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Apart from a host of other issues to discuss concerning the STC, this
email is to alert you that I just spoke with M. Freedman who will try to
contact you concerning quantum computing stuff, including the STC. I
emphasized that a discussion with you might let him know better if
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involvement with our center would be of interest to him and Microsoft. I

also stressed our interest in contacts with him independent of any

official Microsoft tie. .

Regards, Kadllis.cis T . w, /()7 CIN 7y ¥- yﬂ
Jeff

ps- If you want to jump first, his telephone at UCSD is 619-534-2647 and & | 78

his email there is mfreedman@math.ucsd.edu, where I am not sure if the m
and freedman are run together.
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P/NP, and the quantum field computer

MicHAEL H. FREEDMAN
Microsoft Research 9N, 1 Microsoft Way, Redmond, WA 98052

Contributed by Michael H. Freedman

ABSTRACT The central problem in computer science is
the conjecture that two complexity classes, P (polynomial
time) and NP (nondeterministic polynomial time—roughly
those decision problems for which a proposed solution can be
checked in polynomial time), are distinct in the standard
Turing model of computation: P # NP. As a generality, we
propose that each physical theory supports computational
models whose power is limited by the physical theory. It is well
known that classical physics supports a multitude of imple-
mentation of the Turing machine. Non-Abelian topological
quantum field theories exhibit the mathematical features
necessary to support a model capable of solving all #P
problems, a computationally intractable class, in polynomial
time. Specifically, Witten [Witten, E. (1989) Commun. Math.
Phys. 121, 351-391] has identified expectation values in a
certain SU(2)-field theory with values of the Jones polynomial
[Jones, V. (1985) Bull. Am. Math. Soc. 12, 103-111] that are
#P-hard |Jaeger, F., Vertigen, D. & Welsh, D. (1990) Math.
Proc. Comb. Philos. Soc. 108, 35-53]. This suggests that some
physical system whose effective Lagrangian contains a non-
Abelian topological term might be manipulated to serve as an
analog computer capable of solving NP or even #P-hard
problems in polynomial time. Defining such a system and
addressing the accuracy issues inherent in preparation and
measurement is a major unsolved problem.

and a tape. The head is capable of being in one of a finite
number of “internal states” {g;} and can read and overwrite a
symbol € {§;} from a finite set of symbols and then shift one
block left or right along the tape. It contains a finite internal
program that directs its operations.

Consider a problem Q, with a yes/no answer, for which
infinitely many instances exist, for example, the satisfiability of
Boolean formulae. One asks: what is the fastest possible
running time as a function of the size of the instance which a
fixed program might achieve in correctly answering all of the
instances of Q7 One says that Q is in class P, if there is a
program whose running time is bounded by a polynomial
function of the number n of bits required to describe the
instance I of Q on the Turing machine’s tape. One says Q is in
NP if there is an “existential” program operating on [ plus a
number of “guess bits” that correctly answer all instances I of
Q in polynomial time. The existential program is deemed to say
“yes,” iff some setting of the guess bits returns a “yes” answer
in poly-time. Clearly P C NP. It is easy to map NP into an
apparently larger class of questions #P which ask of a given NP
algorithm (with a fixed polynomial time cut-off), how many
settings of the guess bits lead to “yes”?

The word “complete,” following a class, is used to denote a
problem @ within a class, which is maximally hard in the sense
that any other problem in the class can be solved—again in
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Fault-tolerant quantum computation by anyons

A. Yu. Kitaev

L.D.Landau Institute for Theoretical Physies,
117940, Kosygina St. 2

e-mail: Kkitaev @itp.ac.ru

Abstract

A two-dimensional quantum system with anyonic excitations can be considered as a
quantum computer. Unitary transformations can be performed by moving the excitations
around each other. Measurements can be performed by joining excitations in pairs and
observing the result of fusion. Such computation is fault-tolerant by its physical nature.

