Three-body scattering hypervolume of soft-sphere boson

Shangguo Zhu and Shina Tan
Georgia Institute of Technology
FBS16, KITP Santa Barbara, 2016/12/12

Outline

- Low-energy 2-body and 3-body collisions
- Definition of three-body scattering hypervolume D
- Calculation of D for soft-sphere bosons
- Extensions

Low-energy 2-body collisions

- 2 particles colliding at low energies in s-wave

$$
\begin{aligned}
& \psi=\phi+E f+E^{2} g+E^{3} h+\cdots \\
& H_{2 b} \phi=0, \quad H_{2 b} f=\phi, \quad H_{2 b} g=f \ldots
\end{aligned}
$$

- Wave function at $E=0$ outside the range of interaction

$$
\phi(x)=1-\frac{a}{x}
$$

a : two-body scattering length

Low-energy 3-body collisions

- Three identical bosons with short-range interactions at $E=0$

$$
\left[-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{1}{2} \nabla_{3}^{2}+V\left(x_{1}\right)+V\left(x_{2}\right)+V\left(x_{3}\right)+V_{3}\left(x_{1}, x_{2}, x_{3}\right)\right] \phi=0
$$

- Zero total momentum and zero total orbital angular momentum
- Wave function depends on three pairwise distances

Asymptotic expansions at large distances

- 111-expansion
fix shape, let $x_{1}, x_{2}, x_{3} \rightarrow \infty$ simultaneously
series of $1 / \rho$, hyperradius $\rho=\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{2}}$

-21-expansion
fix x, at $y \rightarrow \infty$
series of $1 / y$

111-expansion

$$
\phi^{(111)}=1+\left(\sum_{i=1}^{3}-\frac{a}{x_{i}}+\frac{8 a^{2} \theta_{i}}{\sqrt{3} \pi x_{i} y_{i}}-\frac{2 w a^{3}}{\pi x_{i} \rho^{2}}+\frac{8 \sqrt{3} w a^{4}\left(\ln \frac{\mathrm{e}^{\gamma} \rho}{|a|}-1-\theta_{i} \cot 2 \theta_{i}\right)}{\pi^{2} \rho^{4}}\right)-\frac{\sqrt{3} D}{8 \pi^{3} \rho^{4}}+\cdots+O\left(\frac{1}{\rho^{8}}\right)
$$

[S. Tan PRA 78, 013636 (2008)]

- Hyperradius $\rho=\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{2}}, \theta_{i}=\arctan \frac{y_{i}}{x_{i}}$,
$w=\frac{4 \pi}{3}-\sqrt{3}$, Euler's constant $\gamma \approx 0.577215664$
- D : three-body scattering hypervolume, [Length] ${ }^{4}$

21-expansion

$\phi^{(21)}=\left(1-\frac{4 a}{\sqrt{3} y}+\frac{8 a^{2} w}{3 \pi y^{2}}-\frac{32 a^{3} w}{3 \sqrt{3} \pi y^{3}}+\frac{384 \sqrt{3} w a^{4}\left(\ln \frac{\sqrt{3} e^{\gamma} y}{2|a|}-3 / 2\right)-16 \xi_{1}}{9 \pi^{2} y^{4}}\right) \phi(x)+\frac{16 a^{2} w}{3 \pi^{2} y^{4}} f(x)$
$+\left(-\frac{20 a}{\sqrt{3} y^{3}}+\frac{640(2 \pi-3 \sqrt{3}) a^{2}}{9 \pi y^{4}}\right) \phi_{\hat{\mathbf{y}}}^{(d)}(\mathbf{x})+\cdots+O\left(\frac{1}{y^{8}}\right)$
[S. Tan PRA 78, 013636 (2008)]
$\xi_{1}=\frac{\sqrt{3} D}{8 \pi}-8(\sqrt{3}-\pi / 3) w a^{4}-\frac{3 \pi w}{2} a^{3} r_{s}$

- 2-body s-wave: $\phi(x), f(x), \ldots$

$$
H_{2 b} \phi=0, \quad H_{2 b} f=\phi
$$

- 2-body d-wave: $\phi_{\hat{\mathbf{y}}}^{(d)}(\mathbf{x}), \ldots$

$$
H_{2 b} \phi_{\hat{\mathbf{y}}}^{(d)}(\mathbf{x})=0
$$

Applications of D

- Affect systems with $N \geq 3$ particles, at zero or finite termperatures
- Ground state energy of a dilute BEC, the nonuniversal n^{2} term

$$
\begin{aligned}
\frac{E}{N} & =2 \pi n a\left[1+\frac{128}{15 \sqrt{\pi}} \sqrt{n a^{3}}+8 w n a^{3} \ln \left(n a^{3}\right)+\left(\frac{\pi r_{s}}{a}+118.498920346\right) n a^{3}\right] \\
& +\frac{1}{6} D n^{2}+o\left(n^{2}\right) \quad \text { [E. Braaten \& A. Nieto 1999, S. Tan 2008] }
\end{aligned}
$$

- Critical temperature
- Equation of state of Bose gases at finite temperatures
-...

