The Fuzzball Program
and
Black Hole Complementarity

David Turton
Ohio State University

KITP “Complementarity, Fuzz or Fire?” Workshop
21 Aug 2013

1112.6413 S. D. Mathur, DT
1202.6421 S. D. Mathur, DT
1208.1770 O. Lunin, S. D. Mathur, DT
1208.2005 S. D. Mathur, DT
1211.0306 S. Giusto, O. Lunin, S. D. Mathur, DT
1306.5488 S. D. Mathur, DT
Outline

Part I

1. Momentum-carrying waves on D1-D5 microstates
2. CFT duals of all two-center Bena-Warner solutions

Part II

1. Fuzzball Complementarity
2. Fuzzballs and Firewalls
Black Holes

Physical: dark, heavy, compact bound state of matter

(Semi-)classical: geometry with horizon

Quantum: bound state in quantum gravity theory
Black hole hair

- Bekenstein-Hawking entropy $S \rightarrow e^S$ microstates
- Can physics of individual microstates modify Hawking’s calculation?
- Many searches for Black hole ‘hair’: d.o.f. at the horizon.
- In classical gravity, many ‘no-hair’ theorems resulted.
Black hole hair

- Bekenstein-Hawking entropy $S \rightarrow e^S$ microstates
- Can physics of individual microstates modify Hawking’s calculation?
- Many searches for Black hole ‘hair’: d.o.f. at the horizon.
- In classical gravity, many ‘no-hair’ theorems resulted.

In String theory, we find examples of hair. Results suggests that

- Quantum effects important at would-be-horizon (fuzz)
- Bound states have non-trivial size (ball)

“Fuzzball”
Two-charge Black hole

- Multiwound fundamental string + momentum
- Entropy: exponential degeneracy of microscopic states
- For classical profiles, string sources good supergravity background
 Classical profiles \leftrightarrow coherent states
- No horizons; string source
- Transverse vibrations only \rightarrow non-trivial size

- F1-P is U-dual to D1-D5 bound state
- Configurations are everywhere smooth in D1-D5 frame

- Caveat: two-charge Black hole is string-scale sized.

David Turton

Sen '94
Callan, Maldacena, Peet '95
Dabholkar, Gauntlett, Harvey, Waldram '95
Lunin, Mathur '01

Lunin, Mathur '01

Lunin, Maldacena, Maoz '02
D1-D5-P: three charges

- Add momentum to D1-D5 → macroscopic BPS black hole in 5D
- Entropy reproduced from microscopic degrees of freedom
- Large classes of three-charge microstate geometries constructed

Questions:

- Do microstates have structure at the scale of the would-be horizon? (So far, all results indicate ‘yes’)
- How large a subset of the BH degrees of freedom can we describe?
D1-D5 system: setup

Work in type IIB string theory on $\mathbb{R}^{1,4} \times S^1 \times T^4$

t, x^μ, y, z^i

- Radius of S^1: R_y
- Wrap n_1 D1 branes on S^1
- Wrap n_5 D5 branes on $S^1 \times T^4$

The bound state creates a geometry with D1 and D5 charges

$$Q_1 = \frac{1}{V} (2\pi)^4 g\alpha'^3 n_1,$$

$$Q_5 = g\alpha' n_5$$

For simplicity, set $Q_1 = Q_5 = Q$.

David Turton
To get a large AdS throat, take $\sqrt{Q} \ll R_y$. Structure of geometry is then:

The throat is locally $AdS_3 \times S^3 \times T^4$.
D1-D5 CFT & AdS/CFT

- Worldvolume gauge theory on D1-D5 bound state flows in IR to a (4,4) SCFT.
- Orbifold point in moduli space: Free SCFT on $(T^4)^N/S_N$, $N = n_1n_5$.

Symmetry generators:

- Virasoro$_L \times$ Virasoro$_R$ $L_{-n} \leftrightarrow AdS_3$
- R-symmetries $SU(2)_L \times SU(2)_R$ $J^a_{-n} \leftrightarrow S^3$
- U(1) currents of T^4 translations $J^i_{-n} \leftrightarrow T^4$

& Susy generators

Vafa '95, Douglas '95
Maldacena '97

David Turton
2. Results

- Proposed classification of CFT states into ‘neck’ d.o.f. and ‘cap’ d.o.f.
- Constructed explicit gravitational solutions describing neck d.o.f.

- Identified CFT duals of known two-center Bena-Warner solutions describing ‘cap’ d.o.f.

