





# Correlated Quantum Dynamics of Ultracold Bosons: From Few- to Many-Body Systems

Peter Schmelcher Zentrum für Optische Quantentechnologien Universität Hamburg

KITP WORKSHOP ON UNIVERSALITY IN FEW-BODY SYSTEMS SANTA BARBARA, NOVEMBER 2016

## **The Centre for Optical Quantum Technologies**



in collaboration with

- L. Cao, S. Krönke, O. Vendrell (ML-MCTDHB)
- L. Cao, S. Krönke, R. Schmitz, J. Knörzer and S. Mistakidis (Applications)

funded by the SFB 925 'Light induced dynamics and control of correlated quantum systems' of the German Science Foundation (DFG).



- 1. Introduction and motivation
- 2. Methodology: The ML-MCTDHB approach
- 3. Tunneling mechanisms in double and triple wells
- 4. Collective dynamics: crossover few- to many-body systems
- 5. Multi-mode quench dynamics in optical lattices
- 6. Many-body processes in black and grey matter-wave solitons
- 7. Correlated dynamics of a single atom coupling to an ensemble
- 8. Atom-ion hybrid systems: Structure and dynamics
- 9. Concluding remarks



# **1. Introduction and Motivation**

# **Introduction and Motivation**

An exquisite control over the external and internal degrees of freedom of atoms developed over decades lead to the realization of **Bose-Einstein Condensation** in dilute alkali gases at nK temperatures.

Worldwide  $\approx 170$  atom trap experiments Condensed Species:  $H, Li, Na, K, Rb, Cs, Yb, He^*, Cr, ..., Dy$ 

Key tools available:

- Laser and evaporative cooling
- Magnetic, electric and optical dipole traps
- Optical lattices and atom chips
- Feshbach resonances (mag-opt-conf) for tuning of interaction

#### **Introduction and Motivation**

#### ⇒ Matter wave physics has been and still is a rapidly developing field with an extremely rich diversity !

#### DIFFERENT DIRECTIONS (INCOMPLETE !):

- Atom laser
- Nonlinear excitations: Solitons, vortices etc.
- Quantum phase transitions (Mott insulator, Kosterlitz-Thouless,...) and superfluidity
- Various directions in strongly interacting systems: Disorder, correlations, 'exotic' lattices, etc.
- Ultracold spinor gases, Fermi gases, Bose-Fermi mixtures
- Quantum simulations
- Single atom control and processing
- Quantum information processing
- Ultracold molecules
- Ultracold Rydberg atoms
- First applications: Sensoring of magnetic fields and accelerations,...

# **Introduction and Motivation**

Enormous degree of control concerning preparation, processing and detection of ultracold atoms !

Weak to strongly correlated many-body systems:

- BEC nonlinear mean-field physics (solitons, vortices, collective modes,...)
- Strongly correlated many-body physics (quantum phases: MI etc.; Kondo- and impurity physics, disorder, Hubbard model physics, high T<sub>c</sub> superconductors,...)

Few-body regime:

- Novel mechanisms of transport and tunneling
- Atomtronics (Switches, diodes, transistors, ....)
- Quantum information processing

In particular: Links between these regimes !

#### **Introduction:** Some facts

Hamiltonian: 
$$\mathcal{H} = \sum_{i} \left( \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + V(\mathbf{r}_{i}) \right) + \frac{1}{2} \sum_{i,j,i \neq j} W(\mathbf{r}_{i} - \mathbf{r}_{j})$$

V is the trap potential: harmonic, optical lattice, etc.

W describes interactions: contact  $g\delta(\mathbf{r}_i - \mathbf{r}_j)$ , dipolar, etc.

Dynamics is governed by TDSE:  $i\hbar\partial_t\Psi(\mathbf{r}_1,...,\mathbf{r}_N,t) = \mathcal{H}\Psi(\mathbf{r}_1,...,\mathbf{r}_N,t)$ 

Ideal Bose-Einstein condensate: no interaction  $g = 0 \Rightarrow$  Macroscopic matter wave.

$$\Phi(\mathbf{r}_1,...,\mathbf{r}_N) = \prod_{i=1}^N \phi(\mathbf{r}_i)$$

Hartree product: bosonic exchange symmetry.

Interaction  $g \neq 0$ : Mean-field description leads to Gross-Pitaevskii equation with cubic nonlinearity, exact for  $N \rightarrow \infty, g \rightarrow 0$ .

