Topological Insulators and Majorana Fermions

Charles Kane, University of Pennsylvania

- Introduction: Topological Band Theory
- III. Majorana Fermions on Topological Insulators
- IV. Generalized "Periodic Table" for topological defects in insulators and superconductors
- IV. Non-Abelian statistics in 3D

Thanks to Gene Mele, Liang Fu, Jeffrey Teo

Topological Insulators and Majorana Fermions

Charles Kane, University of Pennsylvania

- Introduction: Topological Band Theory
- III. Majorana Fermions on Topological Insulators
- IV. Generalized "Periodic Table" for topological defects in insulators and superconductors
- IV. Non-Abelian statistics in 3D

Thanks to Gene Mele, Liang Fu, Jeffrey Teo

And special thanks to Mike Freedman. Happy Birthday!

Topological Band Theory

Integer Quantum Hall Effect, TKNN invariant (Thouless et al. 1984)

$$H(\mathbf{k})$$
: Brillouin zone $(T^2) \mapsto \begin{array}{l} \mathsf{Bloch\ Hamiltonans} \\ \mathsf{with\ energy\ gap} \end{array}$

First Chern Number: topological invariant characterizing occupied bands

$$n = \frac{1}{2\pi} \int_{T^2} d^2 \mathbf{k} \operatorname{Tr}[\mathbf{F}] \in \mathbb{Z} \quad \text{(F = Berry curvature)} \quad \boldsymbol{\sigma}_{xy} = n \frac{e^2}{h}$$

Edge States

Chiral Dirac fermion edge mode

Bulk - Boundary Correspondence

$$n_1 - n_2 = \#$$
 Chiral Fermion modes

Time Reversal Invariant [X]₂ Topological Insulator

Time Reversal Symmetry : $\Theta H(\mathbf{k})\Theta^{-1} = H(-\mathbf{k})$ $\Theta \psi = i\sigma^y \psi^*$

Kramers' Theorem : $\Theta^2 = -1 \implies \text{All states doubly degenerate}$

Bulk - Boundary Correspondence

	Equivalence classes of $H(\mathbf{k}) \mathbf{k} \in T^d$	surface/edge: even or odd number Dirac points enclosed by Fermi surface
d=2	\mathbb{Z}_2	k_{F} k_{F} k_{F}
d=3	$\mathbb{Z}_2 \oplus 3\mathbb{Z}_2$ (weak Topo. Ins.)	E _F

Topological Insulators

Two dimensions: Quantum Spin Hall Insulator

Graphene

Kane, Mele '05

HgCdTe quantum well

Bernevig, Hughes, Zhang '06

Edge state transport experiments

Konig, et al. '07

Three dimensions: Strong Topological Insulator

Theory: Moore, Balents '06, Roy '06, Fu, Kane, Mele '06

Surface States probed by ARPES:

Bi_{1-x} Sb_x Fu, Kane '07 (Th) Hsieh, et al '07 (Exp)

Bi₂ Se₃, Bi₂ Te₃

Xia, et al '09 (Exp+Th) Zhang, et al '09 (Th) Hsieh, et al '09 (Exp) Chen et al. '09 (Exp)

Topological Superconductivity, Majorana Fermions

$$H = \sum_{k} \left(c_{k}^{\dagger} \quad c_{-k} \right) H_{BdG}(k) \begin{pmatrix} c_{k} \\ c_{-k}^{\dagger} \end{pmatrix} \quad \text{Bogoliubov de Gennes} \quad H_{BdG} = \begin{pmatrix} H_{0} & \Delta \\ \Delta^{*} & -H_{0} \end{pmatrix}$$
 Particle-Hole symmetry:
$$\Xi H_{BdG}(k) \Xi^{-1} = -H_{BdG}(-k) \qquad \Xi \Psi = \tau_{*} \Psi^{*}$$

Quasiparticle redundancy : $\psi_{-E} = \Xi \psi_E \implies \gamma_E^\dagger = \gamma_{-E}$

Simplest Example: 1D superconductor, spinless electrons (Kitaev '01)

Topological Superconductor $v = \frac{1}{2\pi} \int dk \operatorname{Tr}[\mathbf{A}] \mod 2 = 0 \text{ or } 1$

Discrete end state spectrum: END

Majorana Fermion bound state

$$\gamma_0^{\dagger} = \gamma_0$$

Periodic Table of Topological Insulators and Superconductors

Anti-Unitary Symmetries:

- Time Reversal: $\Theta H(\mathbf{k})\Theta^{-1} = +H(-\mathbf{k})$; $\Theta^2 = \pm 1$