Mathur, DT 1112.6413
Mathur, DT 1202.6421
Lunin, Mathur, DT 1208.1770
Giusto, Lunin, Mathur, DT 1211.0306
Neck degrees of freedom

- Asymptotic symmetry group (ASG): symmetries preserving asymptotics of the space
- ASG of AdS$_3$: $\text{Virasoro}_L \times \text{Virasoro}_R$.
- D1-D5 AdS/CFT generalization:
 - Proposal: Neck d.o.f. correspond to action of chiral algebra generators

\[L_{-n} \leftrightarrow AdS_3 \]
\[J_{-n}^a \leftrightarrow S^3 \]
\[J_{-n}^i \leftrightarrow T^4 \]

\[J^i = \sum_{\text{copies}} \partial X^i \]
\[J_{-n}^i = \sum_{\text{copies}} \alpha_{-n}^i . \]
Neck degrees of freedom

• Take the D1-D5 ground state $|0\rangle_R$ and seek dual of $J^z_{-n}|0\rangle_R$ ($z = z^1$)

• In the $AdS_3 \times S^3 \times T^4$ throat, J^z_{-n} is diffeomorphism along T^4

• However $J^z_{-n}|0\rangle_R$ has higher energy than $|0\rangle_R$
 \rightarrow perturbation can’t be a diffeomorphism everywhere

• We find a solution which is non-trivial in the neck region between throat and flat asymptotics.
Method

1. Solve e.o.m. in ‘outer’ and ‘inner’ regions separately, & match solutions in the ‘throat’

2. Extend to closed-form perturbation on full background

3. Generalize to full nonlinear solution & to other backgrounds

Comment: Horowitz, Marolf ’96, Kaloper, Myers, Roussel ’96, Horowitz, Yang ’97

David Turton
Full non-linear solution for $J_{-n}^z |0\rangle_R$:

\[
ds^2 = -\frac{1}{H} [du + A] [dv + B] + H f \left[\frac{dr^2}{r^2 + a^2} + d\theta^2 \right] + H \left[r^2 c_\theta^2 d\psi^2 + (r^2 + a^2) s_\theta^2 d\phi^2 \right] + dz^i dz^i,
\]

\[
C^{(2)} = \frac{1}{2H} [dv + B] \wedge [du + A] + Q c_\theta^2 d\phi \wedge d\psi,
\]

\[
A = \frac{aQ}{f} \{ s_\theta^2 d\phi - c_\theta^2 d\psi \} + \Phi dz_1, \quad B = \frac{aQ}{f} \{ s_\theta^2 d\phi + c_\theta^2 d\psi \}, \quad f = r^2 + a^2 c_\theta^2, \quad H = 1 + \frac{Q}{f},
\]

\[
\Phi = \sum_{n=-\infty}^{\infty} c_n e^{-in \frac{\pi}{R_y}} \left(\frac{r^2}{r^2 + a^2} \right)^{|n|/2}.
\]

where

\[
a = \frac{Q}{R_y}, \quad c_\theta = \cos \theta, \quad s_\theta = \sin \theta.
\]
Generalization

- Local form of all supersymmetric solutions of minimal supergravity in 6D: ‘GMR’ form
- Above solution generalizes to non-linear deformation of any solution in GMR form.
- Solution is given in terms of a function which obeys wave equation on the background metric.
- GMR class includes all 2 charge D1-D5 solutions & some 3 charge D1-D5-P solutions
- Solve wave equation on D1-D5-P solutions from spectral flow:

\[\Phi_i = \sum_n c_n^i \left(\frac{r^2}{r^2[1 + 2a^2 n_L (n_L + 1)] + a^2} \right)^{|n/2|} e^{inv/R_y} \]
\[ds^2 = -\frac{1}{h} \left[du + \Phi_i dz^i \right] dv + \frac{Q_p}{h f} dv^2 + h f \left(\frac{dr^2}{r^2 + a^2 (\gamma_1 + \gamma_2)^2 \eta} + d\theta^2 \right) + h \left(r^2 + a^2 \gamma_1 (\gamma_1 + \gamma_2) \eta - \frac{Q_1 Q_5 a^2 (\gamma_1^2 - \gamma_2^2) \eta \cos^2 \theta}{h^2 f^2} \right) \cos^2 \theta d\psi^2 \]
\[+ h \left(r^2 + a^2 \gamma_2 (\gamma_1 + \gamma_2) \eta + \frac{Q_1 Q_5 a^2 (\gamma_1^2 - \gamma_2^2) \eta \sin^2 \theta}{h^2 f^2} \right) \sin^2 \theta d\phi^2 \]
\[+ \frac{Q_p a^2 (\gamma_1 + \gamma_2)^2 \eta^2}{h f} (\cos^2 \theta d\psi + \sin^2 \theta d\phi)^2 \]
\[- \frac{2 \sqrt{Q_1 Q_5} a}{h f} (\gamma_1 \cos^2 \theta d\psi + \gamma_2 \sin^2 \theta d\phi) dv \]
\[- \frac{2 \sqrt{Q_1 Q_5} a (\gamma_1 + \gamma_2) \eta}{h f} (\cos^2 \theta d\psi + \sin^2 \theta d\phi) \left[[du + \Phi_i dz^i] - dv \right], \]