A quantum computer can provide fast solution for certain computational problems (e.g.
factoring and discrete logarithm [[J]) which require exponential time on an ordinary computer.
Physical realization of a quantum computer is a big challenge for scientists. One important
problem is decoherence and systematic errors in unitary transformations which oceur in real
quantum systems. From the purely theoretical point of view, this problem has been solved
due to Shor’s discovery of fault-tolerant quantum computation [[J], with subsequent improve-
ments [[,(, 8. B]. An arbitrary quantum eireuit ean be simulated using imperfect gates, provided
these gates are close to the ideal ones up to a constant precision 4. Unfortunately, the threshold
value of 4 is rather smallf} it is very difficult to achieve this precision.

Needless to say, classical computation can be also performed fault-tolerantly. However, it
is rarely done in practice because classical gates are reliable enough. Why is it possible? Let
us try to understand the easiest thing — why classical information ean be stored reliably on a
magnetic media. Magnetism arise from spins of individual atoms. Each spin is quite sensitive
to thermal fluctuations. But the spins interact with each other and tend to be oriented in the
same direction. If some spin flips to the opposite direction, the interaction forees it to flip back
to the direction of other spins. This process is quite similar to the standard error correction
procedure for the repetition code. We may say that errors are being corrected at the physical
level. Can we propose something similar in the quantum ease? Yes, but it is not so simple.
First of all, we need a quantum code with local stabilizer operators.

I start with a class of stabilizer quantum codes associated with lattices on the torus and
other 2-D surfaces [, {. Qubits live on the edges of the lattice whereas the stabilizer operators
correspond to the vertices and the faces. These operators can be put together to make up a

! Actually, the threshold is not known. Estimates vary from 1/300 [fj to 10~ [{.




A modular functor which is universal for
quantum computation

Michael Freedman’, Michael Larsen?, and Zhenghan Wang?!

T Microsoft Research, One Microsoft Way, michaelf@microsoft.com
i Indiana Univ., larsen@math.indiana.edu and zhewang@indiana.edu

Simulation of topological field theories by
quantum computers

Abstract

We show that the topological modular functor from Witten-Chern-
Simons theory is universal for quantum computation in the sense a
Michael H. Freedman®* Alexei Kitaevi and Zhenghan Wang? quantum circuit computation can be efficiently approximated by an

intertwining action of a braid on the functor’s state space. A com-

putational model based on Chern-Simons theory at a fifth root of

unity is defined and shown to be polynomially equivalent to the quan-

tum circuit model. The chief technical advance: the density of the

irreducible sectors of the Jones representation, have topological impli-
Abstract cations which will be considered elsewhere.

Quantum computers will work by evolving a high tensor power of
a small (e.g. two) dimensional Hilbert space by local gates, which can
be implemented by applving a local Hamiltonian H for a time t. In
contrast to this quantum engineering, the most abstract reaches of
theoretical physics has spawned “topological models” having a finite
dimensional internal state space with no natural tensor product struec-
ture and in which the evolution of the state is discrete, H = 0. These
are called topological quantum filed theories (TQFTs). These exotic
physical systems are proved to be efficiently simulated on a quantum
computer. The conclusion is two-fold:

1. TQFTSs cannot be used to define a model of computation stronger
than the usual quantum model “BQP.”

2. TQFTs provide a radically different way of looking at quantum
computation. The rich mathematical structure of TQFTs might
suggest a new quantum algorithm.




Truism:
the macroscopic world is classical.
the microscopic world is quantum.

Goal of QIS:
controllable quantum behavior in scalable systems

Why?

Classical systems cannot simulate quantum systems
efficiently (a widely believed but unproven conjecture).

But to control quantum systems we must slay the dragon of
decoherence ...

Is this merely really, really hard?
Or is it ridiculously hard?

Delicious irony: macroscopic quantum systems can have
intrinsic protection against decoherence!
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Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*
ATA&T Bell Laboratories, Room 2D- 149, 600 Movntain Avenue, Murray Hill, New Jersey 07974
(Received 17 May 1995)

Recently, it was realized that use of the properties of Juantum mechanics might speed up certain computa-
tions dramatically. Interest has since been growing in the area of quantum computation. One of the main
difficulties of guantum computation is that decoherence destroys the information in a superposition of states
contained in a quantum computer, thus making loag computations impossible. It is shown how to reduce the
effects of decoberence for information stored in quanturr memory, assuming that the decoherence process acts
independently on each of the bits stored in memory. This involves the use of a quantum analog of error-

correcting codes,
PACS number(s): 03.65.Bz, §89.70.+¢

L INTRODUCTION

Recently, interest has been growing in an area called
quantum computation, which involves computers that use the
ability of quantum systems to be in a superposition of many
states. These computations can be modeled formally by de-
fining a quantum Turing machine [1,5]. which is able 1o be in
the superposition of many states. Instead of considering the
computer itself to be in a superposition of states, it is suffi-
cient to assume that the contents of the memory cells are in
a superposition of different states and that the computer per-

ence of extra unextractable quantum information is a barrier
to efficient simulation of a quantum computer on a classical
compulter.