- Particle - Hole : $\Xi H(\mathbf{k})\Xi^{-1} = -H(-\mathbf{k})$; $\Xi^2 = \pm 1$

Kitaev, 2008 Schnyder, Ryu, Furusaki, Ludwig 2008

Unitary (chiral) symmetry : $\Pi H(\mathbf{k})\Pi^{-1} = -H(\mathbf{k})$; $\Pi = \Theta \Xi$

		Symmetry				d									
	_	AZ	Θ	Ξ	Π	1	2	3	4	5	6	7	8		
		A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	7	Complex
		AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\ \frac{1}{2}	K-theory
		AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z})	
Altland- Zirnbauer		BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2		Б
		D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2		Real
Random		DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0		K-theory
Matrix Classes		AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}		, D-#
Classes	Ш	CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0		Bott
		\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0		Periodicity
		CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0		

Majorana Fermion bound states

Potential hosts:

- Quasiparticle excitations of Moore Read FQHE state
- Prototype topological superconductors
 - vortex in 2D spinless p+ip SC Read Green 00
 - end state in1D spinless p wave SC Kitaev 01

Topological Quantum Computing Kitaev 03

- A topological protected quantum memory
- Non-Abelian braiding statistics
 - → Quantum computation

Engineering Topological Superconductivity with ordinary superconductors: Superconducting Proximity Effect

$$H = \psi^{\dagger} (-i \mathbf{v} \vec{\sigma} \cdot \vec{\nabla} - \mu) \psi$$
$$+ \Delta_{S} \psi^{\dagger} \psi^{\dagger}_{\downarrow} + \Delta_{S}^{*} \psi_{\downarrow} \psi_{\uparrow}$$

- proximity induced superconductivity at surface
- Half an ordinary superconductor
- Similar to 2D spinless p_x+ip_y topological superconductor, except :
 - Does not violate time reversal symmetry
 - s-wave singlet superconductivity
 - Required minus sign is provided by π Berry's phase due to Dirac Point
- Nontrivial ground state supports Majorana fermion bound states at vortices

Majorana Bound States on Topological Insulators

1. h/2e vortex in 2D superconducting state

2. Superconductor-magnet interface at edge of 2D QSHI

Domain wall bound state γ_0

1D Majorana Fermions on Topological Insulators

1. 1D Chiral Majorana mode at superconductor-magnet interface

 $\gamma_k = \gamma_{-k}^{\dagger}$: "Half" a 1D chiral Dirac fermion

$$H = -i\hbar V_F \gamma \partial_x \gamma$$

2. S-TI-S Josephson Junction

Gapless non-chiral Majorana fermion for phase difference $\phi = \pi$

$$H = -i\hbar v_F \left(\gamma_L \partial_x \gamma_L - \gamma_R \partial_x \gamma_R \right) + i\Delta \cos(\phi/2) \gamma_L \gamma_R$$

Protected Modes at Topological Defects

Example: Majorana zero mode vortex in p+ip superconductor

What property of H guarantees that a zero mode is present?

Expect presence of zero mode is "known" by the by the BdG Hamiltonian far from defect

Adiabatic approximation: topologically classify families of gapped BdG Hamiltonians

 $H(\mathbf{k},s)$ $k \in T^2$: Brillouin zone

 $s \in S^1$: Surrounding circle

Topological Defects

Classify families of Bloch-BdG Hamiltonians parameterized by **r** subject to time reversal and/or particle-hole symmetry constraints

$$H(\mathbf{k},\mathbf{r}) = \Theta H(-\mathbf{k},\mathbf{r})\Theta^{-1}$$
 $H(\mathbf{k},\mathbf{r}) = -\Xi H(-\mathbf{k},\mathbf{r})\Xi^{-1}$

Generalized bulk-boundary correspondence:

Topological classes of defect Hamiltonians are associated with protected gapless modes associated with the defect.

