Deciphering the footprints of the Antlia dwarf galaxy on the Galactic disk

Sukanya Chakrabarti (RIT)
Phil Chang (UWM), Adrian Price-Whelan (Princeton)

... the galaxy is a complicated place

2: NGC0362 3: NGC1851

4: NGC1904 5: NGC2298 6: NGC4833

I [deg]

7: ω Cen 8: NGC5286 9: NGC6205 10: NGC6341 11: NGC6779 12: NGC7089 13: NGC7099

Virgo

overdensity
Donlon et al.

2019

Ripples in the disk: Xu et al. 2015

Garrison-Kimmel et al. 2017

Could there by a couple of surviving (or about to be destroyed) dwarf galaxies that approached close to the disk? Also: Samuel et al. 2019; Fritz et al. 2018

Overview

- (Old) prediction for new dwarf galaxy from analysis of perturbations in outer HI disk (Chakrabarti & Blitz 2009; Chakrabarti & Blitz 2011). <u>Inverse method.</u>
- New Gaia observations of Antlia (Torrealba et al. 2019)
- Orbit distributions for Antlia satellite based on Gaia PMs
- Antlia's (and Sgr's) effect on the Galactic disk. HI <u>planar</u> disturbances in outer disk. Distinct from warp, phase space spiral, etc.

$\Sigma (M_{\odot}/pc^2)$ 20 10.00 5.62 10 3.16 1.78 180° kpc 0 270° 90° 1.00 0.56 0.32 -100.18 -200.10 В 1.80 20 1.50 10 1.30 1.10 1180° kpc 1.00 0.80 -100.70 0.60 -200.50 20 -200 10 -10kpc

Planar disturbances in outer HI disk

HI map of Milky Way (Levine, Blitz & Heiles 06). What caused these structures outside the solar circle?

$$a_{m}(r) = \int \Sigma(r, \phi)e^{-im\phi}d\phi$$

$$0.6 \\ 0.5 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.8 \\ 0.9 \\ 0.1 \\ 0.0 \\ 10$$

$$10$$

$$12$$

$$14$$

$$16$$

$$18$$

$$20$$

$$22$$

$$r$$

$$(kpc)$$

(Old) prediction for new dwarf satellite of Milky Way

Chakrabarti & Blitz (2009): ~
 1:100 perturber with pericenters (~ 7-10 kpc) needed to match disturbances in outer HI disk. Prediction: currently perturber is at ~ 100 kpc.

Prediction for azimuthal location

Proof of principle of method

Proof of principle of method

Proof of principle

Best fits — close to origin at best-fit time. "Variants" — varying ICs, orbital inclination, ISM & SFR, etc

Proof of principle

Best fits — close to origin at best-fit time. "Variants" — varying ICs, orbital inclination, ISM & SFR, etc

why look at the gas?

- Coldest component responds the most
- Outer HI disks reach to several times the optical radius — largest cross section for interaction
- Gas has short-term memory
- Outskirts are clean

New Gaia observations of the Antlia dwarf galaxy

- similar in extent to LMC, but two orders of magnitude fainter ($M_v = -8.5$ mag)
- b ~ 11 degrees
- D = 129 + / 6.5 (Torrealba et al. 2019)

Antlia's orbit distributions from Gaia proper motions

But wait! what about Sgr?

Sgr is on a polar orbit

The tidal players of the Milky Way

$$a_{m,eff}(t) = \frac{1}{r_{\text{out}} - r_{\text{in}}} \int_{r_{in}}^{r_{out}} |a_m(r,t)| dr$$

$$a_{t,eff}(t) = \left(\frac{1}{4} \sum_{m=1}^{m=4} |a_{m,eff}(t)|^2\right)^{1/2}$$

$$_{
m lg_{10}}^{
m -3.0}$$
 $_{
m lg_{10}}^{
m -2.5}$ mass ratio
Chang & Chakrabarti 2011

$$a_{m,eff}(t) = \frac{1}{r_{\text{out}} - r_{\text{in}}} \int_{r_{in}}^{r_{out}} |a_m(r,t)| dr$$

$$a_{t,eff}(t) = \left(\frac{1}{4} \sum_{m=1}^{m=4} |a_{m,eff}(t)|^2\right)^{1/2}$$

