at high order n
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Thank you for your attention !
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