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Truism: 

the macroscopic world is classical.

the microscopic world is quantum.

Goal of QIS: 

controllable quantum behavior in scalable systems

Why?

Classical systems cannot simulate quantum systems 

efficiently (a widely believed but unproven conjecture).

But to control quantum systems we must slay the dragon of 

decoherence … 

Is this merely really, really hard?

Or is it ridiculously hard?

Delicious irony: macroscopic quantum systems can have 

intrinsic protection against decoherence!
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Quantum error correction and topological order

A “logical qubit” is encoded using many “physical qubits.” We want to 
protect the logical qubit, with orthonomal basis states |0Ú and |1Ú, from 
a set of possible error operators { Ea }.

For protection against bit flips:
Ea |0Ú ^ Eb |1Ú .

For protection against phase errors:
Ea (|0Ú + |1Ú) ^ Eb (|0Ú - |1Ú) .

In fact, these conditions suffice to ensure the existence of a recovery 
map. 

It follows that 
‚0| EbæEa |0Ú = ‚1|  EbæEa |1Ú .

Compare the definition of topological order: if V is a (quasi-)local 
operator and |0Ú, |1Ú are ground states of a local Hamiltonian, then
‚1|  V |0Ú = 0, and ‚0|  V |0Ú = ‚1|  V |1Ú .
up to corrections exponentially small in the system size. (Ground 
states are locally indistinguishable.) 
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Gate teleportation and state distillation

In fault-tolerant schemes, a version of 
quantum teleportation is used to 
complete a universal set of protected 
quantum gates. Suitable “quantum 
software” is prepared and verified 
offline, then measurements are 
performed that transform the incoming 
data to outgoing data, with a “twist” (an 
encoded operation) determined by the 
software. Reliable software is obtained from 

noisy software via a multi-round state 
distillation protocol. In each round 
(which uses CNOT gates and 
measurements), there are n noisy 
input copies of the software of which  
n-1 copies are destroyed. The 
remaining output copy, if accepted, is 
less noisy than the input copies

Gottesman, Chuang; Knill; Bravyi, Kitaev
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Scalability

Quantum Accuracy Threshold Theorem: Consider a quantum computer 
subject to quasi-independent noise with strength ε . There exists a constant 
ε0 >0 such that for a fixed ε < ε0 and fixed δ > 0, any circuit of size L can be 
simulated by a circuit of size L* with accuracy greater than 1-δ, where, for 
some constant c, 

( )* log
c

L O L L =
 

“Practical” considerations: 
Resource requirements, systems engineering issues

Matters of “principle”:
Conditions on the noise model, what schemes are scalable, etc.

parallelism, fresh qubits (necessary assumptions) 

nonlocal gates, fast measurements, fast and accurate classical 
processing, no leakage (convenient assumptions). 

assuming:

Aharonov, Ben-Or 

Kitaev

Laflamme, Knill, Zurek

Aliferis, Gottesman, Preskill

Reichardt



• Error correction and fault tolerance will be essential for operating large-
scale quantum computers.

• The “standard” approach uses clever “software” to overcome the 
deficiencies of quantum hardware. It works in principle, if the hardware is 
not too noisy.

• The “physical” approach seeks quantum “hardware” that is intrinsically 
robust. 

• The two approaches can be combined --- even robust quantum hardware 
will not be perfect, and the standard approach may still be needed to 
perform long computations reliably. 

• Topology informs both approaches, by suggesting new schemes for 
constructing robust hardware, and by inspiring new kinds of software.

Better together: topology and quantum error correction



Three themes

• Topological codes

• Protected devices

• Self correction



Topological Degeneracy
A two-dimensional system (with a 
mass gap)  that supports quasiparticle 
excitations with nontrivial Aharonov-
Bohm interactions has a ground state 
degeneracy that depends on the 
topology of the surface.

Example: two defects (green and red) 
with a Z2 Aharonov Bohm phase. 
Green defects can be singly produced 
or annihilated at a green boundary, red
defects can be singly produced or 
annihilated at at red boundary.

Two operators (R and G) both preserve the ground state, and obey a nontrivial 

commutation relation: R-1G-1 RG= -1 .

