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Topological Band Theory 
Integer Quantum Hall Effect, TKNN invariant  (Thouless et al. 1984) 

First Chern Number : topological invariant characterizing occupied bands 

Bulk - Boundary Correspondence   

ν=1 QHE 

vacuum 
Chiral Dirac 
fermion edge 
mode 

(F = Berry curvature) 

Edge States   

-π/a π/a 0 k 

E 

EF 



Bulk - Boundary Correspondence 
Equivalence classes of surface/edge: even or odd number 

Dirac points enclosed by Fermi surface 

d=2 

d=3 

EF 

Time Reversal Invariant 2 Topological Insulator  
Time Reversal Symmetry :  

Kramers’ Theorem : All states doubly degenerate 

2 : two ways to connect Kramers  
       pairs on surface 

E 

k=Λa k=Λb 

E 

k=Λa k=Λb 

OR 

EF k 

kF 

kx 

ky 

(weak Topo. Ins.) 
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Topological Insulators 
Two dimensions:   Quantum Spin Hall Insulator 
   Graphene 
         Kane, Mele ’05 

   HgCdTe quantum well  
         Bernevig, Hughes, Zhang ’06 
   Edge state transport experiments 
         Konig, et al. ‘07        

G=2e2/h 

Surface States probed by ARPES: 

Bi2 Se3 

Three dimensions:   Strong Topological Insulator 
    Theory: Moore, Balents ’06, Roy ’06, Fu, Kane, Mele ’06 
   Bi1-x Sbx 
          Fu, Kane ’07 (Th) 
          Hsieh, et al ’07 (Exp) 
   Bi2 Se3, Bi2 Te3 

          Xia, et al ’09 (Exp+Th) 
          Zhang, et al ’09 (Th) 
          Hsieh, et al ’09 (Exp) 
          Chen et al. ’09 (Exp) 

D Hsieh, et al. Nature ‘09 



Topological Superconductivity, Majorana Fermions 

Simplest Example:  1D superconductor, spinless electrons   (Kitaev ’01) 

Particle-Hole symmetry : 

Quasiparticle redundancy : 

Discrete end state spectrum :  

0 

Δ	



-Δ	



E 

E 

-E 0 

Δ	



-Δ	



E=0 

Bogoliubov de Gennes 
Hamiltonian 

ν=0 ν=1 

Majorana Fermion 
bound state 

2 Topological Superconductor : 
END 



Periodic Table of Topological Insulators and Superconductors 

Anti-Unitary Symmetries : 
    - Time Reversal :    
    - Particle - Hole  : 

Unitary (chiral) symmetry :   

Real 
K-theory 

Complex 
K-theory 

Bott 
Periodicity 

Altland- 
Zirnbauer 
Random  
Matrix 
Classes 

Kitaev, 2008 
Schnyder, Ryu,  
Furusaki, Ludwig 2008 



Majorana Fermion bound states 

Create 

Braid 

Measure 

t 

Potential hosts : 

•   Quasiparticle excitations of Moore Read FQHE state 

•   Prototype topological superconductors 
    -  vortex in 2D spinless p+ip SC            Read Green 00  
    -  end state in1D spinless p wave SC    Kitaev 01 

Topological Quantum Computing  Kitaev 03 

•   A topological protected quantum memory 

•   Non-Abelian braiding statistics 
           → Quantum computation 

γ0 = γ0
+ 



Engineering Topological Superconductivity  
with ordinary superconductors: Superconducting Proximity Effect 

s wave superconductor 

Topological insulator 
proximity induced superconductivity 

at surface 

-k 

k 

↑ 

← 

↓ 

→ 

Dirac point 

•   Half an ordinary superconductor 
•   Similar to 2D spinless px+ipy topological superconductor, except : 
      -  Does not violate time reversal symmetry 
      -  s-wave singlet superconductivity 
      -  Required minus sign is provided by  
             π Berry’s phase due to Dirac Point 
•   Nontrivial ground state supports Majorana 
    fermion bound states at vortices 



Majorana Bound States on Topological Insulators 

SC 

h/2e 

1. h/2e vortex in 2D superconducting state 

2. Superconductor-magnet interface at edge of 2D QSHI 

TI 

0 

Δ	



-Δ	



E 

S.C. M 

QSHI 
Egap =2|m| 

Domain wall bound state γ0 

m<0 

m>0 



1D Majorana Fermions on Topological Insulators 

2. S-TI-S Josephson Junction 

SC 

TI 

SC 

φ = π	


φ ≠ π	



SC M 

1. 1D Chiral Majorana mode at superconductor-magnet interface 

TI 

kx 

E 

: “Half” a 1D chiral Dirac fermion 

φ	

 0 

Gapless non-chiral Majorana fermion for phase difference φ = π	





Protected Modes at Topological Defects 

Example :  Majorana zero mode vortex in p+ip superconductor  

h/2e 
2D p+ip 
SC 

Expect presence of zero mode is “known” by the by the BdG  
Hamiltonian far from defect	



Adiabatic approximation :  topologically classify families of gapped 
                                           BdG Hamiltonians	



Read, Green ‘00 

S1 

What property of H guarantees that a zero mode is present? 

