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New ingredient: orbital weights

Multiorbital/multiband problem
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the ,orbital makeup’

For multi-orbital case, bare interactions in band language are much richer!
Besides Fermi surface shape/density of states, orbital makeup is important!

Can one find simple principles that determine T_?



I_trends in pnictides

PHYSICAL REVIEW B 79, 224511 (2009)

Pnictogen height as a possible switch between high-7', nodeless and low-7. nodal pairings

in the iron-based superconductors

Kazuhiko Kuroki,!? Hidetomo Usui,! Seiichiro Onari, 2> Ryotaro Arita,>*> and Hideo Aoki*®
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Electronic structure trends in cuprates

Band-Structure Trend in Hole-Doped Cuprates and Correlation with T,

E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,” O. Jepsen, and O. K. Andersen

Max-Planck-Institut fiir Festkorperforschung, D-70506 Stuttgart, Germany \g
(Received 4 December 2000; published 10 July 2001) , )

By calculation and analysis of the bare conduction bands in a large number of hole-doped high- & & A ‘p
temperature superconductors, we have identified the range of the intralayer hopping as the essential, g & /\@ @:’ W
material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between Cu 4s, ’
apical-oxygen 2p,, and farther orbitals. Materials with higher 7. max have larger hopping ranges and -~ [ > = t”

axial orbitals more localized in the CuQO, layers.

Nearest-neighbor hopping t” through ‘axial orbital’ (Cu 4s hybridized with
apical O p,)
Energy of axial orbital decreases with apical O distance, t’ grows, T, grows
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Trend in cuprates

PRL 105, 057003 (2010)

PHYSICAL REVIEW LETTERS

week ending
30 JULY 2010

Two-Orbital Model Explains the Higher Transition Temperature of the Single-Layer Hg-Cuprate
Superconductor Compared to That of the La-Cuprate Superconductor

Hirofumi Sal(al(ihara,1 Hidetomo Usui,I Kazuhiko Kuml(i,l‘4 Ryotaro Arita,g“l‘S and Hideo Aoki**
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FIG. 3 (color online). The eigenvalue A of the Eliashberg
equation for d-wave superconductivity is plotted against AE =
E.> » — E. for the two-orbital (circles) or three-orbital (tri-

anglés) models for La,CuQ,. Corresponding eigenvalues for
HgBa,CuO, are also indicated.
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FIG. 4 (color online).
tion A (circles) when A (a) or AE (b) is varied hypothetically in
the lattice structure of La,CuQ,. The diamond indicates the
eigenvalue of HgBa,CuQO,. The inset in (b) shows the relation
between Ay and AE.

The eigenvalue of the Eliashberg equa-



Qualitative & simple understanding?
@ weak coupling (fRG)
What are the tuning parameters

besides density of states and Fermi
surface shape?



4s

pne  TWo-orbital scenario
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Hybridization between d,, ., orbital and s-like orbital
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Keep only interaction on d-dominated band at Fermi level



Two-orbital scenario,
RG flow to strong coupling

Keep only interaction on band at Fermi surface
Run RG flow with/without orbital makeup
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the ,orbital makeup
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Orbital make-up reduces T, reduces d-wave pairing strength



Make-up hurts: Two-patch analysis

Local interactions U, U’ lead to

g13 = (c* +sHU — 222U’
ga.a = (c* + sHU + 2c2s*U’

c =cos¢ and s = sin ¢
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At least for this system,
orbital makeup does
not help T_!



Three-band case

4s

Hybridizations between Vary
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Trend for T

4s-like band should be wider than 3d,,-band!

Change of 4s admixture occurs on larger energy scale
than change of 3d,,-admixture!

Negative effect of 3d,, disappears more quickly than
negative effect of 4s grows!
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Additional interaction contributions

So far interactions are projected onto 3d,, ,,-dominated band near Fermi level

3dx2—y2 3dx2—y2

3dx2—y2 3dx2—y2

Corrections due to virtual excitations in occupied/empty bands

4
3dx2—y2 2 3dx2—y2
.o. Could be captured by cRPA

3dx2-y2 3 dx2—v2
3dx2—y2

3d,,.,7 3d,2.2 Not captured by cRPA, but
.’. possibly largest, as only one
intermediate particle gapped
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