#### **Introduction: Some facts**

Finite, and in particular 'stronger' interactions:

- Correlations are ubiquitous
- A multiconfigurational ansatz is necessary

$$\Psi(\mathbf{r}_1,...,\mathbf{r}_N,t) = \sum_i c_i \Phi_i(\mathbf{r}_1,...,\mathbf{r}_N,t)$$

 $\Rightarrow$  Ideal laboratory for exploring the dynamics of correlations (beyond mean-field):

- Preparation of correlated initial states
- Spreading of localized/delocalized correlations ?
- Time-dependent 'management' and control of correlations ?
- Is there universality in correlation dynamics ?

Calls for a versatile tool to explore the (nonequilibrium) quantum dynamics of ultracold bosons: Wish list

- Take account of all correlations (numerically exact)
- Applies to different dimensionality
- Time-dependent Hamiltonian: Driving
- Weak to strong interactions (short and long-range)
- Few- to many-body systems
- Mixed systems: different species, mixed dimensionality
- Efficient and fast

Multi-Layer Multi-Configuration Time-Dependent Hartree for Bosons (ML-MCTDHB) is a significant step in this direction !

In the following: Some selected diverse applications to ultracold bosonic systems.

# 2. Methodology: The ML-MCTDHB Approach

#### **The ML-MCTDHB Method**

- aim: numerically exact solution of the time-dependent Schrödinger equation for a quite general class of interacting many-body systems
- history: [H-D Meyer. WIREs Comp. Mol. Sci. 2, 351 (2012).]
  MCTDH (1990): few distinguishable DOFs, quantum molecular dynamics
  ML-MCTDH (2003): more distinguishable DOFs, distinct subsystems
  MCTDHF (2003): indistinguishable fermions
  MCTDHB (2007): indistinguishable bosons

#### • idea:

use a time-dependent, optimally moving basis in the many-body Hilbert space



#### **Hierarchy within ML-MCTDHB**

We make an ansatz for the state of the total system  $|\Psi_t\rangle$  with time-dependencies on different *layers*:

$$\begin{array}{l} \text{top layer } |\Psi_t\rangle = \sum_{i_1=1}^{M_1} \dots \sum_{i_S=1}^{M_S} A_{i_1,\dots,i_S}(t) \bigotimes_{\sigma=1}^{S} |\psi_{i_\sigma}^{(\sigma)}(t)\rangle \\ \text{species layer } |\psi_k^{(\sigma)}(t)\rangle = \sum_{\vec{n}|N_\sigma} C_{k;\vec{n}}^{\sigma}(t) |\vec{n}\rangle(t) \\ \text{particle layer } |\phi_k^{(\sigma)}(t)\rangle = \sum_{i=1}^{n_\sigma} B_{k;i}^{\sigma}(t) |u_i\rangle \\ \end{array}$$

- Mc Lachlan variational principle: Propagate the ansatz  $|\Psi_t\rangle \equiv |\Psi(\{\lambda_t^i\})\rangle$ ,  $\lambda_t^i \in \mathbb{C}$  according to  $i\partial_t |\Psi_t\rangle = |\Theta_t\rangle$  with  $|\Theta_t\rangle \in \text{span}\{\frac{\partial}{\partial\lambda_t^k}|\Psi(\{\lambda_t^i\})\rangle\}$  minimizing the error functional  $|||\Theta_t\rangle \hat{H}|\Psi_t\rangle||^2$ [AD McLachlan. *Mol. Phys.* **8**, 39 (1963).]
- In this sense, we obtain a *variationally* optimally moving basis!
- Dynamical truncation of Hilbert space on all layers
- Single species, single orbital on particle layer → Gross-Pitaevskii equation ! (Nonlinear excitations: Solitons, vortices,...)

