Quantum Computing with Noninteracting Bosons

Scott Aaronson (MIT)

Based on joint work with Alex Arkhipov

www.scottaaronson.com/papers/optics.pdf

This talk will involve two topics in which Mike Freedman played a pioneering role...

"Quantum computing beyond qubits":

TQFT, nonabelian anyons...

- Yields new links between complexity and physics
- Can provide new implementation proposals

Quantum computing and #P:

Quantum computers can additively estimate the Jones polynomial, which is **#P**-complete to compute exactly

Everything feasibly computable in the physical world is feasibly computable by a (probabilistic) Turing machine

But building a QC able to factor n>>15 is damn hard! Can't CS "meet physics halfway" on this one? I.e., show computational hardness in more easily-accessible quantum systems?

Also, factoring is an extremely "special" problem

Our Starting Point

$$\operatorname{Det}(A) = \sum_{\sigma \in S_n} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^n a_{i,\sigma(i)} \qquad \operatorname{Per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

$$\operatorname{Per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

All I can say is, the bosons got the harder job

BOSONS

This Talk: The Bosons Indeed Got The Harder Job

Valiant 2001, Terhal-DiVincenzo 2002, "folklore":

A QC built of noninteracting fermions can be efficiently simulated by a classical computer

Our Result: By contrast, a QC built of noninteracting bosons can solve a sampling problem that's hard for classical computers, under plausible assumptions

The Sampling Problem: Output a matrix $A \sim N(0,1)_C^{n \times n}$ with probability weighted by $|\operatorname{Per(A)}|^2$

But wait!

If n-boson amplitudes correspond to n×n permanents,

New result (from my flight here): Poly-time randomized algorithm to estimate the probability of any final state of a "boson computer," to within $\pm 1/\text{poly}(n)$ additive error

Yes, but only up to additive error

$$\pm \frac{\|A\|}{\text{poly}(n)}$$

And Gurvits gave a poly-time classical randomized algorithm that estimates $|Per(A)|^2$ just as well!

Crucial step we take: switching attention to sampling problems

The Computational Model

Basis states: $|S\rangle = |s_1,...,s_m\rangle$, $s_i = \#$ of bosons in ith mode $(s_1+...+s_m = n)$

Standard initial state: $|1\rangle = |1,...,1,0,....,0\rangle$

You get to apply any m×m mode-mixing unitary U

U induces a unitary $\varphi(U)$ on the n-boson states, whose entries are permanents of submatrices of U:

$$\langle S | \varphi(U) T \rangle = \frac{\text{Per}(U_{S,T})}{\sqrt{s_1! \cdots s_m! t_1! \cdots t_m!}}$$

Example: The Hong-Ou-Mandel Dip

Suppose
$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
.

Then Pr[the two photons land in different modes] is

$$\left| \operatorname{Per}(U) \right|^2 = 0$$

Pr[they both land in the first mode] is

$$\left| \frac{1}{\sqrt{2!}} \operatorname{Per} \left(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right) \right|^2 = \frac{1}{2}$$

For Card-Carrying Physicists

Our model corresponds to linear optics, with single-photon Fock-state inputs and nonadaptive photon-

Physicists we consulted: "Sounds hard! But not as hard as building a universal QC" of the Hong-Ou-Mandel dip, where n = big as possible

Our main results strongly suggest that such a generalized

Remark: No point in scaling this experiment much beyond 20 or 30 photons, since then a classical computer can't even verify the answers!

- Reliable single-photon sources
- Reliable photodetector arrays
- Getting a large n-photon coincidence probability

OK, so why is it hard to sample the distribution over photon numbers classically?

Given any matrix $A \subset C^{n \times n}$, we can construct an $m \times m$ unitary U (where $m \ge 2n$) as follows:

$$U = \begin{pmatrix} \mathcal{E}A & B \\ C & D \end{pmatrix}$$

Suppose we start with $|I\rangle=|1,...,1,0,...,0\rangle$ (one photon in each of the first n modes), apply U, and measure.

Then the probability of observing $|I\rangle$ again is

$$p := \left| \left\langle I \middle| \varphi(U) I \right\rangle \right|^2 = \varepsilon^{2n} \left| \operatorname{Per}(A)^2 \right|$$

Claim 1: p is #P-complete to estimate (up to a constant factor)

Idea: Valiant proved that the PERMANENT is #P-complete.

Can use a classical reduction to go from a multiplicative approximation of |Per(A)|² to Per(A) itself.

Claim 2: Suppose we had a fast classical algorithm for linear-optics sampling. Then we could estimate p in BPPNP

Idea: Let M be our classical sampling algorithm, and let r be its randomness. Use approximate counting to estimate $\Pr[M(r) \text{ outputs } |I\rangle]$

Conclusion: Suppose we had a fast c as stall algorithm for linear-optics sampling. Then P#P=BPPNP.

The Elephant in the Room

Our whole result hinged on the difficulty of estimating a **single**, **exponentially-small probability** p —but what about noise and error?

The "right" question: can a classical computer efficiently sample a distribution with 1/poly(n) variation distance from the linear-optical distribution?

Our Main Result: Suppose it can. Then there's a BPP^{NP} algorithm to estimate $|\operatorname{Per}(A)|^2$, with high probability over a Gaussian matrix $A \sim N(0,1)^{n \times n}$

Our Main Conjecture

Estimating |Per(A)|², for most Gaussian matrices A, is a #P-hard problem

If the conjecture holds then even a noisy n-nhoton

First step: Understand the distribution of |Per(A)|² for Gaussian A

Related Result: The KLM Theorem

Theorem (Knill, Laflamme, Milburn 2001): Linear optics with adaptive measurements can do universal QC

Yields an alternate proof of our first result (fast exact classical algorithm $\Rightarrow P^{\#P} = BPP^{NP}$)

A., last month: KLM also yields an alternate proof of Valiant's Theorem, that the permanent is #P-complete!

To me, more "intuitive" than Valiant's original proof

Similarly, Kuperberg 2009 used Freedman-Kitaev-Larsen-Wang to reprove the #P-hardness of the Jones polynomial

Open Problems

Prove our main conjecture (\$1,000)!

Can our model solve classically-intractable decision problems?

Similar hardness results for other quantum systems (besides noninteracting bosons)?

Bremner, Jozsa, Shepherd 2010: QC with commuting Hamiltonians can sample hard distributions

Fault-tolerance within the noninteracting-boson model?