Calculation of D

- Hard-sphere bosons, $V_{H S}(r)=\left\{\begin{array}{c}+\infty, r<a \\ 0, r>a\end{array}\right.$

$$
D_{H S} \approx 1761.5 a^{4}, \text { by S. Tan } 2008
$$

- Soft-sphere bosons, $V(r)=v_{0} \exp \left(-r^{2}\right)$

Error analysis of the two expansions at large ρ

-••

- 21-expansion at $x \sim 1$
- Error $\sim \rho^{-8}$

$$
\rho=\frac{\sqrt{3}}{2} \sqrt{x^{2}+y^{2}}=\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{2}}
$$

- 111-expansion at $x_{i} \sim \rho$
- Error $\sim \rho^{-8}$

A detour, considering $V \phi$

- $V \phi$ well approximated by 21-expansion at large ρ

$$
V \phi \approx V\left(x_{1}\right) \phi_{1}^{(21)}+V\left(x_{2}\right) \phi_{2}^{(21)}+V\left(x_{3}\right) \phi_{3}^{(21)}
$$

- $V \phi$ known outside a large hypersphere $\rho>\rho_{c}$

Wave function at large ρ_{c}

- $\nabla^{2} \phi=V \phi$ in 6 dimensions
- Consider $V \phi$ as the source
- Divide the source into two pieces: $\rho^{\prime}>\rho_{c}$ and $\rho^{\prime}<\rho_{c}$

$$
\begin{aligned}
\phi(\mathbf{r}) & =1-\frac{1}{4 \pi^{3}} \int d^{6} r^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{4}} V\left(\mathbf{r}^{\prime}\right) \phi\left(\mathbf{r}^{\prime}\right) \\
& =1+\left.\widehat{G} V \phi\right|_{\rho^{\prime}>\rho_{c}}+\left.\widehat{G} V \phi\right|_{\rho^{\prime}<\rho_{c}}
\end{aligned}
$$

$$
\left.\widehat{G} V \phi\right|_{\rho^{\prime}>\rho_{c}}=\sum_{n j} C_{n j} \rho^{n} Y_{n j}(\Omega) \text { at } \rho \leq \rho_{c} \text {, with KNOWN } C_{n j}=C_{n j}^{(0)}+C_{n j}^{(1)} D
$$

$$
\left.\widehat{G} V \phi\right|_{\rho^{\prime}<\rho_{c}}=\sum_{n j} B_{n j} \rho^{-n-4} Y_{n j}(\Omega) \text { at } \rho \geq \rho_{c}, \text { UNKNOWN }
$$

$$
\text { At } \rho=\rho_{c}, \phi=1+\sum_{n j}\left(C_{n j} \rho^{n}+B_{n j} \rho^{-n-4}\right) Y_{n j}(\Omega), \text { and its radial derivative }
$$

$$
\frac{\partial \phi}{\partial \rho}=\sum_{n j}\left[n C_{n j} \rho^{n-1}-(n+4) B_{n j} \rho^{-n-5}\right] Y_{n j}(\Omega)
$$

Matrix F

- For any Dirichlet boundary condition, ϕ at $\rho<\rho_{c}$ is completely determined. So,

$$
\left.\frac{\partial \phi}{\partial \rho}\right|_{\rho=\rho_{c}}=\left.F\left(\rho_{c}\right) \phi\right|_{\rho=\rho_{c}}
$$

- F is a power series of ρ_{c} at small ρ_{c}, and

$$
\frac{d F\left(\rho_{c}\right)}{d \rho_{c}}+F^{2}+\frac{5}{\rho_{c}} F=\frac{\Lambda(\Omega)}{\rho_{c}^{2}}+\mathcal{V}\left(\rho_{c}\right)
$$

- Found F at $\rho_{c}=12$

Determine D

- At $\rho=\rho_{c}, \phi=1+\sum_{n j}\left(C_{n j} \rho^{n}+B_{n j} \rho^{-n-4}\right) Y_{n j}(\Omega)$, and

$$
\frac{\partial \phi}{\partial \rho}=\sum_{n j}\left[n C_{n j} \rho^{n-1}-(n+4) B_{n j} \rho^{-n-5}\right] Y_{n j}(\Omega)
$$

- From F and $C_{n j}=C_{n j}^{(0)}+C_{n j}^{(1)} D$, found $B_{n j}=B_{n j}^{(0)}+B_{n j}^{(1)} D$
- Then, compare

D for soft-sphere boson

3-body resonance

Extensions - unified formulas

- 21-expansion at $x \sim 1$
- Error $\sim \rho^{-8}$

- Intermediate region $x \sim \rho^{1 / 3}$
- Improved errors $\sim \rho^{-6} \rightarrow \sim \rho^{-8}$

- 111-expansion at $x_{i} \sim \rho$
- Error $\sim \rho^{-8}$

$$
\rho=\frac{\sqrt{3}}{2} \sqrt{x^{2}+y^{2}}=\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{2}}
$$

Extensions

- With two-body bound states, $\operatorname{Im} D$ is related to the three-body recombination rate
- van der Waals tail $-1 / r^{6}, 21$ - and 111-expansions modified
- Two species (e.g. 1 light and 2 heavy atoms)
- Lower dimensions