#### **The ML-MCTDHB equations of motion**

Let top layer EOM:

$$\begin{split} i\partial_t A_{i_1,...,i_S} &= \sum_{j_1=1}^{M_1} \dots \sum_{j_S=1}^{M_S} \langle \psi_{i_1}^{(1)} \dots \psi_{i_S}^{(S)} | \ \hat{H} \ |\psi_{j_1}^{(1)} \dots \psi_{j_S}^{(S)} \rangle A_{j_1,...,j_S} \\ \text{with} \quad |\psi_{j_1}^{(1)} \dots \psi_{j_S}^{(S)} \rangle \equiv |\psi_{j_1}^{(1)} \rangle \otimes \dots \otimes |\psi_{j_S}^{(S)} \rangle \end{split}$$

 $\Rightarrow$  system of coupled linear ODEs with time-dependent coefficients due to the time-dependence in  $|\psi_j^{(\sigma)}(t)\rangle$  and  $|\phi_j^{(\sigma)}(t)\rangle$ 

 $\Rightarrow$  reminiscent of the Schrödinger equation in matrix representation

species layer EOM:

$$i\partial_t C^{\sigma}_{i;\vec{n}} = \langle \vec{n} | (\mathbb{1} - \hat{P}^{spec}_{\sigma}) \sum_{j,k=1}^{M_{\sigma}} \sum_{\vec{m} | N_{\sigma}} [(\rho^{spec}_{\sigma})^{-1}]_{ij} \langle \hat{H} \rangle^{\sigma,spec}_{jk} | \vec{m} \rangle C^{\sigma}_{k;\vec{m}}$$

 $\Rightarrow$  system of coupled non-linear ODEs with time-dependent coefficients due to the time-dependence of the  $|\phi_i^{(\sigma)}(t)\rangle$  and of the top layer coefficients

#### **The ML-MCTDHB equations of motion**

• particle layer EOM:

$$i\partial_t |\phi_i^{(\sigma)}\rangle = (\mathbb{1} - \hat{P}_{\sigma}^{part}) \sum_{j,k=1}^{m_{\sigma}} [(\rho_{\sigma}^{part})^{-1}]_{ij} \langle \hat{H} \rangle_{jk}^{\sigma,part} |\phi_k^{(\sigma)}\rangle$$

 $\Rightarrow$  system of coupled non-linear partial integro-differential equations (ODEs, if projected on  $|u_k^{(\sigma)}\rangle$ , respectively) with time-dependent coefficients due to time-dependence of the  $C_{i:\vec{n}}^{\sigma}$  and  $A_{i_1,...,i_S}$ 

Lowest layer representations:

- Discrete Variable Representation (DVR): implemented DVRs: harmonic, sine (hardwall b.c.), exponential (periodic b.c.), radial harmonic, Laguerre
- Fast Fourier Transform

Stationary states via improved relaxation involving imaginary time propagation !

S Krönke, L Cao, O Vendrell, P S, New J. Phys. 15, 063018 (2013).

L Cao, S Krönke, O Vendrell, P S, J. Chem. Phys. 139, 134103 (2013).

# 3. Tunneling mechanisms in the double and triple well

- Extensive experimental control of few-boson systems possible: Loading, processing and detection
  [I. Bloch *et al*, Nature 448, 1029 (2007)]
- Bottom-up understanding of tunneling processes and mechanisms
- Atomtronics perspective providing us with controllable atom transport on individual atom level:
  - Diodes, transistors, capacitors, sources and drains
- Double well, triple well, waveguides, etc.

### **Symmetric Double Well**

#### **General remarks**

- DW: Paradigm for fundamental quantum process: Tunneling !
- Bose-Einstein condensates
  - Observation of Josephson oscillations (Milburn 1997, Albiez 2005, Smerzi 1997)
  - Nonlinear self-trapping (Albiez 2005, Anker 2005, Javanainen 1986)
- Optical lattices
  - Repulsively bound atom-pairs moving in a lattice (Winkler, 2006)
  - Mechanism: First and second order tunneling (Fölling, 2007)
- Above addresses exclusively the weak interaction regime

What about the few-body tunneling dynamics as we follow the pathway from weak to strong interactions ?

#### **Setup and Perspective**

- Preparation of the initial state  $\Psi(0)$  with a population imbalance
  - Add a linear external potential and let the system relax to its ground state  $\Psi_0^{(d>0)}$
  - Ramp down asymmetry d to  $d(t) \rightarrow 0$  nonadiabatically
- Conceptually clearest situation: N = 2 atoms, tunneling versus few-body spectrum versus two-body correlations
- More complicated dynamics of  $N = 3, 4, \ldots$  atoms



#### **Overview of Features**



• g = 0: Atoms *Rabi*-oscillate between wells monitored by  $p_{\rm R}(t) = \langle \Theta(x) \rangle_{\Psi(t)} = \int_0^\infty \rho(x; t) dx$  or the population imbalance  $\delta = p_{\rm R} - p_{\rm L} = 2p_{\rm R} - 1.$ 

•  $p_{\rm R}$  harmonically oscillates between 1 and 0.





