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Topological Band Theory

Integer Quantum Hall Effect, TKNN invariant (Thouless et al. 1984)

Bloch Hamiltonans

. . . 2
H(k) : Brillouin zone (T7) — with energy gap

First Chern Number : topological invariant characterizing occupied bands
2

e
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0 Chiral Dirac
vacuum n, = Er fermion edge
v=1 QHE n =1 mode

-rt/a (I) kK m/a
Bulk - Boundary Correspondence
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Time Reversal Invariant ¥}, Topological Insulator
Time Reversal Symmetry : OH (k)('*)_1 = H(-k) Oy =io’y *

Kramers’ Theorem : ®* =-1 = Allstates doubly degenerate
E By =
jo : two ways to connect Kramers
pairs on surface OR
/
k=A, k=A, k=A, k=A,
Bulk - Boundary Correspondence
Equivalence classes of surface/edge: even or odd number
Hk) keT’ Dirac points enclosed by Fermi surface
! )
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Topological Insulators

Two dimensions: Quantum Spin Hall Insulator
Graphene :

107k
Kane, Mele 05
6 T=30mK
HgCdTe quantum well 00l

Bernevig, Hughes, Zhang '06
Edge state transport experiments

104k
Konig, et al. ‘07 //

G =0.01e2/h

Ri4,23/Q

(Vg=Vin) /V

Three dimensions: Strong Topological Insulator

Theory: Moore, Balents 06, Roy ‘06, Fu, Kane, Mele ‘06 Surface States probed by ARPES:
Bi,_, Sb, e RS

Fu, Kane '07 (Th)
Hsieh, et al '07 (Exp)

Bi, Se,, Bi, Te,

Xia, et al ‘09 (Exp+Th)
Zhang, et al ‘09 (Th)
Hsieh, et al '09 (Exp)
Chen et al. '09 (Exp)

D Hsieh, et al. Nature ‘09



Topological Superconductivity, Majorana Fermions

H = Z(CZ C_, )L[BdG(k)(ka

-k

H, A

Bogoliubov de Gennes
Hyy =

Hamiltonian A° _H,

Particle-Hole symmetry : =H, (k)2 =-H, . (-k) EY =Tt Y”
Quasiparticle redundancy : Y _p = El/JE = )/2 =Y_g

Simplest Example: 1D superconductor, spinless electrons (kitaev '01)

. 1
¥}, Topological Superconductor ¥ =-_ [k TriA] mod 2=0or

Discrete end state SpeCtrum . 5N D (50—

E, v=0 N v=1
AT c AT Majorana Fermion
Ve E=0 bound state
0 + 0 + T
= Y g = )/2 )/O = )/O
_A €1 _A 4




Periodic Table of Topological Insulators and Superconductors

Kitaev, 2008
Anti-Unitary Symmetries : Schnyder, Ryu,
- Time Reversal : @H(k)('-)_l = +H(—k) ; @2 =+] Furusaki, Ludwig 2008
- Particle - Hole : EH(kK)Z™' =-H(-k); E®==I
Unitary (chiral) symmetry : IH&)I1' =-H(k); II1=0Z=
Symmetry d
AZ © = mo|1 2 3 4 5 6 7 8
[ "A] 0 o o|lofzlo z o z o z Complex
AIII| O 0 1 Z 0 Z 0 Z 0 Z 0 K-theory
Al 1 0 0 0 0 0 Z 0 Zo Zo Z
Altland- BDI| 1 1 1| Z 0 0 0 Z 0 Zy Zo
Zirnbauer < D| o 1 o0|[Z]z o o o zZ o0 Z Real
EZ?s;m DII| -1 1 1|Zy Zo Z 0 0 0 Z 0 \ K-theory
Classes Alll =1 0 0] 0 [Z]|zsl 2z 0o o o =z Bott
o)
Cltr| -1 -1 1 Z 0 Zo Zo Z 0 0 0 S
Cl 0 -1 0|0 Z 0 Zy Za Z 0 0 Periodicity
.\ CI| 1 -1 1[0 0 Z 0 Zo Zo Z 0




