Three-body scattering hypervolume of soft-sphere boson

Shangguo Zhu and Shina Tan Georgia Institute of Technology FBS16, KITP Santa Barbara, 2016/12/12

Outline

- Low-energy 2-body and 3-body collisions
- Definition of three-body scattering hypervolume D
- Calculation of *D* for soft-sphere bosons
- Extensions

Low-energy 2-body collisions

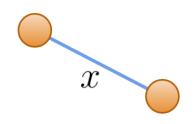
• 2 particles colliding at low energies in s-wave

$$\psi = \phi + Ef + E^{2}g + E^{3}h + \cdots$$
$$H_{2b}\phi = 0, \ H_{2b}f = \phi, \ H_{2b}g = f \ldots$$

• Wave function at E = 0 outside the range of interaction

$$\phi(x) = 1 - \frac{a}{x}$$

a: two-body scattering length



Low-energy 3-body collisions

- Three identical bosons with short-range interactions at E = 0 $\left[-\frac{1}{2}\nabla_1^2 - \frac{1}{2}\nabla_2^2 - \frac{1}{2}\nabla_3^2 + V(x_1) + V(x_2) + V(x_3) + V_3(x_1, x_2, x_3) \right] \phi = 0$
- Zero total momentum and zero total orbital angular momentum
- Wave function depends on three pairwise distances

Asymptotic expansions at large distances

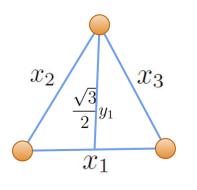
• 111-expansion fix shape, let $x_1, x_2, x_3 \rightarrow \infty$ simultaneously series of $1/\rho$, hyperradius $\rho = \sqrt{\frac{x_1^2 + x_2^2 + x_3^2}{2}}$

 $\frac{\sqrt{3}}{2}y$

• 21-expansion

fix x, at $y \to \infty$ series of 1/y

111-expansion



$$\phi^{(111)} = 1 + \left(\sum_{i=1}^{3} -\frac{a}{x_i} + \frac{8a^2\theta_i}{\sqrt{3}\pi x_i y_i} - \frac{2wa^3}{\pi x_i \rho^2} + \frac{8\sqrt{3}wa^4 \left(\ln\frac{e^{\gamma}\rho}{|a|} - 1 - \theta_i\cot 2\theta_i\right)}{\pi^2\rho^4}\right) - \frac{\sqrt{3}D}{8\pi^3\rho^4} + \dots + O(\frac{1}{\rho^8})$$

[S. Tan PRA 78, 013636 (2008)]

• Hyperradius
$$\rho = \sqrt{\frac{x_1^2 + x_2^2 + x_3^2}{2}}, \theta_i = \arctan \frac{y_i}{x_i}$$

 $w = \frac{4\pi}{3} - \sqrt{3}$, Euler's constant $\gamma \approx 0.577\ 215\ 664$

• *D*: three-body scattering hypervolume, [Length]⁴

$$21-expansion$$

$$\phi^{(21)} = \left(1 - \frac{4a}{\sqrt{3}y} + \frac{8a^2w}{3\pi y^2} - \frac{32a^3w}{3\sqrt{3}\pi y^3} + \frac{384\sqrt{3}wa^4(\ln\frac{\sqrt{3}e^\gamma y}{2|a|} - 3/2) - 16\xi_1}{9\pi^2 y^4}\right)\phi(x) + \frac{16a^2w}{3\pi^2 y^4}f(x)$$

$$+ \left(-\frac{20a}{\sqrt{3}y^3} + \frac{640(2\pi - 3\sqrt{3})a^2}{9\pi y^4}\right)\phi_{\hat{\mathbf{y}}}^{(d)}(\mathbf{x}) + \dots + O(\frac{1}{y^8}) \quad \text{[S. Tan PRA 78, 013636 (2008)]}$$

$$\xi_1 = \frac{\sqrt{3}D}{8\pi} - 8(\sqrt{3} - \pi/3)wa^4 - \frac{3\pi w}{2}a^3r_s$$

