Topological changes of the Fermi surface and the effect of electronic correlations in iron pnictides

Oxford University

EPSRC Pioneering research and skills

http://www.physics.ox.ac.uk/users/coldeaa

KITP, Santa Barbara, Jan 2011

Collaborators

University of BRISTOL

Antony Carrington, Caroline Andrew, Jon Fletcher, A. Bangura H. H. Wills Physics Laboratory, University of Bristol, UK

Ian Fisher, James Analytis, Jiun-Haw Chu, Hsueh-Hui Kuo Geballe Laboratory for Advanced Materials, Stanford University, USA

S. Kasahara, H. Shishido, K. Hashimoto, T. Shibauchi, Y. Matsuda Department of Physics, Kyoto University, Japan

Ross McDonald

National High Magnetic Field Laboratory, Los Alamos National Laboratory, **USA**

Alix McCollam High Magnetic Field Laboratory, Nijmegen, The Netherlands

D. Vignolles, C. Proust, B. Vignolle

Laboratoire National des Champs Magnetiques Intenses, Toulouse, **France**

Phase diagrams: cuprates vs pnictides

- AFM ordering Mott-insulator;
- Strong electronic correlations;
- pseudogap;
- •Cu²⁺ -O_{2p} 3d_{x2-y2} single band;

- AFM ordering– Bad metals;
- small carrier density ;
- Fe²⁺ As³⁻ (*d*⁶); all five *d* orbitals important;
- high density of states N(EF), prone to magnetic instabilities;

C. Lester et al, Phys. Rev. B 79, 144523 (2009)

Doiron-Leyraud et al, Nature, 447 565 (2007)

Effect of chemical pressure: P substitution

• suppression of magnetism and the presence of superconductivity through chemical substitutions: As replaced by P, or Fe replaced by 4*d* and 5*d* elements: Rh, Ir and Pd; other examples $SrFe_{1-x}Ru_xAs_2$, LaFeAs_{1-x}P_xO and EuFe₂As_{2-x}P_x.

S. Jiang, *et al.*, arXiv:0901.3227 (2009) S. Kasahara *et al.*, PRB **81**, 134422 2010

Criticality determined by As/P substitution

CeFeAs_{1-x}P_xO:

• suppression of magnetism by chemical substitution As/P, unique role of Pdoping in suppressing the *d*-electron correlations.

J. Dai et al., PNAS, 106, 4118 (2009)

Y. Luo, *et al.*, arXiv:0907.2961 (2009)

Plan of my talk

- Quantum oscillations to determine the Fermi surface and comparison with band structure calculations.
- the superconducting LaFePO; role of nesting ;
- Role of dimensionality on the Fermi surface: the case of **SrFe₂P₂**.
- Fermi surface shrinking and enhanced correlations in **BaFe**₂(As_{1-x} P_x)₂
- Topological change of the Fermi surface with c/a ratio: the case of **CaFe₂P₂**.
- Conclusions

1111 LaFePO *T_~* 6K

122 SrFe₂P₂ c/a=3.04

122 CaFe₂P₂ *c/a*=2.65

Quantum oscillations map out the Fermi surface

'k-space microscopy': 0.1% IBZ; 3D map of the Fermi surface;
bulk probe; no sensitive to surface effects like ARPES;

Shoenberg, Magnetic oscillations in metals, (1984)

Lifshitz-Kosevich formalism

છ

Temperature - low temperatures $R_T = \frac{2\pi^2 p k_B T m^* / e\hbar B}{\sinh\left(2\pi^2 p k_B T m^* / e\hbar B\right)}$

Finite scattering time – clean samples

$$R_D = e^{-2\pi^2 p k_B T_D m^*/e\hbar B}$$

Superconducting state –random vortex lattice

$$R_{SC} = \exp\left[-\pi^{\frac{3}{2}} \left(\frac{\Delta_E(B)}{\hbar\omega_c}\right)^2 \left(\frac{B}{F}\right)^{\frac{1}{2}}\right]$$

• extracted parameters: quasiparticle effective mass m^* (band renormalization near the Fermi energy), scattering rates ~ $T_D = \hbar / (2pk_B t)$, spin-splitting factor g^*

$$m^*/m_b = (1 + \lambda_{el-ph})(1 + \lambda_{el-el}) \sim 1 + \lambda_{el-ph} + \lambda_{el-el}$$

 $\frac{1}{m_b} = \frac{1 + F_1^s/3}{1 + F_0^a}$

Shoenberg, Magnetic oscillations in metals, (1984)

Torque measurements with AFM cantilevers

The resistance of the active piezocantilevers (SEIKO) is measured with respect to that of the dummy using a conventional *ac* Wheatstone bridge circuit.