It now appears that, at least theoretically, quantum com-
putation may be much faster than classical computation for
solving certain problems [5-7). including prime factoriza-
ton. However, it is not yet clear whether quantum computers
are feasible to build. One reason that quantum computers
will be difficult, if not impossible, to build is decoherence. In
the process of decoherence, some qubit or qubits of the com-
putation become entangled with the environment, thus in ef-



Quantum error correction and topological order

A “logical qubit” is encoded using many “physical qubits.” We want to
protect the logical qubit, with orthonomal basis states |0) and |1), from
a set of possible error operators { E, }.

For protection against bit flips:
E.[0) L E,|1).

For protection against phase errors:
E, (10) + 1)) L E, (10)-[1)) .

In fact, these conditions suffice to ensure the existence of a recovery
map.

It follows that
(O] E,'E,10) = (1] EFE, 1) .

Compare the definition of topological order: if V is a (quasi-)local
operator and |0), |1) are ground states of a local Hamiltonian, then
(1] V|0) =0,and (0] V|0)=(1| V|1).

up to corrections exponentially small in the system size. (Ground
states are locally indistinguishable.)



Quantum
Computer

Topology




Quantum Error Correction and Quantum Fault Tolerance

Fault-Tolerant Quantum Computation

quant-ph/9605011v1 13 May 1996

arXiv

Peter W. Shor*
AT&T Research
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Abstract

Recently, it was realized that use of the propertics
of quantum mechanics might speed up certain com-
putations dramatically. Interest in quantum compu-
tation has since been growing. One of the main dif-
ficulties of realizing quantum computation is that de-
coherence tends to destroy the information in a su-
perposition of states in a quantum computer, thus
making long computations impossible. A futher diffi-
culty is that inaccuracies in quantum state transfor-
mations throughout the computation accumulate, ren-
dering the output of long computations unreliable. It
was previously known that a quantum circuit with ¢
gates could tolerate O(1/t) amounts of inaccuracy and
decoherence per gate. We show, for any quantum com-
putation with ¢ gates, how to build a polynomial size
quantum circuit that can tolerate O(1/ log® t) amounts
of inaccuracy and decoherence per gate, for some con-
stant ¢. We do this by showing how to compute us-
ing quantum error-correcting codes. These codes were
previously known to provide resistance to errors while
storing and transmitting quantum data.

1 Introduction

It has recently been discovered that certain prop-
erties of quantum mechanics have a profound effect
on abstract models of computation. More specifi-
cally, by using the superposition and the interference
principles of quantum mechanics, one can devise a
physics thought experiment giving a computing ma-
chine which is apparently more powerful than the stan-
dard Turing machine model of theoretical computer
science. These quantum computers can use only poly-

The potentially most useful algorithms for quantum
computers discovered so far include prime factoriza-
tion and simulation of certain quantum mechanical
Systems.

Given these theoretical results, a natural question
is whether such computers could ever be built. Inge-
nious designs for such computers have recently been
proposed [, and currently several experiments are
underway in attempts to build small working proto-
types . Even if small quantum computers can suc-
cessfully be built, scaling these up to computers that
are large enough to yield useful computations could
present formidable difficultics.

One of these difficultics is decoherence [[J, B3,
B. Quantum computation involves manipulating the
quantum states of objects that are in coherent quan-
tum superpositions. These superpositions, however,
tend to be quite fragile and decay easily; this decay
phenomenon is called decoherence. One way of think-
ing about decoherence is to consider the environment
to be “measuring” the state of & quantum system.
That is, if the environment interacts with the system
in such & way that the effect on the environment de-
pends on the state of the system, it will project the
quantum system into an eigenstate of the interaction
of the system and the environment 4.

