Dark Matter Halo History and Tidal Streams Good Vibrations

Ray Carlberg

Fully Dynamical Globular Clusters in a Cosmological Simulation

- Stellar dynamical models
 - Insert King model star clusters
 - Distributed in a rotating exponential disk
 - Within a Dark Matter Halo
 - Soften, but add collisional heating with an MC approach
- The Dark Matter is a fully cosmological Milky Way sub-region
 - The Via Lactae II simulation
 - (Sub-) halo catalog

Conclusions

- GC tidal dissolution during the hierarchical assembly of a Milky-Way like halo can be followed in an Nbody code.
- A GC thin stream normally is imbedded in a wider "cocoon", a consequence of hierarchical assembly
 - Broad stream width indicates size of orbit in initial halo(s).
- Stream stars should have velocities perpendicular to the stream of 10's of km/sec, a consequence of **collisionless** halo vibrations.
 - SIDM DM reduces the velocities
 - Requires a large sample of streams.

N=1M, m*~0.44 M_sun SFB881 model Jongsuk Hong Jeremy Webb

Top View***
We see edge on generally

Rhalf/Rtide vs Mass MW>8kpc left, sims right M>10⁵ underfill tidal surface

Two stage Tidal Stream structure: Thin stream and cocoon

- Dwarf galaxy stage:
 - Stream wraps around in a 1-2 kpc size orbit
 - Accretes into main halo
- Main halo stage:
 - Early stage stream is now a stream 1-2 kpc wide
 - Newly released stars give the thin (100pc) stream
- Small angular width streams usually near pericenter.
- Cocoons should be almost universal if progenitor clusters are created in pregalactic sub-halos (dwarfs).

Incommensurate Stream Velocities

- In the simplest case, stream velocities are oriented along the stream.
- Perpendicular velocities should be small
- In a static potential.

Orphan kinematics

Fardal, van der Marel, Sohn, Molina

LMC wake:

Garavito-Carmargo, Laporte, Johnston, Gomez & Watkins

Orphan Stream Koposov, Belokurov, et al

Distribution of stream perpendicular velocities in simulation

Dashed lines are Exp[-v/s] with s of 10 and 20 km/sec

Forces perpendicular to stream Halo major axis at ~20-30 kpc constant

Halo 2nd and 3rd axes with time, vibrating, possible erratic rotation

Perpendicular quadrupole force fluctuations Q matrix largest eigenvalue at 20-30 kpc The fluctuations about mean are the interesting part.

Indicative tangential velocities (zero mean) integral of $\frac{3}{2}$ Q*r dt (no orbit)

Self-interacting Dark Matter damping

Cross-section in cm² gm⁻¹

 $\Delta v = 3/2 \int Q r dt$ Indicative velocity. Not an orbit.

Red line is a collisionless halo Increasing SIDM cross-section

Viscosity ~ mfp * velocity dispersion
Mean free path ~1/cross-section

SIDM 0.1-1 very effective at suppressing vibrations

Caveats and Concerns, Conclusions

- Streams are a powerful probe of DM and its history.
- Star cluster mass loss started in sub-galactic fragments (dwarf galx)
 - All thin star streams should have accompanying "cocoons"
 - Evidence for a cocoon for GD-1
- Galactic halos continue to gain mass and have potential fluctuations
 - Collisionless halos "ring" or "vibrate". Monopole nearly constant
 - Quadrupole force fluctuations a few percent,
 - at frequencies that couple to orbits
 - Streams should have ~20 km/sec perpendicular velocities
 - Orphan (LMC surely plays a role as well)