\[a = \frac{\sqrt{Q_1 Q_5}}{R}, \quad Q_p = -a^2 \gamma_1 \gamma_2 \quad \eta = \frac{Q_1 Q_5}{Q_1 Q_5 + Q_1 Q_p + Q_5 Q_p}, \]
\[f = r^2 + a^2 (\gamma_1 + \gamma_2) \eta (\gamma_1 \sin^2 \theta + \gamma_2 \cos^2 \theta), \]
\[H_1 = 1 + \frac{Q_1}{f}, \quad H_5 = 1 + \frac{Q_5}{f}, \quad h = \sqrt{H_1 H_5}. \]

\[
\gamma_1 = -n_L, \quad \gamma_2 = n_L + 1,
\]
\[
\Phi_i = \sum_n c_n \left(\frac{r^2}{r^2 [1 + 2a^2 n_L (n_L + 1) + a^2]} \right)^{|n/2|} e^{i n \nu / R_y}
\]
3. Microstates at the Cap

• Look for states which cannot be written in terms of symmetry algebra generators acting on a ground state.

• These should correspond to bulk solutions with non-trivial cap structure.
States with fractional filling

• Consider Fermi seas filled to fractional level \(s/k \):

\[
\psi^+ \quad \tilde{\psi}^+
\]

\[
\begin{array}{c}
s/k \\
1 \\
\end{array}
\]

\[
\begin{array}{c}
s = 1 \\
k = 3
\end{array}
\]

\[
\ldots
\]

\sim \text{Spectral flow on cover}

• For \(s = nk + s' \), \(0 < s' < k - 1 \)
 these states cannot be obtained by acting with symmetry algebra generators on R ground states.

\[
J^+_{-n} = \sum_{\text{copies}} \psi^+_m \tilde{\psi}^+_{(n-m)}
\]
Gravitational descriptions

- Gravitational descriptions of the states: previously known

- Generalizations of the gravitational solutions describing states with integer spectral flow parameter n_L to fractional values s/k.

- Interesting orbifold structure in cap

- Corresponds to most general Bena-Warner solution with 2 centers

- Four integers n_1, n_5, k, s specify the geometry
\[
\begin{align*}
\text{Metric:} & \\
\text{\(ds^2 = \)} & -\frac{1}{h} (dt^2 - dy^2) + \frac{Q_p}{hf} (dt - dy)^2 + hf \left(\frac{dr^2}{r^2 + a^2 (\gamma_1 + \gamma_2)^2 \eta + d\theta^2} \right) \\
& + h \left(r^2 + a^2 \gamma_1 (\gamma_1 + \gamma_2) \eta - \frac{Q_1 Q_5 a^2 (\gamma_1^2 - \gamma_2^2) \eta \cos^2 \theta}{h^2 f^2} \right) \cos^2 \theta d\psi^2 \\
& + h \left(r^2 + a^2 \gamma_2 (\gamma_1 + \gamma_2) \eta + \frac{Q_1 Q_5 a^2 (\gamma_1^2 - \gamma_2^2) \eta \sin^2 \theta}{h^2 f^2} \right) \sin^2 \theta d\phi^2 \\
& + \frac{Q_p a^2 (\gamma_1 + \gamma_2)^2 \eta^2}{hf} (\cos^2 \theta d\psi + \sin^2 \theta d\phi)^2 \\
& - \frac{2 \sqrt{Q_1 Q_5} a}{hf} (\gamma_1 \cos^2 \theta d\psi + \gamma_2 \sin^2 \theta d\phi) (dt - dy) \\
& - \frac{2 \sqrt{Q_1 Q_5} a (\gamma_1 + \gamma_2) \eta}{hf} (\cos^2 \theta d\psi + \sin^2 \theta d\phi) dy + \sqrt{\frac{H_1}{H_5}} \sum_{a=1}^{4} dz_a^2,
\end{align*}
\]