High magnetic field and low temperatures

Low temperatures (0.3 K < *T* < 4 K), **high magnetic fields** (0 < *B* < 55 T) at NHMFL, Tallahassee, USA, Nijmegen, The Netherlands and Toulouse, France; **rotation in field** (-90⁰ < θ < 90⁰);

Bulk superconductivity in LaFePO

• High residual resistivity ratio: ~ 85; low H_{c2} ;

• Anomaly in specific heat: bulk superconductor; non-magnetic; 0.07 $\mu_B/Fe;$ •reversible signal - weak pinning; **anisotropy ~10**;

J. Analytis, et. al., arXiv:0810.5368 (2008)

C. Andrew, PhD Thesis (2010)

Superconducting order parameter with line nodes in LaFePO

 Clean superconductor: Superfluid density show linear dependence down to 100 mK suggesting the presence of nodes in the symmetry of the superconducting gap;

J. Fletcher, et. al., PRL 102, 147001 (2009)

New J. Phys. 11, 025016 (2009)

de Haas-van Alphen effect in LaFePO

high B: normal state; oscillations periodic in inverse field, de Haas-van Alphen effect.
τ ~ B² –characteristic to a paramagnet;
a simple corrugation of the Fermi cylinder leads to a beat pattern in the magnetization.

A.I. Coldea et al., PRL, 101,216402 (2008)

de Haas-van Alphen effect in LaFePO

Torque (a.u.)

Fermi surface warping and Yamaji angle

Significant c-axis warping: of the Fermi surface 3D Fermi surfaces in 1111 compounds

overdoped cuprates

Tl₂Ba₂CuO_{6+δ}

 $\Delta F_{\alpha}/F_{\alpha} \sim 4\%;$ $\Delta F_{\beta}^{n}/F_{\beta}^{n} \sim 23 \%;$ $\rho_{c}/\rho_{ab} \sim 10$

LaFePO

 $\Delta F/F < 1\%;$ $\rho_c / \rho_{ab} \sim 10^3$

organics β -(BEDT-TTF)₂IBr₂ $\Delta F/F < 1.3\%$;

$$\frac{\rho_{\rm c}/\rho_{\rm ab}}{\epsilon_{\rm F}} = \frac{\Delta F}{2F}$$

N. Hussey et al., Nature 425, 814 (2003); M. Kartsovnik et al., Chem. Rev., 104, 5737 (2004)

Band structure of LaFePO: spaghetti

dHvA data versus band structure calculations

• electronic branches show similar dispersion to the experimental α and β pockets;

no experimental branch matches the weak dispersion due to the 3D hole pocket;

Band shifting and charge balance

Electron bands shifted by ΔE =+85 meV (band 5), +30 meV (band 4); hole bands all shifted by ΔE =-53 meV; Charge imbalance ~0.034 el/fu; ~1.7% oxygen deficiency in LaFePO.

Shrinking of the Fermi surface in LaFePO

L. Ortenzi et al., PRL 103, 046404 (2009).

Moderate mass enhancement in LaFePO

- the effective masses between 1.7-2.1 m_e for both electrons and holes;
- moderate mass enhancement for the electronic bands;

Electronic contribution to the specific heat

 E_F lies just above a peak in the DOS, which leads to a rapidly decreasing DOS with energy.

$$\frac{C}{T} = \frac{\pi k_{\rm B}^2 N_{\rm A} a^2}{3\hbar^2} \times \sum m_i^{\star}$$

 $\gamma_{exp_{powder}} \sim 7 - 12 \text{ mJ/mol K}^2;$

 $\gamma_{\rm dHvA}$ = 6 mJ/mol K²;

Assuming 4 quasi-two dimensional cylinders with $m^* \sim 2 m_e$;

3D pocket absent?