Chang & Chakrabarti 2011

Lipnicky, Chakrabarti & Chang 2018.

$$a_{m,eff}(t) = \frac{1}{r_{\text{out}} - r_{\text{in}}} \int_{r_{in}}^{r_{out}} |a_m(r,t)| dr$$

$$a_{t,eff}(t) = \left(\frac{1}{4} \sum_{m=1}^{m=4} |a_{m,eff}(t)|^2\right)^{1/2}$$

Chang & Chakrabarti 2011

Lipnicky, Chakrabarti & Chang 2018.

$$a_{m,eff}(t) = \frac{1}{r_{\text{out}} - r_{\text{in}}} \int_{r_{in}}^{r_{out}} |a_m(r,t)| dr$$

$$a_{t,eff}(t) = \left(\frac{1}{4} \sum_{m=1}^{m=4} |a_{m,eff}(t)|^2\right)^{1/2}$$

$$a_{t,eff} = 0.88 \left(m_{sat} / M_{host} \right)^{0.6(R_p/50kpc)^{0.5}}$$

Chang & Chakrabarti 2011

Lipnicky, Chakrabarti & Chang 2018.

$$a_{m,eff}(t) = \frac{1}{r_{\text{out}} - r_{\text{in}}} \int_{r_{in}}^{r_{out}} |a_m(r,t)| dr$$

$$a_{t,eff}(t) = \left(\frac{1}{4} \sum_{m=1}^{m=4} |a_{m,eff}(t)|^2\right)^{1/2}$$

$$a_{t,eff} = 0.88 \left(m_{sat} / M_{host} \right)^{0.6(R_p/50kpc)^{0.5}}$$

Observed $a_{t,eff}$ of HI disk: ~ 0.25, for ~ 1:100 perturber, $\rightarrow R_p$ ~ 10 kpc

Rp = 8 kpc (also note outer stellar disk structures similar to Monoceros ring)

Rp = 8 kpc (also note outer stellar disk structures similar to Monoceros ring)

Rp = 8 kpc (also note outer stellar disk structures similar to Monoceros ring)

Rp = 8 kpc (also note outer stellar disk structures similar to Monoceros ring)

- Purcell et al. 2011 (+Chakrabarti)
- Monoceros ?
- Sgr's effect on HI planar disturbances — too low; with 10¹⁰ Msun Sgr starting at t = -1 Gyr

- Purcell et al. 2011 (+Chakrabarti)
- Monoceros ?
- Sgr's effect on HI planar disturbances — too low; with 10¹⁰ Msun Sgr starting at t = -1 Gyr

- Purcell et al. 2011 (+Chakrabarti)
- Monoceros ?
- Sgr's effect on HI planar disturbances — too low; with 10¹⁰ Msun Sgr starting at t = -1 Gyr

- Purcell et al. 2011 (+Chakrabarti)
- Monoceros ?
- Sgr's effect on HI planar disturbances — too low; with 10¹⁰ Msun Sgr starting at t = -1 Gyr

- Purcell et al. 2011 (+Chakrabarti)
- Monoceros ?
- Sgr's effect on HI planar disturbances — too low; with 10¹⁰ Msun Sgr starting at t = -1 Gyr

- Purcell et al. 2011 (+Chakrabarti)
- Monoceros ?
- Sgr's effect on HI planar
 disturbances too low; with 10¹⁰
 Msun Sgr starting at t = -1 Gyr

Future work

- structure of Antlia today
- Disclaimer —
 current errors in
 Gaia PMs for Antlia
 preclude accurate
 long time
 integrations
 (Lipnicky &
 Chakrabarti 2017)

Future work

- structure of Antlia today
- Disclaimer —
 current errors in
 Gaia PMs for Antlia
 preclude accurate
 long time
 integrations
 (Lipnicky &
 Chakrabarti 2017)

In closing ...

- pre-Gaia prediction of dwarf galaxy parameters

 close to what is observed for Antlia. Using orbits derived from Gaia PMs, Antlia matches observed HI disk disturbances.
- Galaxy is a complicated place .. which features are unique to model(s)? Is Monceros/phase space spiral unique to the Sgr interaction? or is it only produced in massive Sgr models?
- Double-blind comparison of data to a repository of simulations?