- g = 0.2 Naive expectation: Tunneling is enhanced due to repulsive interaction.
- Facts:
  - For short times: minute small amplitude oscillations
  - Complete population transfer on much longer time scales  $T/2 \sim 300$
  - Tunneling oscillations have become a two-mode process.
- g = 1.3: Tunneling period becomes as large as  $2 \times 10^3$ : Few-body analog of quantum self-trapping

#### **Overview of Features**



- g = 4.7: Time evolution becomes more complex:  $p_R$  doesn't capture this !
- g = 25 (near fermionization limit) again a simple picture: Tunneling with Rabi period is superimposed by a faster, large-amplitude motion. Strongly repulsive atoms coherently tunnel back and forth as a *fragmented pair*.

# SPECTRAL ANALYSIS

- Understanding of the very different time scales of the dynamics  $\Leftrightarrow$  Analyze the evolution of the spectrum  $\{E_m(g)\}$
- g = 0: Occupy lowest doublet  $\Rightarrow N + 1$  energies  $\{E_m = E_0 + m\Delta^{(0)} \mid m = 0, ..., N\}$  with energy gap (width of lowest band)  $\Delta^{(0)} = \epsilon_1^{(0)} - \epsilon_0^{(0)}$

## **Spectral Analysis**



Small g: Lowest band approximation

•  $\Psi(t) = \sum_{m} e^{-iE_{m}t} c_{m} \Psi_{m} \Rightarrow \text{Imbalance } \delta(t) \equiv \langle \Theta(x) - \Theta(-x) \rangle_{\Psi(t)} \text{ gives}$ 

$$\delta(t) = \delta^{(01)} \cos(\omega_{01}t) + \delta^{(12)} \cos(\omega_{12}t)$$

 $\omega_{mn} = E_m - E_n$  and  $\delta^{(mn)} = 4\langle \Psi_m | \Theta(x) | \Psi_n \rangle c_m c_n$ Note: (mn) = (02)-contribution vanishes due to symmetry.

- g = 0: Single mode with Rabi frequency  $\omega_{01} = \omega_{12} = \Delta^{(0)}$
- $g \gtrsim 0$  Equidistance is lifted: Additional small beat frequency  $\omega_{01} \omega_{12}$
- Further increasing g: Upper  $E_{1,2}(g)$  form a neardegenerate doublet and the gap to  $E_0$  increases

## **Spectral Analysis**



Small g: Lowest band approximation with Imbalance

$$\delta(t) = \delta^{(01)} \cos(\omega_{01}t) + \delta^{(12)} \cos(\omega_{12}t)$$

- For  $t \ll T_{12} \equiv 2\pi/\omega_{12}$ , we only see an oscillation period  $T_{01} \ll T_{12}$ , offset by  $\delta^{(12)}$ .
- Longer timescale: *Slow* tunneling of period  $T_{12}$  modulated by  $T_{01}$  oscillations.
- Small initial imbalances:  $|\delta^{(01)}/\delta^{(12)}| \propto |c_0/c_2| \gg 1$ ; i.e. for short times we observe the few-body analog of Josephson tunneling
- Almost complete imbalance:  $|\delta^{(12)}|$  dominates  $\Rightarrow$  Extremely long tunnling times ( $\Leftrightarrow$  self-trapping)
- Ab initio picture for the few-body counterpart of the crossover from Rabi oscillations to self-trapping.

## **Spectral Analysis**



- Stronger Interactions g: Two-frequency description breaks down as the gap to higher-lying states melts.
  - Quasi-degenerate doublet will break up again: Imbalance dynamics: "self-trapping" scenario will give way to much shorter tunnel periods again.
  - States emerging from higher bands will be admixed: Multi-band dynamics. This most clearly manifests towards fermionization, g = 25
- $g \to \infty$ : Free fermions. An analysis of the imbalance dynamics yields for two atoms: Only participating frequencies are  $\Delta^{(0)}$  (the lowest-band Rabi frequency) and  $\Delta^{(1)}$  (the larger tunnel splitting of the first excited band).
- Link of the strongly interacting dynamics to the noninteracting Rabi oscillations.