0 

Δ	



-Δ	



E 



Topological Defects 
Classify families of Bloch-BdG Hamiltonians parameterized by r 
subject to time reversal and/or particle-hole symmetry constraints 

Generalized bulk-boundary correspondence : 
    Topological classes of defect Hamiltonians are associated with protected 
    gapless modes associated with the defect. 

δ = 3	
  

δ = 2	
  

δ = 1	
  



Generalized Periodic Table for Topological Defects 

δ=2 : line defects 
δ=1 : point defects 

δ=0 : adiabatic temporal pumps 

Topological classes depend only on the difference 

Teo, Kane ’10 
Freedman, et al. ’10 
Ryu, Schnyder, Furusaki, Ludwig ‘10 



Majorana Bound States 

Chern Simons 2d-1 form 

Z2 invariant, d=1,2,3 

h/2e 

Vortex in 2D topological superconductor 

Chern number 
of topological 
superconductor 

winding number 
of vortex 

Topological Insulator Heterostructures 

s wave SC 

h/2e 

TI 

SC M 

QSHI 



Majorana Fermions in Three Dimensions 

Majorana bound states arise as solutions to three dimensional BdG theories 

Qi, Hughes, Zhang Model for  
edge of 3D topological insulator  

m < 0 
Topological Insulator 

m > 0 
Trivial Insulator 

(γ1,γ2,γ3), (Γ1,Γ2,Γ3) : 8x8 Dirac matrices  

Superconducting pairing  
at surface 

“hedgehog” configuration 
Minimal massive Dirac model: 

Majorana bound state 

Teo and Kane, PRL ‘10 



Non-Abelian Exchange Statistics in 3D 
Exchange a pair of hedgehogs: 

2π rotation :  Wavefunction of Majorana bound  
                     state changes sign	



Interchange rule:   Ising Anyons 

Nayak, Wilczek ’96 
Ivanov ‘01 

With mathematical rigor:    Projective Ribbon Permutation Statistics 

Freedman, Hastings, Nayak, Qi, Walker, Wang  ‘10  

Teo and Kane ‘10 



Fractional Josephson Effect 

e 

o 

Fu, Kane ’08 
Kitaev ’01 
Kwon, Sengupta, Yakovenko ‘04 

γ1 γ2 

γ4 γ3 

•  4π perioidicity of E(φ) protected by local conservation  
   of fermion parity. 

•  AC Josephson effect with half the usual frequency:  f = eV/h 



Conclusion 

•   The intersection of topology and condensed matter physics is both 
     beautiful and physically important. 
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Conclusion 

•   The intersection of topology and condensed matter physics is both 
     beautiful and physically important. 

•   Majorana Fermions are cool. 

•   Let us hope that at a future party we can give Mike a birthday present 

γ0 = γ0
+ 



Two routes to 1D or 2D topological superconductivity : 
Semiconductor - Magnet - Superconductor  
structure Sau, Lutchyn, Tewari,  Das Sarma ’09 

… and many others 

Rashba split 
2DEG bands 

Zeeman splitting 

E 

k 

EF 

Advantages of S-M-S structures 

•   Well studied materials   ie  InAs 
•   No poorly insulating substrate required 
    induced gap 

Disdvantages of S-TI structures 

•   TI materials have not been perfected 

(see e.g.  A  Potter, PA  Lee arXiv:1103.2129) 

Disadvantages of S-M-S structures 

•   Requires fine tuning – especially when  
    Rashba is weak 

•   Disorder (even in superconductor) strongly 
    suppresses proximity induced gap 

Advantages of S-TI structures 

•   The proximity induced gap can be as large as the  
    bulk superconducting gap for strong coupling. 

•   Time reversal symmetry protects  
    superconductivity from disorder (Anderson’s thm) 

EF 

TI surface 
states 

Topological Insulator structure 



Topological Invariant for a line defect 

•   2nd Chern number 

•   Characterizes families of Bloch states 

•   Specifies # Chiral Dirac Fermion modes ~ QH edge states 

•   Can be expressed as a winding number : 

•    It would be interesting to engineer chiral Dirac fermions using  
     topological insulator and/or magnetic topological insulator structures. 

Qi, Hughes, Zhang (2008) formula for 
topological magnetoelectric coupling 

θ = 0 :     trivial insulator  (T - invariant) 
θ = π :     topological insulator  (T - invariant)  
θ ≠ 0,π :  magnetic insulator (T breaking) 

Class A (no symmetries), d=3, D=1 :             