\[
\begin{align*}
a &= \frac{\sqrt{Q_1 Q_5}}{R}, & Q_p &= -a^2 \gamma_1 \gamma_2 & \eta &= \frac{Q_1 Q_5}{Q_1 Q_5 + Q_1 Q_p + Q_5 Q_p}, \\
f &= r^2 + a^2 (\gamma_1 + \gamma_2) \eta (\gamma_1 \sin^2 \theta + \gamma_2 \cos^2 \theta), & H_1 &= 1 + \frac{Q_1}{f}, & H_5 &= 1 + \frac{Q_5}{f}, & h &= \sqrt{H_1 H_5}.
\end{align*}
\]

\[
\gamma_1 = -\frac{s}{k}, \quad \gamma_2 = \frac{s + 1}{k}.
\]
Part I Summary

- Examples of both cap states and neck states identified
- Supports proposal that neck d.o.f. correspond to symmetry algebra generators
- Cap states are step towards understanding generic state of black hole
Part II: Black Hole Complementarity
The Information Paradox

- BH Horizon: normal lab physics (small curvature)

- Endpoint of process: violation of unitarity or exotic remnants

- Conclusions robust including small corrections (Mathur’s theorem)

Hawking ‘75
Mathur 0909.1038
The Fuzzball Proposal

• Conjecture: the generic state of a black hole is described by a solution of string theory which
 – resembles the traditional black hole far outside the would-be horizon
 – ends in a complicated structure involving sources of string theory just outside the would-be horizon.

• There is no horizon and no interior.
The Fuzzball Proposal

• Conjecture: the generic state of a black hole is described by a solution of string theory which
 – resembles the traditional black hole far outside the would-be horizon
 – ends in a complicated structure involving sources of string theory just outside the would-be horizon.

• There is no horizon and no interior.

• A collapsing shell of matter should tunnel into a fuzzball configuration
 – tunneling time has been estimated to be << the Hawking evaporation time (may be expected to be of order the ‘scrambling time’).

• Open question: what happens if you fall onto a fuzzball configuration?
 – Conjecture: for coarse, high energy (E >> T) processes, there should be a ‘complementary’ description involving free infall

Mathur 1012.2101
Mathur, Plumberg 1101.4899

David Turton
• In the Fuzzball scenario, what is the role of the classical BH metric?

• What quantities does the classical BH metric accurately describe?
Correlators in Rindler space

Rindler space:

• Accelerated observer in Minkowski space
• Near-horizon region of a black hole

• Minkowski space decomposes into four Rindler wedges

• Consider a free scalar field theory
• Minkowski vacuum restricted to right Rindler wedge is a thermal state

\[|0\rangle_M = C \sum_k e^{-\frac{E_k}{2}} |E_k\rangle_L |E_k\rangle_R, \quad C = \left(\sum_k e^{-E_k} \right)^{-\frac{1}{2}} \]
Correlators in Rindler space

- Consider the right Rindler wedge, in a particular generic state.

Divide correlators into those which
1. Are well approximated by the canonical ensemble (coarse/non-fine-tuned)
2. Are not well approximated by the canonical ensemble (fine-tuned). (sensitive to some details of generic microstates)

- Minkowski vacuum \leftrightarrow canonical ensemble, so accurately describes coarse/non-fine-tuned correlators:

$$R\langle E_k | \hat{O}_R | E_k \rangle_R \approx \frac{1}{\sum_l e^{-E_l}} \sum_i e^{-E_i} R\langle E_i | \hat{O}_R | E_i \rangle_R = M \langle 0 | \hat{O}_R | 0 \rangle_M$$

- Suggests correct role of traditional black hole metric.
Fuzzball Complementarity: a conjecture

- **Picture 1**: space-time is cut off by the fuzzball surface: state is a solution of string theory.
 - This description is appropriate for all physical processes (and all observers).

\[
\begin{align*}
r &= 2M \\
r &= 3M
\end{align*}
\]
Fuzzball Complementarity: a conjecture

- **Picture 1**: space-time is cut off by the fuzzball surface: state is a solution of string theory.
 - This description is appropriate for all physical processes (and all observers).

\[r = 2M \quad r = 3M \]

- **Picture 2**: Traditional black hole metric.
 - This description accurately describes many processes, including a set of coarse, high energy \((E >> T)\) impact processes.