# ROLE OF CORRELATIONS

Two-body correlation density  $\rho_2(x_1, x_2; t_*)$  at equilibrium points  $t_*$ , for g = 0 ( $t_* = 44$ ) and pair probability  $p_2(t) = \langle \Theta(x_1)\Theta(x_2) + \Theta(-x_1)\Theta(-x_2) \rangle_t$ 



• g = 0: Noninteracting bosons tunnel independently: Starting in one well, at the equilibrium point  $(p_{L,R}(t_*) \stackrel{!}{=} \frac{1}{2})$ , the probability for finding them in the same and different wells is equal.



- Weak interactions: Pair probability stays close to 100%. Both atoms can essentially be found in the same well in the course of tunneling, they tunnel as pairs.
- In terms of eigenstate analysis: While the g = 0 eigenstates  $\Psi_{1,2}$  are *delocalized*, at intermediate g = 0.2 they have basically evolved into superpositions  $|N_{\rm L} = 2, N_{\rm R} = 0\rangle \pm |0, 2\rangle$  of pair states *localized in each well*. In this light, the dynamics solely consists in shuffling the population back and forth between these two pair states.



• Fast (small-amplitude) modulations of  $p_R$  encountered in are linked to temporary reductions of the pair number  $p_2$ : Attempted one-body tunneling.



- g = 25: Two-body density pattern is fully fragmented, both in-well as well as at equilibrium point.
- Higher-band excited states also reflect in the evolution of  $p_2(t)$ , which is determined by the two modes  $\omega_{\pm} = \Delta^{(0)} \pm \Delta^{(1)}$ .
- $p_2$  passes through just about any value from 1 (pair) to almost zero (complete isolation). In analogy to free fermions, it is again tempting to understand this involved pattern as two fermions tunneling independently with different frequencies.

# TRIPLE WELL

Here: Bottom-up approach of understanding the tunneling mechanisms !

- Triple well is minimal system analog of a source-gate-drain junction for atomtronics
- Triple well shows novel tunneling scenarios on transport
- Strong correlation effects beyond single band approximation !
- Beyond the well-known suppression of tunneling: Multiple windows of enhanced tunneling i.e. revivals of tunneling: Interband tunneling involving higher bands !
#### Setup, computational approach and analysis tool

Hamiltonian

$$H = \sum_{j=1}^{N} -\frac{\hbar^2}{2M} \partial_{x_j}^2 + \sum_{j=1}^{N} V_{tr}(x_j) + \frac{1}{2} \sum_{j \neq k} g_{1D} \delta(x_j - x_k)$$

Number-state representation including interaction effects !

$$\begin{split} |\Psi\rangle &= \sum_{\mathbf{N},i} C_{\mathbf{N}}^{i} |N_{L}, N_{M}, N_{R}\rangle_{i} \\ \langle \mathbf{x} | N_{L}, N_{M}, N_{R}\rangle_{i} = S\phi_{\mathbf{N}}^{i} (\mathbf{x} - \mathbf{r}_{\mathbf{N}}) \\ \left( \sum_{j=1}^{N} -\frac{\hbar^{2}}{2M} \partial_{x_{j}}^{2} + \sum_{j=1}^{N} W(x_{j}) + V_{I}(\mathbf{x}) \right) \phi_{\mathbf{N}}^{i}(\mathbf{x}) = e_{\mathbf{N}}^{i} \phi_{\mathbf{N}}^{i}(\mathbf{x}) \end{split}$$

Three bosons: Single, pair and triple modes.



#### **Interband Tunneling: Single boson tunneling**

Three bosons initially in the left well:  $\Psi \approx |3,0,0\rangle_0$ 



Single boson tunneling to middle and right well via  $|3,0,0\rangle_0 \Leftrightarrow |2,1,0\rangle_1 \Leftrightarrow |2,0,1\rangle_1$  i.e. via first-excited states !