$$\cdot 2\text{-body s-wave: } \phi(x), f(x), \dots$$

$$H_{2b}\phi = 0, \quad H_{2b}f = \phi$$

$$\cdot 2\text{-body d-wave: } \phi_{\hat{\mathbf{y}}}^{(d)}(\mathbf{x}), \dots$$

$$H_{2b}\phi_{\hat{\mathbf{y}}}^{(d)}(\mathbf{x}) = 0$$

Applications of *D*

- Affect systems with $N \ge 3$ particles, at zero or finite termperatures
- Ground state energy of a dilute BEC, the nonuniversal n^2 term

$$\begin{split} \frac{E}{N} &= 2\pi na \Big[1 + \frac{128}{15\sqrt{\pi}} \sqrt{na^3} + 8wna^3 \ln(na^3) + (\frac{\pi r_s}{a} + 118.498\,920\,346) na^3 \Big] \\ &+ \frac{1}{6} Dn^2 + o(n^2) \end{split} \eqno(2.5)$$
 [E. Braaten & A. Nieto 1999, S. Tan 2008]

- Critical temperature
- Equation of state of Bose gases at finite temperatures

•

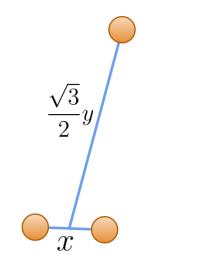
Calculation of *D*

• Hard-sphere bosons,
$$V_{HS}(r) = \begin{cases} +\infty, r < a \\ 0, r > a \end{cases}$$

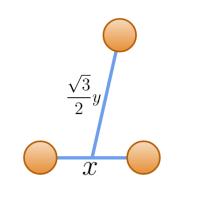
 $D_{HS} \approx 1761.5a^4$, by S. Tan 2008

• Soft-sphere bosons, $V(r) = v_0 \exp(-r^2)$

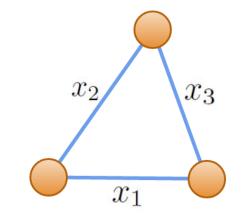
Error analysis of the two expansions at large ρ



- 21-expansion at $x \sim 1$
- Error ~ ρ^{-8}



• Intermediate region $x \sim \rho^{1/3}$

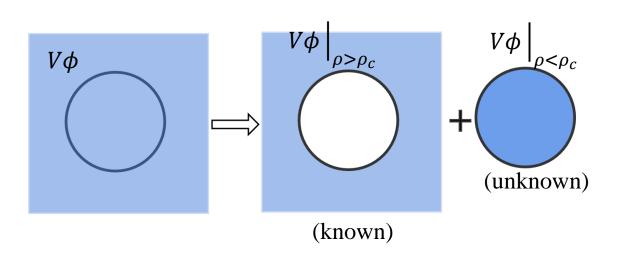


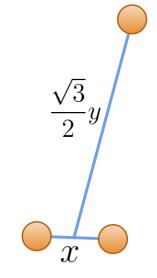
- 111-expansion at $x_i \sim \rho$
- Both expansions have errors $\sim \rho^{-6}$ Error $\sim \rho^{-8}$

$$\rho = \frac{\sqrt{3}}{2}\sqrt{x^2 + y^2} = \sqrt{\frac{x_1^2 + x_2^2 + x_3^2}{2}}$$

A detour, considering $V\phi$

- $V\phi$ well approximated by 21-expansion at large ρ $V\phi \approx V(x_1)\phi_1^{(21)} + V(x_2)\phi_2^{(21)} + V(x_3)\phi_3^{(21)}$
- $V\phi$ known outside a large hypersphere $\rho > \rho_c$





Wave function at large ρ_c

- $\nabla^2 \phi = V \phi$ in 6 dimensions
- Consider $V\phi$ as the source

• Divide the source into two pieces:
$$\rho' > \rho_c$$
 and $\rho' < \rho_c$

$$\phi(\mathbf{r}) = 1 - \frac{1}{4\pi^3} \int d^6 r' \frac{1}{|\mathbf{r} - \mathbf{r}'|^4} V(\mathbf{r}') \phi(\mathbf{r}')$$

$$= 1 + \hat{G} V \phi|_{\rho' > \rho_c} + \hat{G} V \phi|_{\rho' < \rho_c}$$

$$\rho_c$$

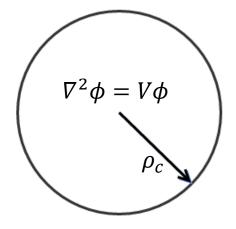
$$\widehat{G}V\phi|_{\rho'>\rho_c} = \sum_{nj} C_{nj}\rho^n Y_{nj}(\Omega)$$
 at $\rho \le \rho_c$, with KNOWN $C_{nj} = C_{nj}^{(0)} + C_{nj}^{(1)}D$