Majorana Fermion bound states

Potential hosts :
® Quasiparticle excitations of Moore Read FQHE state

® Prototype topological superconductors
- vortex in 2D spinless p+ip SC Read Green 00
- end state in1D spinless p wave SC Kitaev 01

Measure (/0,,0,,)+|1,1,,))/+/2

Topological Quantum Computing Kitaev 03

® Atopological protected quantum memory

® Non-Abelian braiding statistics
— Quantum computation

Create | 0,,0,, >



Engineering Topological Superconductivity
with ordinary superconductors: Superconducting Proximity Effect

H=y'(-vgV-py =

—_— . s wave superconductor /
+A + A
Sw Tl/} | 5 l/} \Lw f Topological insulator
proximity induced superconductivity
at surface

® Half an ordinary superconductor

* Similar to 2D spinless p,+ip, topological superconductor, except :
x My

- Does not violate time reversal symmetry _ _
- s-wave singlet superconductivity -K Dirac point
- Required minus sign is provided by

nt Berry’s phase due to Dirac Point

® Nontrivial ground state supports Majorana k
fermion bound states at vortices



Majorana Bound States on Topological Insulators

1. h/2e vortex in 2D superconducting state

SC

$ h/2e

Tl

A
N Vi
0 - Vg =70
_A .
v VTE =VE

2. Superconductor-magnet interface at edge of 2D QSHI

S.C.

Ny

Ll
>
<

>
H*
]

QSHI

m=|Ag|=|A, |

Domain wall bound state vy,



1D Majorana Fermions on Topological Insulators
1. 1D Chiral Majorana mode at superconductor-magnet interface

Y, = yfk : “Half’ a 1D chiral Dirac fermion H = —ihVF )/Bx)/
2. S-TI-S Josephson Junction

¢ £ 0 \/ _::i
SC /SC 4 a,

Gapless non-chiral Majorana fermion for phase difference ¢ = x

H =—ihv_ (yLaxyL —yRaxyR)+iAcos(¢/2)yLyR



Protected Modes at Topological Defects

Example : Majorana zero mode vortex in p+ip superconductor
E A Read, Green ‘00

A__

4 S1
O 4

2D p+ip

SC AT

A\

What property of H guarantees that a zero mode is present?

Expect presence of zero mode is “known” by the by the BdG
Hamiltonian far from defect

Adiabatic approximation : topologically classify families of gapped
BdG Hamiltonians

H(k, S) ke T° : Brillouin zone

s€S' : Surrounding circle



Topological Defects

Classify families of Bloch-BdG Hamiltonians parameterized by r
subject to time reversal and/or particle-hole symmetry constraints

H(k,r)=0OH(-k,r)®" H(k,r)=-EH(-k,r)Z"

d=1 d=2 d=3

resS’  |p=0| S | G 5 0o=23
res D=1 @ 0o=72

res? D=2 \g S=1

Generalized bulk-boundary correspondence :

Topological classes of defect Hamiltonians are associated with protected
gapless modes associated with the defect.




Generalized Periodic Table for Topological Defects
Topological classes depend only on the difference

0 =d - D = Defect dimensionality +1

A
Teo, Kane '10 T T =2 - line defects

Freedman, et al. ’10
Ryu, Schnyder, Furusaki, Ludwig ‘10

d0=1 : point defects

0=0 : adiabatic temporal pumps



Majorana Bound States

2
VvV =
d\(2m)’

Z, invariant, d=1,2,3 f d'kd’'r Q,, , mod 2

d d-1
T7xS Chern Simons 2d-1 form

Vortex in 2D topological superconductor

v =nm mod 2
el
Chern number

. winding number
of topological

of vortex
superconductor

Topological Insulator Heterostructures

f h/2e

@) M} — SC
s wave SC < 1T *
QSHI

Tl




Majorana Fermions in Three Dimensions

Majorana bound states arise as solutions to three dimensional BdG theories

H=r [-mﬁﬁ +m(r)u, ] +Re(A(r))r, +Im(A(r))r,
\\/ _/ N \//

Qi, Hughes, Zhang Model for m >0 ! Superconducting pairing
edge of 3D topological insulator Trivial Insulator at surface
1
m<0 i \
Topological Insulator ! ~ Majorana bound state