Generalized Periodic Table for Topological Defects

Topological classes depend only on the difference

$$\delta = d - D =$$
 Defect dimensionality +1

	Sy	mmet	$\delta = d - D$									
s	AZ	Θ^2	Ξ^2	Π^2	0	1	2	3	4	5	6	7
0	A	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
1	AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
0	AI	1	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
1	BDI	1	1	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
2	D	0	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
3	DIII	-1	1	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$
4	AII	-1	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
5	CII	-1	-1	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
6	С	0	-1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
7	CI	1	-1	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

Teo, Kane '10 Freedman, et al. '10 Ryu, Schnyder, Furusaki, Ludwig '10 $\delta = 2$: line defects

 δ =1 : point defects

 δ =0 : adiabatic temporal pumps

Majorana Bound States

$$Z_2$$
 invariant, d=1,2,3 $v = \frac{1}{d}$

$$Z_2$$
 invariant, d=1,2,3 $v = \frac{2}{d!(2\pi)^d} \int_{T^d \times S^{d-1}} d^d \mathbf{k} d^{d-1} \mathbf{r} \ Q_{2d-1} \ \text{mod } 2$
Chern Simons 2d-1 form

Vortex in 2D topological superconductor

Topological Insulator Heterostructures

Majorana Fermions in Three Dimensions

Majorana bound states arise as solutions to three dimensional BdG theories

Minimal massive Dirac model:

$$H = -i\vec{\gamma} \cdot \vec{\nabla} + \vec{\Gamma} \cdot \vec{n}(\mathbf{r})$$

 $(\gamma_1,\gamma_2,\gamma_3),\,(\Gamma_1,\Gamma_2,\Gamma_3)$: 8x8 Dirac matrices

$$\vec{n}(\mathbf{r}) = (n_1, n_2, n_3) = (\text{Re}(\Delta), \text{Im}(\Delta), m)$$

"hedgehog" configuration

Non-Abelian Exchange Statistics in 3D

Exchange a pair of hedgehogs:

Teo and Kane '10

 2π rotation : Wavefunction of Majorana bound state changes sign

$$\left(\pi_1 \big[O(3) \big] = \mathbb{Z}_2 \right)$$

Interchange rule: Ising Anyons

$$\gamma_1 \rightarrow \gamma_2$$
 $\gamma_2 \rightarrow -\gamma_1$ $T_{12} = e^{\frac{\pi}{4}\gamma_1\gamma_2}$ Nayak, Wilczek '96 Ivanov '01

With mathematical rigor: Projective Ribbon Permutation Statistics

Fractional Josephson Effect

Fu, Kane '08 Kitaev '01 Kwon, Sengupta, Yakovenko '04

- 4π perioidicity of E(ϕ) protected by local conservation of fermion parity.
- AC Josephson effect with half the usual frequency: f = eV/h

Conclusion

 The intersection of topology and condensed matter physics is both beautiful and physically important.

Conclusion

- The intersection of topology and condensed matter physics is both beautiful and physically important.
- Majorana Fermions are cool.

Conclusion

- The intersection of topology and condensed matter physics is both beautiful and physically important.
- Majorana Fermions are cool.
- Let us hope that at a future party we can give Mike a birthday present

Two routes to 1D or 2D topological superconductivity:

Semiconductor - Magnet - Superconductor structure Sau, Lutchyn, Tewari, Das Sarma '09

Advantages of S-M-S structures

- Well studied materials ie InAs
- No poorly insulating substrate required induced gap

Disadvantages of S-M-S structures

- Requires fine tuning especially when Rashba is weak
- Disorder (even in superconductor) strongly suppresses proximity induced gap

Topological Insulator structure

Disdvantages of S-TI structures

TI materials have not been perfected

Advantages of S-TI structures

- The proximity induced gap can be as large as the bulk superconducting gap for strong coupling.
- Time reversal symmetry protects superconductivity from disorder (Anderson's thm)

(see e.g. A Potter, PA Lee arXiv:1103.2129)

Topological Invariant for a line defect

Class A (no symmetries), d=3, D=1:

2nd Chern number

$$n = \frac{1}{8\pi^2} \int d^3 \mathbf{k} ds \operatorname{Tr} \left[\mathbf{F} \wedge \mathbf{F} \right]$$

- Characterizes families of Bloch states $|u_n(\mathbf{k},s)\rangle$
- Specifies # Chiral Dirac Fermion modes ~ QH edge states
- Can be expressed as a winding number:

$$n = \frac{1}{2\pi} \oint ds \cdot \nabla \theta(s)$$

$$\theta(s) = \frac{1}{4\pi} \int d^3k \operatorname{Tr} \left[\mathbf{A} \wedge d\mathbf{A} + \frac{2}{3} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \right]$$
Qi, Hughes, Zhang (2008) formula for topological magnetoelectric coupling

 $\theta = 0$: trivial insulator (T - invariant)

 $\theta = \pi$: topological insulator (T - invariant)

 $\theta \neq 0,\pi$: magnetic insulator (T breaking)

It would be interesting to engineer chiral Dirac fermions using topological insulator and/or magnetic topological insulator structures.