 $\hat{G}V\phi|_{\rho'<\rho_c} = \sum_{nj} B_{nj}\rho^{-n-4} Y_{nj}(\Omega)$ at $\rho \ge \rho_c$, UNKNOWN

At
$$\rho = \rho_c$$
, $\phi = 1 + \sum_{nj} (C_{nj}\rho^n + B_{nj}\rho^{-n-4}) Y_{nj}(\Omega)$, and its radial derivative

$$\frac{\partial \phi}{\partial \rho} = \sum_{nj} [nC_{nj}\rho^{n-1} - (n+4)B_{nj}\rho^{-n-5}] Y_{nj}(\Omega)$$

Matrix F



• For any Dirichlet boundary condition, ϕ at $\rho < \rho_c$ is completely determined. So,

$$\frac{\partial \phi}{\partial \rho}|_{\rho=\rho_c} = F(\rho_c)\phi|_{\rho=\rho_c}$$

• *F* is a power series of ρ_c at small ρ_c , and

$$\frac{dF(\rho_c)}{d\rho_c} + F^2 + \frac{5}{\rho_c}F = \frac{\Lambda(\Omega)}{\rho_c^2} + \mathcal{V}(\rho_c)$$

• Found *F* at $\rho_c = 12$

Determine D

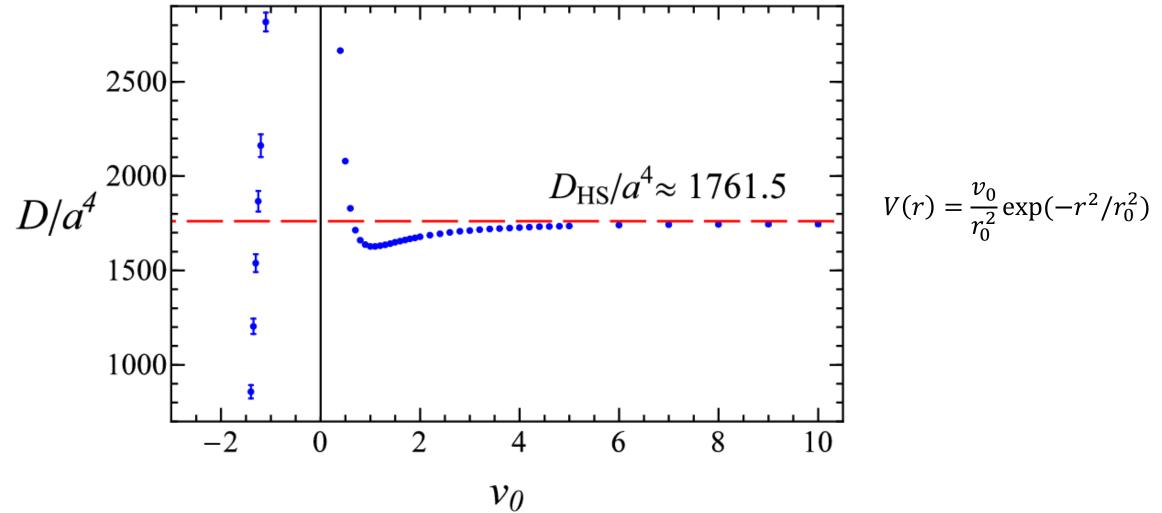
• At
$$\rho = \rho_c$$
, $\phi = 1 + \sum_{nj} (C_{nj}\rho^n + B_{nj}\rho^{-n-4}) Y_{nj}(\Omega)$, and
 $\frac{\partial \phi}{\partial \rho} = \sum_{nj} [nC_{nj}\rho^{n-1} - (n+4)B_{nj}\rho^{-n-5}] Y_{nj}(\Omega)$
• From F and $C_{nj} = C_{nj}^{(0)} + C_{nj}^{(1)}D$, found $B_{nj} = B_{nj}^{(0)} + B_{nj}^{(1)}D$