Minimal massive Dirac model:
“hedgehog” configuration

H = -i7 -V + T 7i(r) [ 7(r)
(Y1,¥2,¥3), (I'1,I5,I'3) : 8x8 Dirac matrices ?Zzz
n(r)= (nl,nz,n3 )= (Re(A), Im(A),m) l

Teo and Kane, PRL ‘10



Non-Abelian Exchange Statistics in 3D

Exchange a pair of hedgehogs: Teo and Kane ‘10
Y1 &+ + 2 Y Ygg + 2 Y Yo &+ + R Y
<> <> / % — ii(r) =17,
T3y - (@ -¥h RERVE (b)\% Ya Y3 - (©) ¥
Yo R+ + R Y 4{2?+ + R Y @ + Y4 . ﬁ(r) — ﬁz
Y38 - (d) - 1 13- €@ -V, BY - 6O -V

27 rotation : Wavefunction of Majorana bound _
state changes sign (ﬂl [0(3)]_ L, )

Interchange rule: Ising Anyons

JU
Y1 = 7s —"172

T =g 4 Nayak, Wilczek '96
Y, ==Y, 12 lvanov ‘01

With mathematical rigor: Projective Ribbon Permutation Statistics

Freedman, Hastings, Nayak, Qi, Walker, Wang ‘10



Fractional Josephson Effect

Fu, Kane '08
Kitaev 01
Kwon, Sengupta, Yakovenko ‘04

o) . |112134>

XX,

s ] ] >
O\‘012034> 2 4

*® 4 perioidicity of E(¢) protected by local conservation
of fermion parity.

* AC Josephson effect with half the usual frequency: f=eV/h



Conclusion

® The intersection of topology and condensed matter physics is both
beautiful and physically important.
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® The intersection of topology and condensed matter physics is both
beautiful and physically important.

® Majorana Fermions are cool.

® Let us hope that at a future party we can give Mike a birthday present

-
au
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Two routes to 1D or 2D topological superconductivity :

Semiconductor - Magnet - Superconductor

structure Sau, Lutchyn, Tewari, Das Sarma '09

... and many others
A E

Rashba split

2DEG bands
h— =
Zeeman splitting
< » k

Advantages of S-M-S structures

* Well studied materials ie InAs

* No poorly insulating substrate required
induced gap

Disadvantages of S-M-S structures

* Requires fine tuning — especially when
Rashba is weak

* Disorder (even in superconductor) strongly
suppresses proximity induced gap

Topological Insulator structure
A

TI surface
states

Er

< >

Disdvantages of S-TI structures

* Tl materials have not been perfected

Advantages of S-Tl structures

®* The proximity induced gap can be as large as the
bulk superconducting gap for strong coupling.

® Time reversal symmetry protects
superconductivity from disorder (Anderson’s thm)

(see e.g. A Potter, PA Lee arXiv:1103.2129)



Topological Invariant for a line defect

Class A (no symmetries), d=3, D=1: [¥
® 2nd Chern number

n =

1
- [d’kdsTr[FAF |

* Characterizes families of Bloch states |u,(K, s )>

Specifies # Chiral Dirac Fermion modes ~ QH edge states

® Can be expressed as a winding number :

1 0(s)=4ifd3kTr[AAdA+§AAAAA
n=—~aods-Vo(s) o
2.777 Qi, Hughes, Zhang (2008) formula for

topological magnetoelectric coupling

0=0: trivial insulator (T - invariant)
0=mn: topological insulator (T - invariant)
0 = 0,m : magnetic insulator (T breaking)

It would be interesting to engineer chiral Dirac fermions using
topological insulator and/or magnetic topological insulator structures.

A



