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Abstract
In DMD, the dynamics of nonlinear systems is studied by finding the 

dominant eigenfunction and eigenvalues of an approximate data 
driven, linear model for the evolution.  

We introduce DMD to the field of galactic dynamics by applying it to 
the well-worn problem of a 1D plane-symmetric system.



DMD was developed in the field of fluid mechanics to analyze data from 
experiments and simulations

Tu+13
See text by Kutz et al on DMD

Given knowledge of an observable in the form of a series of snapshots 
(here, map of vorticity at discrete times), what can we say about the 

evolution of the system?

For background, see papers by Kutz group at UW, Mezic group here at UCSB, and many more



Each DMD mode has a (generally complex) frequency



Number count asymmetries 
Bulk motions
Phase spirals

Moving groups
Vphi R ridges
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�vz� oscillations in Lz

Disc corrugations
Xu +15

Kicked up disk
Price-Whelan +15

Sheffield +18
(see also Richardson +08, Dorman +13
for discussion of kicked-up disk stars in 

M31 and M33) Warp 
Outer perturbed HI disk

Chakrabarti +16

Spiral arms and bar

Disequilibrium in the Disk



Phase Spirals in z-Vz plane Antoja+18 
(GDR2)
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Open Questions

Transients vs long-lived structures
Phase-mixing vs self-gravitating waves

Coupling of in-plane and vertical motions

If one of our goals is to determine the gravitational potential and the 
structure of the Galaxy as well as the amount of dark matter in the Solar 
Neighbourhood (Oort problem) then does disequilibrium make our job 

harder or does it present an opportunity?

How can we best use simulations to (a) understand the physics of 
disk disequilibrium and (b) interpret observations?



Animation by J. Dubinski



Spectral analysis has proved extremely useful in the study 
of bars and spiral structure 
(see Sellwood & Athanassoula 1986)

=3

�(R, z, t) =
��

m=0

Am(R, t)eim�

=
��

m=0

� �

0
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map of vertical displacement (colour range is +- 500 pc)

We can apply the same methods to the vertical moments  
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�z�(R, �) and �vz�(R, z)

See Chequers & LW 17,18



Fourier decomposition in azimuth



Spectral analysis of simulations show good
agreement with predictions from eigenmode/WKB 



Possible shortcomings of spectral decomposition

1) Will not capture non-linear dynamics such as mode coupling

2)  Is this the right approach when we have both phase 
mixing and long-lived waves/oscillations?



Normally, we think of eigenfunction methods as being applicable 
to Hamiltonian systems in the limit of small (linear) oscillations
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The goal of DMD is to find something akin to the normal modes of a nonlinear system
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By finding the eigenfunctions and eigenvalues of A, we 
can immediately write down the state of the system at 

some time t given the state of the system at t=0.



Dynamic Mode Decomposition (DMD)
For background on method, see book by Kutz et al

Method uses simulation data to learn the “modes” of a nonlinear system

Sample system at discrete times

Columns are snapshots of data

Find dominant eigenvalues of A 
via SVD
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xj+1 = A xj

State space space of observables
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X � U�V †
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X+ � V ��1U†
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X+ is the Moore� Penrose inverse
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A = X �X+

Our goal is to find the dominant eigenfunctions/eigenvalues of 

SVD

The rest is linear algebra
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A � X �V ��1U†



We next project A on to an r-dimensional sub matrix 
corresponding to the r largest singular values from Sigma
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Eigenfunctions of 
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Ã are the (dominant) DMD modes



From Arbabi 2019



An embarrassingly simple example

van der Pol equation
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This is a two-dimensional non-linear system
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Consider any observable of the state vector w
g(w(t))

Our goal is to describe this in terms of DMD modes



That is, our goal is to decompose

g(w(t))

Into DMD modes
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Since the system reaches a limit cycle, the nonlinear 
behaviour is periodic with some period T. So for any 

observable we can construct a Fourier series:
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but this is precisely the desired form for DMD modes with 

Of course, most nonlinear systems are not periodic and we 
won’t have the luxury of simply writing down a Fourier series. 
The idea is to use the data to discover the analog of Fourier 

modes for a more general nonlinear system.



Let’s apply to a more complicated (but still toy model) problem 
namely, 1D planar dynamics with gravity 

(Spitzer 1942, Camm 1950) 



Phase mixing of a 1D system in a fixed anharmonic potential

Equilibrium DF is perturbed by shifting in vz

Evolves via phase mixing



Self-gravitating 1D systems have discrete modes
Mathur 1990, Weinberg 1991, LW & Bonner 2015
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General perturbation can 
involve mix of pure mode and 

continuum

Explains why it is difficult to excite a pure mode 
in any realistic simulation (Weinberg 1991)

Response Longterm 
evolution

In general, we expect both phase mixing and modal 
oscillations to be relevant for dynamics



To explore the competition between phase mixing and self-gravity 
we consider a simple 1D (slab) model for stellar disk where we 

can tune the amount of self-gravity vs external potential

Self-gravitating

Test particles

Darling & LW 2019



Importance of self-gravity
Perturb a disk by tilting a ring at these Solar circle

Use high-res, low mass particles in the ring to boost resolution 
where we want to probe phase space.

(This is somewhat dubious since particles mix in radius. However, 
the resolution in Gaia is 1 Msun, which is well below what is 

possible in simulations.)

Fully live disk and halo
Includes self-gravity for perturbation

Test particles in static potential

Darling & LW 2019

mid plane displacement across the disk



Live disk and halo Test particle simulation

250 Myr          500Myr            1Gyr 250 Myr          500Myr            1Gyr



First 5 DMD modes for a nearly self-gravitating disk



Dominant modes for nearly test-particle case



The obvious next step is to apply the method to 3D simulations of 
galactic dynamics.

The challenge: Choosing an appropriate set of observables that 
captures structures in the full 6D phase space.

An opportunity: Identify “modes” that connect in-plane and vertical 
motions and that may include different azimuthal m’s…”modes” that 
would not necessarily show up in a spectral (linear) decomposition.

The dream: Match observations (Gaia snapshot) to some template 
from simulations using DMD to understand past and future evolution 

and constrain the potential and DM distribution.