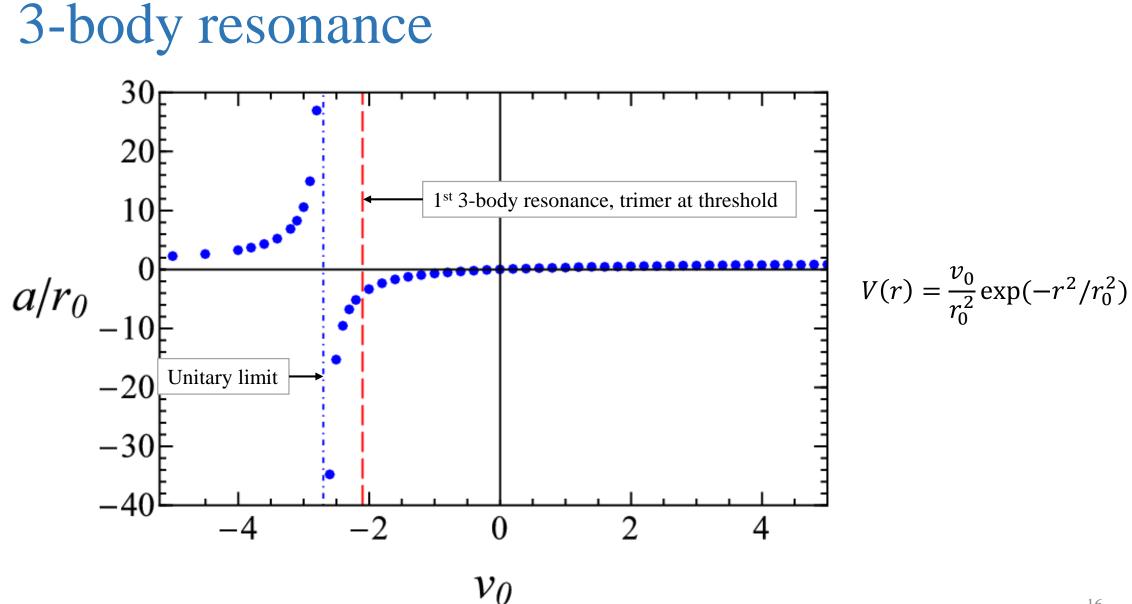
• Then, compare

$$\phi(\sqrt{\frac{2}{3}}\rho_c)\sqrt{\frac{2}{3}}\rho_c$$

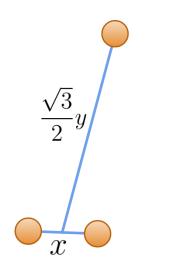
) with the 111-expansion to determine D

D for soft-sphere boson

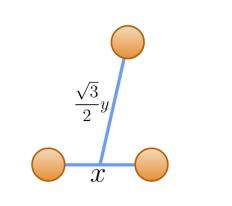




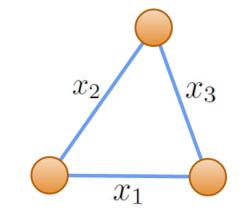
Extensions – unified formulas



- 21-expansion at $x \sim 1$
- Error ~ ρ^{-8}



- Intermediate region $x \sim \rho^{1/3}$
- Improved errors $\sim \rho^{-6} \rightarrow \sim \rho^{-8}$



- 111-expansion at $x_i \sim \rho$
- Error ~ ρ^{-8}

$$\rho = \frac{\sqrt{3}}{2}\sqrt{x^2 + y^2} = \sqrt{\frac{x_1^2 + x_2^2 + x_3^2}{2}}$$

. . .

Extensions

- With two-body bound states, Im*D* is related to the three-body recombination rate
- van der Waals tail $-1/r^6$, 21- and 111-expansions modified
- Two species (e.g. 1 light and 2 heavy atoms)
- Lower dimensions