This algebra has no one-dimensional representations, hence the ground state 

is (two-fold) degenerate.
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Early work on quantum fault tolerance ignored geometry. It was assumed that 
a quantum gate could act on any pair of qubits, with a gate fidelity 
independent of the distance between qubits. 

More realistically, later work considered two-dimensional layouts with local 
gates. (Qubits individually addressed using wires that extend into the third 
dimension.)

Toward “architecture”…

In a 2D layout, it is natural to 
use topological codes on a 
puctured plane, with qubits
encoded using Z2 “electric” (or 
“magnetic”) charges placed in 
the holes. 

Logical (“string”) operations are realized by carrying a magnetic charge (red) 
around an electric hole, or by moving an electric charge (green) from one 
hole to another.



Error Recovery
Z-type errors create / annihilate pairs of 
electric charges, or move an electric charge 
to a neighboring site. X-type errors create / 
annihilate pairs of magnetic charges or 
move magnetic charges. If the error rate is 
small, the error chain segments are typically 
short, and the particle positions are strongly 
correlated.  Once the particle positions are 
known, it is “easy” to guess how to bring 
particles together and annihilate them 
without a logical error.  Measurements of 
particle positions are sometimes wrong, but 
we can repeat measurements to make our 
guess reliable.

There is an “accuracy threshold”
… if we assume accurate and instantaneous (poly-time) classical 
processing. The probability of a logical error decays exponentially with 
system size. Dennis, Kitaev, Landahl, Preskill (2002). 



Local fault tolerance with 2D topological codes
Qubits are arranged on a two-dimensional lattice with holes in it. Protected 
qubits are encoded (in either of two complementary bases) by placing 
“electric” charges inside “primal” holes or “magnetic” charges inside “dual” 
holes. The quantum information is well protected if the holes are large and far 
apart.
electric

(“primal”)
hole

magnetic
(“dual”)

hole

A controlled-NOT gate can be 
executed by “braiding the 
holes” which is achieved by a 
sequence of local gates or 
measurements.

The protected gates and error syndrome extraction can be done with local 
two-qubit gates or measurements. Numerical studies indicate an upper 
bound on the threshold for independent depolarizing noise: 
ε0  ∼ 7.5 ä 10 −3

Raussendorf, Harrington, Goyal (2007)

Dennis, Kitaev, Landahl, Preskill (2002)



Protected superconducting qubit

( )( )(2 ) exp sizeE f O cθ≈ + −

The barrier is high enough to suppress bit flips, 

and the stable degeneracy suppresses phase 

errors. Protection arises because the encoding 

of quantum information is highly nonlocal, and 

splitting of degeneracy scales exponentially 

with (square root of) size of the device.

Ioffe et al.

Kitaev

One way to make a robust superconducting (0-Pi) qubit is to build a long chain of 
devices. Each individual device favors a phase change of 0 or p across its leads. 

The phase difference between the two ends of the chain can likewise be either 0 or 
p but with large local phase fluctuations along the chain. 

The two basis states of the qubit are distinguished by a global property of the chain 

--- both look the same locally. For long chain, the breaking of the degeneracy of the 

two states due to a generic local perturbation occurs in a high order of perturbation 

theory and is strongly suppressed.

0 q = 0 q….



Protected superconducting qubit
Some gates are also protected: we can execute

1 2exp  and exp
4 4

i Z i Z Z
π π   

   
   

with exponential precision. This is achieved by coupling a qubit or a pair of   
qubits to a “superinductor” with large phase fluctuations: 

To execute the gate, we (1) close the switch, (2) keep it closed for awhile, (3) open 

the switch. This procedure alters the relative phase of the two basis states of the 

qubit: ( ) ( )0 1 init 0 1 finali
a b a be

α−+ ⊗ → + ⊗

The relative phase  induced by the 
gate  “locks” at π/2. For
Gate error < 10-4 is achieved for 
timing error of a few percent. Why? 
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single-qubit or two-qubit phase gate



Protected phase gate

exp
4

i Z
π 

 
 

Switch is really a tunable Josephson junction:

Peaks are at even or odd multiples of π depending on whether θ is 0 or π, i.e. on 

whether qubit is 0 or 1. Inner width squared is (JC)-1/2 and outer width is (L/C)1/2

Kitaev,

Brooks,

Preskill

( )
2 2

( ) cos
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Q
H J t

C L

ϕ
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Under suitable adiabaticity
conditions, closing the switch 
transforms a broad oscillator 
state (e.g. the ground state) 
into a grid state (approximate 
codeword).