A second potential obstacle to building quantum
computers is inaccuracy [, }. Quantum comput-
ers are fundamentally analog-type devices; that is, the
state of a quantum superposition depends on certain
continuous parameters. For example, one of the com-
mon quantum gates used in quantum computations is
a “rotation” of a quantum bit by an angle ; when
doing this transformation, there will naturally tend to
be some inaccuracy in this angle 8. For the quantum



Gate teleportation and state distillation

In fault-tolerant schemes, a version of
quantum teleportation is used to
complete a universal set of protected
quantum gates. Suitable “quantum
software” is prepared and verified
offline, then measurements are
performed that transform the incoming
data to outgoing data, with a “twist” (an
encoded operation) determined by the
software.

discard
NOISY IN =—p /
distillation
protocol
NOISY IN =—p \

less noisy out
(if accepted)

data in » Bell
meas.
(and
purified EC)
“‘quantum
software » data out

Reliable software is obtained from
noisy software via a multi-round state
distillation protocol. In each round
(which uses CNOT gates and
measurements), there are n noisy
iInput copies of the software of which
n-1 copies are destroyed. The
remaining output copy, if accepted, is
less noisy than the input copies

Gottesman, Chuang; Knill; Bravyi, Kitaev



Scalability

Quantum Accuracy Threshold Theorem: Consider a quantum computer

subject to quasi-independent noise with strength . There exists a constant
& >0 such that for a fixed €< g, and fixed 0> 0, any circuit of size L can be
simulated by a circuit of size L* with accuracy greater than 1-6, where, for

some constant c,
Aharonov, Ben-Or

L*¥=0 L(log L)C Kitaev
Laflamme, Knill, Zurek
Aliferis, Gottesman, Preskill

assuming: Reichardt

parallelism, fresh qubits (necessary assumptions)

nonlocal gates, fast measurements, fast and accurate classical
processing, no leakage (convenient assumptions).

“Practical” considerations:
Resource requirements, systems engineering issues

Matters of “principle’:
Conditions on the noise model, what schemes are scalable, etc.



Better together: topology and quantum error correction

Error correction and fault tolerance will be essential for operating large-
scale quantum computers.

The “standard” approach uses clever “software” to overcome the
deficiencies of quantum hardware. It works in principle, if the hardware is
not too noisy.

The “physical” approach seeks quantum “hardware” that is intrinsically
robust.

The two approaches can be combined --- even robust quantum hardware
will not be perfect, and the standard approach may still be needed to
perform long computations reliably.

Topology informs both approaches, by suggesting new schemes for
constructing robust hardware, and by inspiring new kinds of software.



Three themes
 Topological codes
* Protected devices

« Self correction



Topological Degeneracy

A two-dimensional system (with a
mass gap) that supports quasiparticle
excitations with nontrivial Aharonov-
Bohm interactions has a ground state
degeneracy that depends on the
topology of the surface.

Example: two defects (green and red)
with a Z, Aharonov Bohm phase.

. Green defects can be singly produced
or annihilated at a green boundary, red
defects can be singly produced or
annihilated at at red boundary.

Two operators (R and () both preserve the ground state, and obey a nontrivial
commutation relation: R7G7 RG=-1.

This algebra has no one-dimensional representations, hence the ground state
is (two-fold) degenerate.



Topological Degeneracy

A two-dimensional system (with a
mass gap) that supports quasiparticle
excitations with nontrivial Aharonov-
Bohm interactions has a ground state
degeneracy that depends on the
topology of the surface.

Example: two defects (green and red)
with a Z, Aharonov Bohm phase.
Green defects can be singly produced
or annihilated at a green boundary, red
defects can be singly produced or
annihilated at at red boundary.

Two operators (R and () both preserve the ground state, and obey a nontrivial
commutation relation: R7G7 RG=-1.

This algebra has no one-dimensional representations, hence the ground state
is (two-fold) degenerate.



Toward “architecture”...

Early work on quantum fault tolerance ignored geometry. It was assumed that
a quantum gate could act on any pair of qubits, with a gate fidelity
independent of the distance between qubits.