#### **Interband Tunneling: Single boson tunneling**

Three bosons initially in the middle well:  $\Psi \approx |0,3,0\rangle_0$ 

(a) g = 9.853-(a) Population ᢔᠺᡯᢊ᠈ᢣ᠕᠆ᠵ᠙ᢑᡐᡁᠺᢣᡯᢊ᠈ᠿᡗ᠕ᢧ᠉ᡗ᠕ᢧ᠈ᡗᡶᡐᠿᠧᡐᡁᠺᠺᡯᢑᡐᢑ᠊ᡐᠱᢣᡞᡬᠰ᠕ᡬᡟ᠈ᠵ 0-(b) 1.0 Probability 0.0 50 1<u>0</u>0 150 Ó time 0.6 t=0 (a) t=11 t=28 density  $\rho(x)$ 0.4 0.2 0.0 0 X 2 2

Single boson tunneling to left and right well via  $|0,3,0\rangle_0 \Leftrightarrow |1,2,0\rangle_3 \Leftrightarrow$  $|0,2,1\rangle_3$  i.e. via second-excited states



#### **Interband Tunneling: Two boson tunneling**

Three bosons initially in the middle well:  $\Psi \approx |0, 3, 0\rangle_0$ 

(a) g = 5.8



Two boson tunneling to the left and right well via  $|0,3,0\rangle_0 \Leftrightarrow |1,1,1\rangle_6$  i.e. two first-excited states !

Cao et al, NJP 13, 033032 (2011)





# 4. Collective dynamics at the crossover from few- to many-body systems

Follow a bottom-up approach in the emergence of collective dynamics with increasing atom number: From few to many.

Prototype example and first application of ML-MCTDHB.

Quench-induced breathing dynamics of ultracold bosons in a harmonic trap.

Answer the question:

- Discrete structure and frequency spectrum transform into collective behaviour
- Correlations change the simple mean-field picture

#### Start with two atoms...



- Beating and breathing dynamics of  $< X^2 >$
- Two dominant peaks in a background of frequencies: Relative + CM motion

 Relative motion breathing mode frequency varies with g whereas CM one not.

Rich breathing spectrum: Infinite sets of bands around  $2n\Omega$  - but strongly suppressed !



- Full breathing/beating mode spectrum up to 20 quanta at any interaction strength up to  $\approx 6\Omega$ .
- Inset: detailed view on the lowest band.
- Frequencies:  $\omega_{2i,2I,2j,2J}$  which refers to the frequency arising from  $\langle \Phi_{2I}\phi_{2i}| \hat{X}^2 |\Phi_{2J}\phi_{2j} \rangle$ .

#### Moving up to 140 atoms...



- CM breathing mode becomes strongly suppressed
- Breathing of the relative motion becomes dominant !

 Breathing mode frequency with varying particle number for various interaction strength g

#### Moving up to 140 atoms...



Many-body versus mean-field breathing mode frequency.

See: R. Schmitz, S. Krönke, L. Cao and P.S., PRA 88, 043601 (2013)

## 5. Multi-mode quench dynamics in optical lattices

**Focus:** Correlated non-equilibrium dynamics of in one-dimensional finite lattices following a sudden interaction quench from weak (SF) to strong interactions!

**Phenomenology:** Emergence of density-wave tunneling, breathing and cradle-like processes.

**Mechanisms:** Interplay of intrawell and interwell dynamics involving higher excited bands.

**Resonance phenomena:** Coupling of density-wave and cradle modes leads to a corresponding beating phenomenon !

 $\Rightarrow$  Effective Hamiltonian description and tunability.

Incommensurate filling factor  $\nu > 1(\nu < 1)$ 

#### Post quench dynamics....



- Density tunneling mode: Global 'envelope' breathing
  - Identification of relevant tunneling branches (number state analysis)
  - Fidelity analysis shows 3 relevant frequencies: pair and triple mode processes
  - Transport of correlations and dynamical bunching antibunching transitions
- On-site breathing and craddle mode: Similar analysis possible involving now higher excitations

#### **Craddle and tunneling mode interaction**



Fourier spectrum of the intrawell-asymmetry  $\Delta \rho_L(\omega)$ :

Avoided crossing of tunneling and craddle mode !

⇒ Beating of the craddle mode - resonant enhancement. S.I. Mistakidis, L. Cao and P. S., JPB 47, 225303 (2014), PRA 91, 033611 (2015)

# 6. Many-body processes in black and grey matter-wave solitons

- N weakly interacting bosons in a one-dimensional box
- Initial many-body state: Little depletion, density and phase as close as possible to dark soliton in the dominant natural orbital
- Preparation: Robust phase and density engineering scheme.