Advances in Physics, 2003, Vol. 52, No. 7, 639–725

Quasiparticle scattering rates in LaFePO

 k_F is the orbitally averaged Fermi wavevector for the particular Fermi surface orbit;

 $I_{\alpha} \sim 1300 \text{ Å}$ inelastic quasiparticle mean free-path (small and large angle scattering from impurities)

• mean free path: electrons $I_{\alpha} \sim 1300$ Å and $I_{\beta} \sim 800$ Å; scattering for hole \sim factor 2 larger;

Relevance of the orbital character of bands

c) π π d_{XZ} d_{YZ} d_{XY} $d_{Z^2-Y^2}$ d_{XY} $d_{3Z^2-R^2}$ $d_{3Z^2-R^2}$ $d_{3Z^2-R^2}$ $d_{3Z^2-R^2}$ d_{XY} $d_{3Z^2-R^2}$ d_{XY} $d_{3Z^2-R^2}$ d_{XY} $d_{3Z^2-R^2}$ d_{XY} $d_{3Z^2-R^2}$ d_{XY} $d_{3Z^2-R^2}$ d_{XY} $d_{3Z^2-R^2}$

 k_F is the orbitally averaged Fermi wavevector for the particular Fermi surface orbit;

 $I_{\alpha} \sim 1300 \text{ Å}$ inelastic quasiparticle mean free-path (small and large angle scattering from impurities)

• mean free path: electrons $I_{\alpha} \sim 1300$ Å and $I_{\beta} \sim 800$ Å; scattering for hole \sim factor 2 larger;

K. Kuroki *et al.* Phys. Rev. B 79, 224511 (2009)

S. Gaser et al., arxiv.1003.0133 (2010)

Effect of chemical pressure: P substitution

W. Xie, PRB 79, 115128 (2009)

S. Kasahara et al., PRB 81, 134422 2010

Reconstructed Fermi surface in the AFM phase

Quantum oscillations in SrFe₂P₂

tetrahedron with 109.47)

Electronic bands α and β shows the largest amplitude; the least affected by scattering (if masses the same);

J.G. Analytis *et al.*, PRL **103**, 076401 (2009)

Fermi surface of SrFe₂P₂

Electronic bands in very good agreement with band structure calculations; band shifts still needed. Nesting?

J.G. Analytis *et al.*, PRL **103**, 076401 (2009)

Fermi surface of SrFe₂P₂

		Experiment			Calculations				
		F(kT)	$\frac{m^*}{m_e}$	$\ell(nm)$	Orbit	F(kT)	$rac{m_b}{m_e}$	$\frac{m^*}{m_b}$	
					1_{\min}	0.632	0.97		
	γ	0.89	1.49(2)	58	$1_{\rm max}$	1.804	1.07	1.4	
holes {	δ	0.41	1.6(1)	21	2_{\min}	0.828	1.24	1.3	
	ϵ	6.02^{*}	$3.41(5)^*$	90	$2_{\rm max}$	10.95	2.30	1.7	
(β_1	2.41	1.92(2)	63	3_{\min}	3.077	1.25	1.6	
	β_2	3.06	2.41(3)	70	$3_{\rm max}$	3.824	1.70	1.6	
electrons	α_1	1.637	1.13(1)	100	4_{\min}	1.823	0.55	2.1	
	α_2	1.671	1.13(1)	100	$4_{\rm max}$	1.966	0.60	2.1	

Moderate mass enhancement sheet dependent and anisotropy in scattering;
Nesting strongly diminished-strongly warped cylinders and a three-dimensional hole pocket; some nesting may be possible along k_z;

J.G. Analytis *et al.*, PRL **103**, 076401 (2009)

Evolution of Fermi surface in BaFe₂(As_{1-x}P_x)₂

oscillations observed for materials with Tc = 0 - 25 K; $T_{max}=30$ K for x = 0.33;

H. Shishido *et al.*, PRL 104, 057008 (2010)

Evolution of electronic pockets in $BaFe_2(As_{1-x}P_x)_2$

•Two electron cylindrical Fermi surfaces;
•Volume: Decrease with decreasing *x* (no doping);

H. Shishido *et al.,* PRL 104, 057008 (2010)

Fermi surface shrinking in $BaFe_2(As_{1-x}P_x)_2$

Enhancement of the effective mass in $BaFe_2(As_{1-x}P_x)_2$

Spin fluctuations in BaFe₂(As_{1-x}P_x)₂

Enhanced nesting towards maximum Tc?