More realistically, later work considered two-dimensional layouts with local
gates. (Qubits individually addressed using wires that extend into the third
dimension.)

In a 2D layout, it is natural to
use topological codes on a
puctured plane, with qubits
encoded using Z, “electric” (or
“magnetic’) charges placed in
the holes.

Logical (“string”) operations are realized by carrying a magnetic charge (red)
around an electric hole, or by moving an electric charge (green) from one
hole to another.
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Error Recovery

Z-type errors create / annihilate pairs of
electric charges, or move an electric charge
to a neighboring site. X-type errors create /
annihilate pairs of magnetic charges or
move magnetic charges. If the error rate is
small, the error chain segments are typically
short, and the particle positions are strongly
correlated. Once the particle positions are
kKnown, it is “easy” to guess how to bring
particles together and annihilate them
without a logical error. Measurements of
particle positions are sometimes wrong, but
we can repeat measurements to make our
guess reliable.

There is an “accuracy threshold”

... If we assume accurate and instantaneous (poly-time) classical
processing. The probability of a logical error decays exponentially with

system size.

Dennis, Kitaev, Landahl, Preskill (2002).



Local fault tolerance with 2D topological codes

Qubits are arranged on a two-dimensional lattice with holes in it. Protected
qubits are encoded (in either of two complementary bases) by placing
“electric” charges inside “primal” holes or “magnetic” charges inside “dual”
holes. The quantum information is well protected if the holes are large and far
apart.

electric magnetic
prlmal (“dual”)
hole hole

A controlled-NOT gate can be
executed by “braiding the
holes” which is achieved by a
sequence of local gates or
measurements.

The protected gates and error syndrome extraction can be done with local
two-qubit gates or measurements. Numerical studies indicate an upper

bound on the threshold for independent depolarizing noise:

. -3
& ~7.5x10 Raussendorf, Harrington, Goyal (2007)

Dennis, Kitaev, Landahl, Preskill (2002)



loffe et al.

Protected superconducting qubit  kitaev

One way to make a robust superconducting (0-Pi) qubit is to build a long chain of
devices. Each individual device favors a phase change of 0 or 7 across its leads.
The phase difference between the two ends of the chain can likewise be either 0 or
n but with large local phase fluctuations along the chain.

0 e— —.Q=O'—‘—‘—‘\ —‘—.9

The two basis states of the qubit are distinguished by a global property of the chain
--- both look the same locally. For long chain, the breaking of the degeneracy of the
two states due to a generic local perturbation occurs in a high order of perturbation

theory and is strongly suppressed.
A
2
The barrier is high enough to suppress bit flips,
and the stable degeneracy suppresses phase 10) 1)
errors. Protection arises because the encoding
of quantum information is highly nonlocal, and

splitting of degeneracy scales exponentially 0 T6
with (square root of) size of the device.

E ~ f(26?)+0(exp(—c@))




Protected superconducting qubit Ritaev,

Brooks,
Some gates are also protected: we can execute Preskill

T T
exp(isz and exp(izzlzzj single-qubit or two-qubit phase gate

with exponential precision. This is achieved by coupling a qubit or a pair of
qubits to a “superinductor” with large phase fluctuations:

’ 10 \/L/C >

c_ &L 0-Pi qubit hil(2e)’ =1k
0

To execute the gate, we (1) close the switch, (2) keep it closed for awhile, (3) open
the switch. This procedure alters the relative phase of the two basis states of the

Wt (a]0)+b[1)) ®linit) — (a|0) +be™|1)) ®|final)

ol

(Brooks) The relative phase induced by the

Ty gate “locks” at w/2. ForyL/C =40
Fime Gate error < 10 is achieved for

o —~ D r{wlfca;« i timing error of a few percent. Why?
close




Protected phase gate

? K

/3

exp(zZZj c L qubit
Sar

Switch is really a tunable Josephson junction:

Q> ¢
H=—+—-J( —0
e o Weos(e=0)

Kitaev,
Brooks,
Preskill

JLIC > hl2e) =1kQ

Under suitable adiabaticity
conditions, closing the switch
transforms a broad oscillator
state (e.g. the ground state)
into a grid state (approximate
codeword).
h Gottesman,

