Multiband effects on T_c

Carsten Honerkamp

Stefan Uebelacker

Institute for Theoretical Solid State Physics RWTH Aachen University

New ingredient: orbital weights

Multiorbital/multiband problem

$$H_{I} = U \sum_{i,o} n_{i,o,\uparrow} n_{i,o,\downarrow} + \frac{U'}{2} \sum_{\substack{i,o \neq o' \\ s,s'}} n_{i,o,s} n_{i,o',s'}$$

$$= \frac{1}{2} \sum_{\substack{i,o1...o4}} V_{o1...o4} c_{i,o3,s}^{\dagger} c_{i,o4,s'}^{\dagger} c_{i,o2,s'} c_{i,o1,s}$$

Transform into band representation

$$\gamma_{n,\vec{k},s} = \sum_{o} u_{no}(\vec{k}) c_{o,\vec{k},s}$$

$$V_{n1n2n3n4}(\vec{k}_1,\vec{k}_2;\vec{k}_3,\vec{k}_4) = \sum_{o1,o2,o3,o4} u_{n1o1}(\vec{k}_1)u_{n2o2}(\vec{k}_2)u_{n3o3}^*(\vec{k}_3)u_{n4o4}^*(\vec{k}_4)V_{o1...o4}$$

the ,orbital makeup'

For multi-orbital case, bare interactions in band language are much richer!

Besides Fermi surface shape/density of states, orbital makeup is important!

Can one find simple principles that determine T_c ?

T_c trends in pnictides

PHYSICAL REVIEW B 79, 224511 (2009)

Pnictogen height as a possible switch between high- T_c nodeless and low- T_c nodal pairings in the iron-based superconductors

Kazuhiko Kuroki, 1,2 Hidetomo Usui, 1 Seiichiro Onari, 2,3 Ryotaro Arita, 2,4,5 and Hideo Aoki 2,6

pnictogen height h_{Pn}

Fe-As-Fe angle α

Electronic structure trends in cuprates

Band-Structure Trend in Hole-Doped Cuprates and Correlation with $T_{c\,\mathrm{max}}$

E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,† O. Jepsen, and O. K. Andersen Max-Planck-Institut für Festkörperforschung, D-70506 Stuttgart, Germany (Received 4 December 2000; published 10 July 2001)

By calculation and analysis of the bare conduction bands in a large number of hole-doped high-temperature superconductors, we have identified the range of the intralayer hopping as the essential, material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between ${\rm Cu}\,4s$, apical-oxygen $2p_z$, and farther orbitals. Materials with higher $T_{c\,\,\rm max}$ have larger hopping ranges and axial orbitals more localized in the ${\rm Cu}{\rm O}_2$ layers.

Nearest-neighbor hopping t' through 'axial orbital' (Cu 4s hybridized with apical O p_z)

Energy of axial orbital decreases with apical O distance, t' grows, T_c grows

Trend: T_c rises with t'/t, although Fermi surface more curved

PHYSICAL REVIEW LETTERS

week ending 30 JULY 2010

Hg-

Two-Orbital Model Explains the Higher Transition Temperature of the Single-Layer Hg-Cuprate Superconductor Compared to That of the La-Cuprate Superconductor

Hirofumi Sakakibara, Hidetomo Usui, Kazuhiko Kuroki, Ryotaro Arita, and Hideo Aoki Arita, Arita, Arita, Ryotaro Arita, Arita, Arita, Kazuhiko Kuroki, Ryotaro Arita, Arita

FIG. 3 (color online). The eigenvalue λ of the Eliashberg equation for d-wave superconductivity is plotted against $\Delta E =$ $E_{x^2-y^2}-E_{z^2}$ for the two-orbital (circles) or three-orbital (triangles) models for La₂CuO₄. Corresponding eigenvalues for HgBa₂CuO₄ are also indicated.

$$\Delta E_{4s-3dz^2} = const.$$

26 27 h_O[Å] 25 28 29 FIG. 4 (color online). The eigenvalue of the Eliashberg equation λ (circles) when $h_{\rm O}$ (a) or ΔE (b) is varied hypothetically in

eigenvalue of HgBa₂CuO₄. The inset in (b) shows the relation

between $h_{\rm O}$ and ΔE .

(b)

Qualitative & simple understanding?

@ weak coupling (fRG)

What are the tuning parameters besides density of states and Fermi surface shape?

Two-orbital scenario

$$H = \begin{pmatrix} \epsilon_d + W_d(1-u) & -v\sqrt{W_dW_s} \\ -v\sqrt{W_dW_s} & \epsilon_s + W_s(1-u) \end{pmatrix} \qquad u = \frac{1}{2}(\cos k_y + \cos k_x)$$
$$v = \frac{1}{2}(\cos k_y - \cos k_x)$$

Hybridization between d_{x2-v2} orbital and s-like orbital

- changes sign upon 90deg rotation
- increases Fermi surface curvature, causes t'

Simplest approximation:

Keep only interaction on d-dominated band at Fermi level

Two-orbital scenario, RG flow to strong coupling

Keep only interaction on band at Fermi surface Run RG flow with/without orbital makeup

$$V_{n1n2n3n4}(\vec{k}_1, \vec{k}_2; \vec{k}_3, \vec{k}_4) = \sum_{o1,o2,o3,o4} u_{n1o1}(\vec{k}_1) u_{n2o2}(\vec{k}_2) u_{n3o3}^*(\vec{k}_3) u_{n4o4}^*(\vec{k}_4) V_{o1...o4}$$

Orbital make-up reduces T_c , reduces d-wave pairing strength

Make-up hurts: Two-patch analysis

Local interactions U, U' lead to

$$g_{1,3} = (c^4 + s^4)U - 2c^2s^2U'$$

 $g_{2,4} = (c^4 + s^4)U + 2c^2s^2U'$
 $c = \cos\phi \text{ and } s = \sin\phi$

d-wave pairing wants large g_3 - g_4 !

At least for this system, orbital makeup does not help $T_c!$

Three-band case

 $3d_{x2-y2}$

Hybridizations between

- Central d_{x2-y2} orbital
- s-like orbital above
- d_{372-r2}-orbital below

$$H = \begin{pmatrix} \epsilon_z + W_z(1-u) & -v\sqrt{W_dW_z} & u\sqrt{W_zW_s} \\ -v\sqrt{W_dW_z} & \epsilon_d + W_d(1-u) & -v\sqrt{W_dW_s} \\ u\sqrt{W_zW_s} & -v\sqrt{W_dW_s} & \epsilon_s + W_s(1-u) \end{pmatrix}$$

$$u\sqrt{W_zW_s} - v\sqrt{W_dW_s}$$
$$\epsilon_s + W_s(1-u)$$

$$\Delta E = \epsilon_d - \epsilon_z$$

Keep constant

$$\Delta E_{4s-3dz^2} = 8eV, const.$$

Trend for T_c

4s-like band should be wider than 3d₇₂-band!

Change of 4s admixture occurs on larger energy scale than change of 3d₇₂-admixture!

Negative effect of 3d_{z2} disappears more quickly than negative effect of 4s grows!

Marked increase of T_c when 4s, $3d_{z2}$ orbital are lowered with respect to $3d_{x2-y2}$!

Relevance to be clarified ...

Additional interaction contributions

So far interactions are projected onto $3d_{x2-y2}$ -dominated band near Fermi level

Corrections due to virtual excitations in occupied/empty bands

Could be captured by cRPA

Not captured by cRPA, but possibly largest, as only one intermediate particle gapped