• One further HEAVY hole pocket observed; inner electron pocket and inner hole pocket have similar sizes; shrinking of the electronic bands;

J.G. Analytis et al., PRL 105, 207004 (2010)

ARPES studies in BaFe₂(As_{1-x}P_x)₂ (x=0.38)

• one quasi-two dimensional electron and hole pockets have similar size and shape inplying good nesting but they have different orbital character ($d_{xz/yz}$ for hole and d_{xy} for the electron sheet) so weak contribution to the spin susceptibility;

T. Yoshida *et al.*, arXiv:1008.2080 (2010)

Significant pnictogen bonding affects FS

Journal of Alloys and Compounds 262-263 (1997) 516-520

Effect of applied pressure in pcnitides

CaFe₂A₂ under pressure has a transition to a non-magnetic collapsed tetragonal (cT) state; ~ 10% decrease in the *c*-axis and a ~2% increase in the *a*-axis; *c*/*a*=3 in the tetragonal phase to *c*/*a*=2.65 in the cT phase;

•Superconductivity present under non-hydrostatic conditions (uniaxial pressure);

A.I. Goldman et al., Phys. Rev. B 79, 024513 (2009)

D. A. Tompsett, G. G. Lonzarich, arxiv:0902.4859 (2009)

Effect of chemical pressure: small c/a ratio

Band structure calculations predict:

• CaFe₂P₂ is a close structural analogue of the collapsed tetragonal non-magnetic phase of CaFe₂As₂ and shows a similar Fermi surface;

• single electron and hole sheets highly three-dimensional in character ;

A.I. Coldea et al., PRL, 103, 026404 (2009)

Quantum oscillations in CaFe₂P₂

0.0

0

α,

5

torque measurements in 45 T at 0.4 K;
series of different frequencies corresponding to various extremal areas on the Fermi surface;

A.I. Coldea et al., PRL, 103, 026404 (2009)

15

2α,

10

F(kT)

 0°

20

Quantum oscillations in CaFe₂P₂

- good agreement between the band structure calculations and experimental data; no band shifts required.
- identical mass enhancement on both electron and hole pockets ~1.5;
- topological change of the Fermi surface;.

A.I. Coldea et al., PRL, 103, 026404 (2009)

The strength of electronic correlations

		Mass enhancement: $1 + \lambda$		λ	
SC	LaFePO	$m^*/m_b^2 \sim 2.$ 2 inner electron pocket		1.2	
	BaFe ₂ (As _{1-x} P _x) ₂	2.54 outer electron pocket	1.54		
		m^*/m_b^{\sim} 3 for electron pockets		~2	
Non SC	CaFe ₂ P ₂	$m^*/m_b^{\sim}1.5$ electron/hole pockets	0.5	1	
	BaFe ₂ P ₂	$m^*/m_b^{\sim}1.5$ electron pockets	_	0.5	j
					-

$$\frac{m^*/m_b = (1 + \lambda_{el-ph})(1 + \lambda_{el-el}) \sim 1 + \lambda_{el-ph} + \lambda_{el-el}}{\text{electron-phonon coupling}}$$

$$\frac{\lambda_{th}}{\lambda_{el-ph}} \sim 0.25 \text{ for Fe-pnictides}}$$

$$\frac{\lambda_{th}}{\lambda_{el-el}} \sim 0.5 - 1.5$$

$$\frac{1}{1000}$$

$$\frac{1}{1000}$$

Kulic et al., arXiv:0904.3512 L. Boeri, Physica C 469, 628 (2009)

•Fermi surface of 122 compounds extremely sensitive to **structural** effects (*c/a* ratio –uniaxial pressure ?).

•For small spacer layer or large *d* orbitals Fermi surface topology is strongly modified (in particular for the hole bands);

•Anisotropic scattering: hole pockets affected much more by impurity scattering as compared to the electron pockets; orbitals?

•Shrinking of the Fermi surface as compared with the band structure calculations –electronic correlations;

 Enhanced effective masses and increased FS nesting in LaFePO and BaFe₂(P_{1-x}As_x) – strength of electronic correlations;