Mathur, Plumberg 1101.4899
Mathur review 1205.0776
What Fuzzball Complementarity is not

• It is not an attempt to reconstruct the interior space-time.

• It does not postulate new observer-dependent physics in black holes.

Rather, the conjecture is that in the fuzzball scenario, the traditional black metric still accurately describes many processes, including a set of coarse, high-energy \((E \gg T)\) impact processes.
Toy Model: AdS/CFT

Analogy between Fuzzball Complementarity and AdS/CFT:

• Consider D1-D5 system in regime where AdS description is weakly coupled

• In the CFT description, an incoming graviton hits the D1-D5 bound state and breaks up into excitations of the (strongly coupled) CFT.

• In the dual gravity description, the graviton experiences a smooth space-time with low curvature through the vicinity of the CFT location.
Black Hole Complementarity

• **Picture 1**: space-time is cut off by a ‘stretched horizon’: a Planck-temperature membrane.

 – This description is appropriate for an **observer at infinity**.

 – Postulate 1: Formation and evaporation of BH is unitary

 – Postulate 2: Semiclassical physics outside ‘stretched horizon’

 – Postulate 3: Black hole has e^S states & discrete energy levels

Susskind, Thorlacius, Uglum ’93

• **Picture 2**: Traditional black hole metric.

 – This description is appropriate for an **infalling observer**.

 – Postulate 4: An observer falling into the black hole and crossing the horizon experiences semiclassical physics in the traditional black hole geometry

David Turton
Black Hole Complementarity

- **Picture 2:** Traditional black hole metric.
 - This description is appropriate for an *infalling observer*.
 - Postulate 4: An observer falling into the black hole and crossing the horizon experiences semiclassical physics in the traditional black hole geometry.

- This requires sharpening. For example:
 - **Postulate 4A:** Semiclassical physics in the traditional black hole geometry describes all possible low-energy measurements made by an infalling observer, including *fine-tuned* experiments.
Black Hole Complementarity

• **Picture 2**: Traditional black hole metric.
 – This description is appropriate for an *infalling observer*.
 – Postulate 4: An observer falling into the black hole and crossing the horizon experiences semiclassical physics in the traditional black hole geometry.

• This requires sharpening. For example:
 – **Postulate 4A**: Semiclassical physics in the traditional black hole geometry describes all possible low-energy measurements made by an infalling observer, including *fine-tuned* experiments.

• With hindsight, this seems unphysical from the point of view of the fuzzball program; the traditional black hole metric is thought of as an *ensemble average* description, so should not describe fine-tuned measurements.

• By applying Mathur’s theorem, it has recently been shown to be inconsistent.

Almheiri, Marolf, Polchinski, Sully 1207.3123

David Turton
Firewall Argument 1

- **Postulate 4A** claims that Picture 2 describes fine-tuned experiments.
- After the Page time, a fine-tuned experiment shows that b is (almost) maximally entangled with the early radiation E.

- However, in Picture 2, b is entangled with its partner c, which is not compatible (by applying strong subadditivity, as in Mathur’s theorem).

Conclusions:
- Require structure at the horizon (for all observers)
- BH metric does not describe fine-tuned experiments.
Conclusions:

• Require structure at the horizon
• BH metric does not describe fine-tuned experiments.

• Extrapolation: consider excited states (hair) at the horizon in Picture 2. (Alternatively, new physics at macroscopic distances outside horizon, e.g. Giddings et al.)

• One requires excitations all the way to the Planck scale – “Firewall”.
 (Reconstruct Planck-temperature membrane/shock-wave in Picture 2.)

 => Fuzzball / Firewall
Firewall Argument 2

- Original claim: Firewall argument excludes fuzzball complementarity

 Almheiri, Marolf, Polchinski, Sully 1207.3123

 Almheiri, Marolf, Polchinski, Stanford, Sully 1304.5483v1

- This claim was later retracted

 Almheiri, Marolf, Polchinski, Stanford, Sully 1304.5483v2

Argument is nevertheless interesting to consider:

- Firewall argument 2: If infalling quantum interacts significantly with Hawking quanta outside the fuzzball surface, then after the Page time this interaction cannot be ‘undone’ by the fuzzball surface, since there is no local entanglement.
Some Important Subtleties

- Can an infalling quantum interact significantly with Hawking radiation before reaching the fuzzball surface?

- How should one define the fuzzball surface / stretched horizon? What are its properties?
Some Important Subtleties

- Can an infalling quantum interact significantly with Hawking radiation before reaching the fuzzball surface?