ϕ

∆
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ϕ
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Kitaev,
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Gate accuracy ~ 10-9 is 
achieved despite pulse 
error of a few percent 
(in agreement with 
analytic estimates).

(P. Brooks)



Self Correcting Quantum Memory? 

Example: 1D Ising model (repetition code)

0   0   0    0    1   1   1   1    0   0    0

When a connected (one-dimensional) droplet of 

flipped spins arises due to a thermal fluctuation, 

only the (zero-dimensional) boundary of the droplet 

contributes to the energy; thus the energy cost is 

independent of the size of the droplet. 

Therefore, thermal fluctuations disorder the spins at 

any nonzero termperature. A one-dimensional 

ferromagnet is not a robust (classical) memory.



2D Ising model (repetition code)
This memory is a repetition code, but 
with redundant (hence robust) parity 
checks.

Again, droplets of flipped
spins arise as thermal fluctuations. But 
now the energy cost of a (two-
dimensional) droplet is proportional to 
the length of its (one-dimensional) 
boundary.

Therefore, droplets with linear size L are 
suppressed at sufficiently low nonzero 
temperature T by the Boltzmann factor 
exp(-L / T), and are rare.

The storage time for classical information becomes exponentially long 
when the block size is large. (Actual storage media, which are robust at 
room temperature, rely on this physical principle.)



Topological Code

A topological medium in 2D is similar to 
the 1D Ising model: pairs of anyons are 
produced by thermal fluctuations at a 
rate that does not depend on the 
system size. These anyons can then 
diffuse apart without any additional 
energy cost. When anyons diffuse a 
distance comparable to the distance 
between pairs, logical errors arise.

Therefore, thermal fluctuations disorder 
the system at any nonzero 
termperature. A two-dimensional 
topological medium is not a robust 
quantum memory.



Topological order at finite temperature

Question: Is “finite-temperature topological order” possible in 2D or 3D? 

In 2D, if the Hamiltonian is a sum of commuting local terms, there are 
logical string operators, hence no self correction (Bravyi & Terhal 2009, 
Poulin et al. 2010, Kay & Colbeck 2008, Haah & Preskill 2010). 

Long-range interactions? (Hamma et al. 2009, Chesi et al 2010.) 
Localization? (Wooten & Pachos 2011, Tsomokos et al. 2011.)

In the 3D toric code, we can choose to have point defects at the boundary 
of 1D bit-flip error chains and string defects at the boundary of 2D phase-
error droplets, or the other way around. (Robust classical memory.)

The same is true for any translationally-invariant local stabilizer code in 3D, 
provided the degeneracy is independent of system size (Yoshida 2011).

L In a 4D topological code, the energy cost of a 2D droplet of 
flipped qubits is proportional to the length of its 1D 
boundary.

To cause encoded errors, Droplets of linear size L, which 
could cause encoded errors, are suppressed at sufficiently 
low nonzero temperature T by the Boltzman factor 
exp(-L / T), and are rare.

Dennis et al. 2002

Alicki et al. 2010



Haah’s code Haah 2011, Haah & Bravyi 2011

A local stabilizer code with two qubits per site on a simple cubic lattice.

Two stabilizer generators on each cube.

No logical string operators.

Code distance grows faster than linearly with linear system size L.

The barrier height for a logical error is O( log L).

Equilibrates slowly when cooled from high to low temperature (glass).

For weak noise, annealing corrects errors with high success probability.



Operating a large-scale quantum computer will be a grand scientific and 
engineering achievement.

Judicious application of the principles of fault-tolerant quantum computing will 
be the key to making it happen.

Fascinating connections with statistical physics, quantum many-body theory, 
device physics, and decoherence make the study of quantum fault 
tolerance highly rewarding.

Topological principles suggest new constructions for quantum error-correcting 
codes and new ways to realize robust quantum hardware.

We are making progress (in both experiment and theory) toward showing that 
fault-tolerant quantum computing can work effectively against realistic 
noise.

But we’ve got a long way to go.

Topology and quantum fault tolerance
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