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This talk will involve two topics
in which Mike Freedman played
a pioneering role...

“Quantum computing beyond qubits”:
TQFT, nonabelian anyons...

- Yields new links between complexity and physics
- Can provide new implementation proposals

Quantum computing and #P:
Quantum computers can additively estimate the Jones
polynomial, which is #P-complete to compute exactly
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The Extended Church-
Turing Thesis (

verything feasib
computable in the physical

world is feasibly computable

@ by a (probabilistic) Turing machine
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But building a QC able to factor n>>15 is damn hard!

Can’t CS “meet physics halfway” on this one?
l.e., show computational hardness in more easily-accessible quantum systems?
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Also, factoring is an extremely “special” problem



Our Starting Point
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All | can say is, the bosons
got the harder job .

FERMIONS BOSONS




This Talk: The Bosons Indeed Got
The Harder Job

Valiant 2001, Terhal-DiVincenzo 2002, “folklore”:
A QC built of noninteracting fermions can be efficiently
simulated by a classical computer

Our Result: By contrast, a QC built of noninteracting
bosons can solve a sampling problem that’s hard for
classical computers, under plausible assumptions
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The Sampling Problem: Output a matrix A ~ N(O,l)z;
with probability weighted by |Per(A)|?



But wait!

If n-boson amplitudes correspond to nxn permanents,
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New result (from my flight here): Poly-time randomized
algorithm to estimate the probability of any final state of
a “boson computer,” to within =1/poly(n) additive error

T
poly(n)

And Gurvits gave a poly-time classical randomized
algorithm that estimates |Per(A)|? just as well!

Yes, but only up to additive error



Crucial step we take: switching
attention to sampling problems

BPP

SampBQP

A. 2011: Given any
sampling problem,
can define an
equivalent search
problem




The Computational Model
O Basis states: |S)=|s,...,S,),

s. = # of bosons in it" mode

ONOIOIO] | (sppots, =n)

Standard initial state: |I)=|

@ 1,..,1,0,.....,0)
| | | ‘O | ‘O | ‘O | You get to.a.pply any mxm

mode-mixing unitary U

U induces a unitary @(U) on the n-boson states,
whose entries are permanents of submatrices of U:

<S‘(p(U)T> Per(UST)
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Example: The Hong-Ou-Mandel Dip
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Then Pr[the two photons land in different modes] is

Per(U ) =0
Per(U)

Pr[they both land in the first mode] is
2
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Our model corresponds to linear optics, with single-
photon Fock-state inputs and nonadaptive photon-

For Card-Carrying Physicists

Basi

Physicists we consulted: “Sounds hard! But
not as hard as building a universal QC”

N

of the Hong-Ou-Mandel dip, where n = big as possible

Our main results strongly suggest that such a generalized
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Remark: No point in scaling this experiment
much beyond 20 or 30 photons, since then a

classical computer can’t even verify the answers!

- Relldplie Singlie-prnotorn sources
- Reliable photodetector arrays
- Getting a large n-photon coincidence probability



OK, so why is it hard to sample the
distribution over photon numbers classically?

Given any matrix A&C™", we can construct an mxm
unitary U (where m=2n) as follows:

eA B
[/ =
C D
Suppose we start with |1)=]1,...,1,0,...,0) (one photon
in each of the first n modes), apply U, and measure.

Then the probability of observing |I) again is
p=\1lp@)1) = e*[Per(4)’




Claim 1: p is #P-complete to
estimate (up to a constant factor)

Idea: Valiant proved that the
PERMANENT is #P-complete.

Can use a classical reduction
to go from a multiplicative
approximation of |Per(A)|?
to Per(A) itself.

Claim 2: Suppose we had a
fast classical algorithm for
linear-optics sampling. Then
we could estimate p in BPPNP

Idea: Let M be our classical
sampling algorithm, and let r
be its randomness. Use
approximate counting to
estimate Pr[M (r)outputs ‘ !/ >
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Rﬁf&lﬁlagrithm

for linear-optics sampling. Then P#*=BPPNP,




The Elephant in the Room

Our whole result hinged on the difficulty of
estimating a single, exponentially-small probability p
—but what about noise and error?

The “right” question: can a classical computer
efficiently sample a distribution with 1/poly(n)
variation distance from the linear-optical distribution?

Our Main Result: Suppose it can. Then there’s a BPP"F
algorithm to estimate |Per(A)|?, with high probability

over a Gaussian matrix Vs N(O,l)éxn




Our Main Conjecture

Estimating | Per(A)|?, for most Gaussian

matrices A, is a #P-hard problem

If the coniectiire hnld< then even a nnisv n-nhoton
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First step: Understand the distribution of |Per(A)|?
for Gaussian A



Related Result: The KLM Theorem

Theorem (Knill, Laflamme, Milburn 2001): Linear optics
with adaptive measurements can do universal QC

Yields an alternate proof of our first result (fast exact
classical algorithm = P#? = BPPNP)

A., last month: KLM also yields an alternate proof of
Valiant’s Theorem, that the permanent is #P-complete!
To me, more “intuitive” than Valiant’s original proof

Similarly, Kuperberg 2009 used Freedman-Kitaev-

Larsen-Wang to reprove the #P-hardness of the
Jones polynomial



Open Problems

Prove our main conjecture (S1,000)!

Can our model solve classically-intractable decision
problems?

Similar hardness results for other quantum systems
(besides noninteracting bosons)?

Bremner, Jozsa, Shepherd 2010: QC with commuting
Hamiltonians can sample hard distributions

Fault-tolerance within the
noninteracting-boson model?