- How should one define the fuzzball surface / stretched horizon? What are its properties?

- Extrapolate model of stretched horizon (SH) from fuzzball results:

 - Conservative assumption: generic fuzzball state has its d.o.f located at a Planck distance l_p from the would-be horizon
 (If incorrect, firewall argument 2 is even weaker)

 - Stretched horizon: $\exp(S(M))$ states of mass M at radius $r_0(M) + l_p$
Some Important Subtleties

• Appears inconsistent to allow infalling quantum to reach SH without SH first expanding

• Mechanism: tunneling into $\exp(S(M+E))$ states, new radius $r_0(M+E)$

• Expect that SH should first expand into a local ‘bubble’ of size

$$s_{bubble} \sim \left(\frac{E}{T} \right)^{\frac{1}{D-2}} l_p$$

• Can an infalling quantum interact significantly with Hawking radiation before reaching this location?
Interaction cross section with Hawking quanta

• Consider free-fall from outside 2 r0 (Ignore fine-tuning from lowering to near the horizon)

• Take for concreteness graviton-graviton cross-section, which grows with energy (Other particles can be treated similarly).

• Naïve estimate: c.o.m. energy is transplanckian when interaction happens with order 1 probability.

• On general considerations, 3 regimes of impact parameter d.
 Let R_s be the Schwarzschild radius of a black hole with mass equal to the center-of-mass energy of the collision, E_c.

 i) smallest: BH formation \(d \lesssim R_s \)
 ii) intermediate: depends on theory \(R_s \lesssim d \lesssim \alpha R_s \)
 iii) largest: classical deflection \(d \gg \alpha R_s \)

 (for some constant \(\alpha \)).

 Banks, Fischler ‘99
Interaction cross section with Hawking quanta

Combine i) and ii) – Probability of ‘significant’ interaction becomes order 1 at

\[s_\alpha \sim \left(\frac{E}{T} \right)^{\frac{1}{2(D-2)}} l_p \]

So we find

\[s_\alpha \ll s_{\text{bubble}}. \]

In case iii), we show that the deflection is parametrically smaller than the Planck length.

For the case of a fixed cross-section which does not grow with energy, for sufficiently large \(\frac{E}{T} \) the same conclusions apply.

Mathur, DT 1306.5488
So it appears that for sufficiently large E/T, there is no significant interaction with Hawking quanta before the location that the fuzzball surface tunnels out to.

Open questions:

• How large should E/T be in any given physical situation?

• Firewall \Rightarrow Fuzzball?
Summary: Part II

- Mathur’s theorem: horizon cannot be ‘information free’

- Suggests that a black hole in a generic state is a fuzzball

- Fuzzball complementarity is weaker than Black Hole Complementarity, and will be interesting to explore further.
Thanks!

David Turton
Bonus slides
Mathur’s theorem

- A precise statement of the information paradox

- Assumptions: good semiclassical limit over ‘nice slices’ inside and outside the horizon

- Includes **small corrections** to leading order process
Leading order pair creation process

- Model evolution of state:
 - H: Interior
 - b, c: next Hawking pair
 - E: early radiation

\[|\Psi\rangle = \sum C_i H_i E_i \]
\[\rightarrow \sum C_i H_i \frac{1}{\sqrt{2}} (0_c 0_b + 1_c 1_b) E_i \]

- Entanglement entropy of BH with surroundings increases by \(\ln 2 \):

\[S_{BE} = S_E + S_B = S_E + \ln 2 \]
Including small corrections

- Allow small corrections from entire matter inside the black hole
 - Small probability of emitting orthogonal state to Hawking state
 \[S^1 = \frac{1}{\sqrt{2}} (0_c 0_b + 1_c 1_b) \]
 \[S^2 = \frac{1}{\sqrt{2}} (0_c 0_b - 1_c 1_b) \]

- Assume that Hawking quanta which have already left do not affect process
 - (similar to how a piece of paper burns).
 \[|\Psi\rangle = \sum_i C_i H_i E_i \]
 \[\rightarrow \sum_i C_i (H_i^1 S^1 + H_i^2 S^2) E_i \]
 \[= S^1 \Lambda^1 + S^2 \Lambda^2, \quad ||\Lambda^2|| < \epsilon \ll 1 \]

- Use strong subadditivity inequality:

\[
S_{BC} < \epsilon \\
S_B, S_C > \ln 2 - \epsilon \\
S_{BE} + S_{BC} \geq S_E + S_C \\
S_{BE} > S_E + \ln 2 - 2\epsilon
\]