CARR ET AL, PRL 103, 140403 (2009); PRA 80, 053612 (2009); PRA 63, 051601 (2001); RUOSTEKOSKI ET AL, PRL 104, 194192 (2010)

#### **Density dynamics**



• Reduced one-body density  $\rho_1(x,t)$ 

• 
$$N=100$$
,  $\gamma=0.04$ 

- Black (top) and grey (bottom) soliton
- M = 4 optimized orbitals
- Inset: Mean-field theory (GPE)
- Slower filling process of density dip for moving soliton

#### **Evolution of contrast and depletion**



• Relative contrast c(t)/c(0) of dark solitons for various  $\beta = \frac{u}{s}$  $(c(t) = \frac{\max \rho_1(x,0) - \rho_1(x_t^s,t)}{\max \rho_1(x,0) + \rho_1(x_t^s,t)})$ 



• Dynamics of quantum depletion  $d(t) = 1 - \max_i \lambda_i(t) \in [0, 1]$  and evolution of the natural populations  $\lambda_i(t)$  for  $\beta = 0.0$  (solid black lines) and  $\beta = 0.5$  (dashed dotted red lines).  $\hat{\rho}_1(t) = \sum_{i=1}^M \lambda_i(t) |\varphi_i(t)\rangle\langle\varphi_i(t)|$ 

#### **Natural orbital dynamics**



• Density and phase (inset) evolution of the dominant and second dominant natural orbital. (a,b) black soliton (c,d) grey soliton  $\beta = 0.5$ .

#### Localized two-body correlations

• Two-body correlation function  $g_2(x_1, x_2; t)$  for a black soliton (first row) and a grey soliton  $\beta = 0.5$  (second) at times t = 0.0 (first column),  $t = 2.5\tau$  (second) and  $t = 5\tau$  (third).

S. Krönke and P.S., PRA 91, 053614 (2015)



# 7. Correlated dynamics of a single atom coupling to an ensemble

#### **Setup and preparation**



- Bipartite system: impurity atom plus ensemble of e.g. bosons of different  $m_F = \pm 1$  trapped in optical dipole trap
- Application of external magnetic field gradient separates species
- Initialization in a displaced ground ie. coherent state via RF pulse to  $m_F = 0$  for impurity atom.
- Single atom collisionally coupled to an atomic reservoir: Energy and correlation transfer - entanglement evolution.

J. KNÖRZER, S. KRÖNKE AND P.S., NJP 17, 053001 (2015)



- Spatiotemporally localized inter-species coupling: Focus on long-time behaviour over many cycles.
- Energy transfer cycles with varying particle number
  of the ensemble

#### **One-body densities**



- Time-evolution of densities for the two species (ensemble-top, impurity-bottom) for first eight impurity oscillations.
- Impurity atom initiates oscillatory density modulations in ensemble atoms.
- Backaction on impurity atom.





Time-evolution of normalized excess energy  $\Delta_t^B$  with Husimi distribution  $Q_t^B(z, z^*) = \frac{1}{\pi} \langle z | \hat{\rho}_t^B | z \rangle$ ,  $z \in \mathbb{C}$  of reduced density  $\hat{\rho}_t^B$  at certain time instants.

#### **Coherence measure**



Distance (operator norm) to closest coherent state, as a function of time for different atom numbers in the ensemble.

#### **Correlation analysis**



- (a) Short-time evolution of the von Neumann entanglement entropy  $S_{vN}(t)$  and inter-species interaction energy  $E_{int}^{AB}(t) = \langle \hat{H}_{AB} \rangle_t$ .
- (b) Long-time evolution of  $\bar{S}_{vN}(t)$ . for  $N_A = 2$  (blue solid line),  $N_A = 4$  (red, dashed) and  $N_A = 10$  (black, dotted).

J. KNÖRZER, S. KRÖNKE AND P.S., NJP 17, 053001 (2015)

### 8. Atom-ion hybrid systems: Structure and dynamics

Experiment:

B. Ruff, T. Kroker, J. Franz, T. Lampe, M. Neundorf, J. Simonet, P. Wessels, K. Sengstock and M. Drescher

Theory:

J. Schurer, A. Negretti and P. Schmelcher

Focusing on the physics of ions in a gas of trapped ultracold atoms: Hybrid atom-ion systems.