Kitaev,
Preskill

<> K

Peaks are at even or odd multiples of © depending on whether 6is 0 or =, i.e. on
whether qubit is 0 or 1. Inner width squared is (JC)-2 and outer width is (L/C)'2

w,' =/ C/J < switching time < @' =+/LC > 1



Diamond norm distance
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Self Correcting Quantum Memory?
Example: 1D Ising model (repetition code)

[0 o | o I 000

When a connected (one-dimensional) droplet of
flipped spins arises due to a thermal fluctuation,
only the (zero-dimensional) boundary of the droplet
contributes to the energy; thus the energy cost is
independent of the size of the droplet.

Therefore, thermal fluctuations disorder the spins at
any nonzero termperature. A one-dimensional
ferromagnet is not a robust (classical) memory.



2D Ising model (repetition code)

This memory is a repetition code, but
with redundant (hence robust) parity
checks.

Again, droplets of flipped

spins arise as thermal fluctuations. But
now the energy cost of a (two-
dimensional) droplet is proportional to
the length of its (one-dimensional)
boundary.

Therefore, droplets with linear size L are
suppressed at sufficiently low nonzero
temperature T by the Boltzmann factor
exp(-L/ T), and are rare.

The storage time for classical information becomes exponentially long
when the block size is large. (Actual storage media, which are robust at
room temperature, rely on this physical principle.)



Topological Code

A topological medium in 2D is similar to
the 1D Ising model: pairs of anyons are
produced by thermal fluctuations at a

rate that does not depend on the

system size. These anyons can then

diffuse apart without any additional
I energy cost. When anyons diffuse a

distance comparable to the distance
between pairs, logical errors arise.

Therefore, thermal fluctuations disorder

the system at any nonzero

termperature. A two-dimensional
topological medium is not a robust
quantum memory.



Dennis et al. 2002

Topological order at finite temperature Alicki ot al. 2010
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In a 4D topological code, the energy cost of a 2D droplet of
flipped qubits is proportional to the length of its 1D
boundary.

To cause encoded errors, Droplets of linear size L, which
could cause encoded errors, are suppressed at sufficiently
low nonzero temperature T by the Boltzman factor
exp(-L/ T), and are rare.

Question: Is “finite-temperature topological order” possible in 2D or 3D?

In 2D, if the Hamiltonian is a sum of commuting local terms, there are
logical string operators, hence no self correction (Bravyi & Terhal 2009,
Poulin et al. 2010, Kay & Colbeck 2008, Haah & Preskill 2010).

Long-range interactions? (Hamma et al. 2009, Chesi et al 2010.)
Localization? (Wooten & Pachos 2011, Tsomokos et al. 2011.)

In the 3D toric code, we can choose to have point defects at the boundary
of 1D bit-flip error chains and string defects at the boundary of 2D phase-
error droplets, or the other way around. (Robust classical memory.)

The same is true for any translationally-invariant local stabilizer code in 3D,
provided the degeneracy is independent of system size (Yoshida 2011).



Haah’'s code Haah 2011, Haah & Bravyi 2011

17 Z1 IX —— XI
S S
71 ——— 72 X[ ———11I
IT deeeeen ) A XX ............... I X
1Z Z1 IX —— XI

A local stabilizer code with two qubits per site on a simple cubic lattice.
Two stabilizer generators on each cube.

No logical string operators.

Code distance grows faster than linearly with linear system size L.

The barrier height for a logical error is O( log L).

Equilibrates slowly when cooled from high to low temperature (glass).
For weak noise, annealing corrects errors with high success probability.



opology and quantum fault tolerance

Operating a large-scale quantum computer will be a grand scientific and
engineering achievement.

Judicious application of the principles of fault-tolerant quantum computing will
be the key to making it happen.

Fascinating connections with statistical physics, quantum many-body theory,
device physics, and decoherence make the study of quantum fault
tolerance highly rewarding.

Topological principles suggest new constructions for quantum error-correcting
codes and new ways to realize robust quantum hardware.

We are making progress (in both experiment and theory) toward showing that
fault-tolerant quantum computing can work effectively against realistic
noise.

But we've got a long way to go.



Happy
Birthday!