- Controlled state-dependent atom-ion scattering
- Novel tunneling and state-dependent transport processes
- Spin-dependent interactions
- Emulate condensed matter systems on a finite scale, including dynamics: polarons, charge-phonon coupling, ... PRL 111, 080501 (2013)
- Mesoscopic molecular ions and ion-induced density bubbles - PRL 89, 093001 (2002); PRA 81, 041601 (2010)

#### **Challenges and Developments**

- Atom-ion interaction introduces an additional length scale  $R^* = \sqrt{\frac{2C_4\mu}{\hbar^2}}$
- Molecular' bound states

- Our toolbox: ML-MCTDHB
- Modelling of ultracold atom-ion collisions:
  - Quantum defect theory links defect parameters to asymptotic scattering properties: Covering a broad range of scattering behaviour

• Model potential: 
$$V(z) = V_0 e^{-\gamma z^2} - \frac{1}{z^4 + \frac{1}{\omega}}$$

**First: Static strongly trapped ion** 

### Ground state of a localized ion in a cloud of ultracold atoms in a harmonic trap

J. SCHURER ET AL, PRA 90, 033601 (2014)



#### **Next: Sudden creation of the ion**

Laser pulse creates an ion immersed into a bosonic ensemble of atoms



Effective potential, ion-bound and trap states

J. SCHURER ET AL, NJP 17, 083024 (2015)



#### Excitation spectrum



Time evolution of the density and energies per particle

#### **Recent progress: Background**

Impact of many-body correlations on the dynamics of an ion-controlled bosonic Josephson junction

Bosonic Josephson junction: Rabi oscillations versus macroscopic quantum self-trapping - suppression of tunneling.

Add an ion: Coupling between the wells can be controlled by the ionic spin state. Ion-bosons entanglement.



R. GERRITSMA ET AL, PRL 109, 083024 (2012)

Unknown impact of manybody correlations on this process !





**Ion controlled bosonic Josephson junction** 

Controlled tunneling dynamics for the many-body interacting case: Bosonic ensemble is chosen in the self-trapping regime.

Tunneling regime lon state 1

Self-trapping regime lon state 2



One-body density  $\rho(z,t)$  as well as left well  $p_L$  and right well  $p_R$  occupation

Principally: Ion-controlled BJJ is still operational
#### **Ion controlled bosonic Josephson junction**



One-body density  $\rho(z,t)$  as well as left well  $p_L$  and right well  $p_R$  occupation

- Major interaction effects present:
  - Damping of low frequency oscillations (collapse and revival): Singlet analysis with two relevant modes.
  - Fast frequency oscillations: In p<sub>L</sub> and p<sub>R</sub>, mostly due to the ion-bound component. Many modes participate.

#### **Ion controlled bosonic Josephson junction**

# Build up of correlations: Natural population analysis indicates degree of fragmentation !



Hierarchy of natural orbitals

J. SCHURER, PRA 93, 063602 (2016); HIGHLIGHTED

- 1. Orbital: Expected TR and STR behaviour
- 2. Orbital: Mirror image
- 3. Orbital: Ion bound state dominated contribution

 $\Rightarrow$  Entanglement protocol !

## In progress: Mesoscopic charged molecules in a BEC Challenges:

- Include Motion of Ion
- Many-Body Bound States

Main Observations:

- Formation of Ionic Molecule
- Stabilizing by Shell-Structure Formation
- Dissociation
- Strong Self-Localization of Ion
- Formation of Thomas-Fermi Bath



# 9. Concluding remarks

#### Conclusions

- ML-MCTDHB is a versatile efficient tool for the nonequilibrium dynamics of ultracold bosons.
- Few- to many-body systems can be covered: Shown here for the emergence of collective behaviour.
- Many-mode correlation dynamics: From quench to driving.
- Beyond mean-field effects in nonlinear excitations.
- Open systems dynamics, impurity and polaron dynamics, etc.
- Mixtures !

#### **Reduced density-operator propagation: method development**

Aim: correlated non-equilibrium quantum dynamics of many ultracold bosonic atoms

#### Approach:

- focus on dynamics of few-particle reduced density operators  $\hat{\rho}_n$
- represent  $\hat{\rho}_n$  w.r.t. dynamically optimized basis (MCTDHB theory)
  - ightarrow BBGKY hierarchy for the matrix elements of  $\hat{\rho}_n$
  - ightarrow EOM for basis states
- bosonic cumulant expansion for hierarchy truncation

#### **Resulting theory:**

- number of atoms becomes a parameter
- dynamically optimized basis
  - ightarrow truncation at high order n



### Thank you for your attention !