The quasi-linear evolution of gravitating systems:

Applications to ridge formation, disc thickening Streams \& stellar clusters around black holes.

Jean-Baptiste Fouvry, Christophe Pichon

in collaboration with J. Binney, P.H Chavanis
S. Prunet E J. Magorrian
inspired by M. Weinberg's \& J. Heyvaerts work

Bring Home Messages

What: Quasi linear theory = stellar version of dissipation-fluctuation theorem
= How do orbital structure of galaxies diffuse away from mean field locked trajectory.
How: time decoupling + matrix method (long range : non local + resonances)
Why:
*Non-linear: qualify perturbation properties as well as equilibrium:
(address nature - nurture conundrum or probe DH).
*Break the pb by scale (cf zoom simulation) or by component (BL - FP);
*Statistical \equiv ensemble average of sims (cf cosmology, because NL)
*Captures climate not weather;
*Theory (can be parametrised, expressed in WKB limit, switch off gravity etc..).

* BL version provide correct description of Chandrasekhar friction

Cons:
*Time decoupling, doesn't capture today's weather;

* Assumes integrability (but...)
*Technically not trivial to implement in its full glory (but ...)
For gaia : account for NLs+ resonances for streams + thick disc+ bars+cusp-core

Why Secular Dynamics?

What happens to stable self-gravitating galactic discs on a Hubble time?
How does a galaxy respond

- to its environment? Nurture

Dressed Fokker Planck diffusion

- to its internal graininess? Nature

Balescu-Lenard diffusion

- Which process matters most on cosmic timescales?

Move along Hubble Fork

Of interest for galactic chemodynamics (GAIA), Galactic Centre, planetesimals, DM haloes...

Provide quasi-linear theories accounting for non-linear gravity for $t \gg t_{\mathrm{dyn}}$

- Resonant effects \Longrightarrow Secular evolution What happens to orbital structures on cosmic age?

Fluctuations and dissipation

- Einstein (1905) and Perrin (1908): we know how ink diffuses in water.

- Fluctuation-Dissipation Theorem

Diffusion
rate
:---:
fluctuating forces

- Stars in cold galaxies undergo the same process \Longrightarrow But, gravity is a long-range interaction.
- To diffuse, stars need to resonate, otherwise follow the mean field.
- Fluctuations are boosted by collective effects.

How do stars' orbits distort on cosmic times?

Along the unperturbed orbit

Potential fluctuate (through resonances)

Along the unperturbed orbit

Potential fluctuate (through resonances)

Along the unperturbed orbit

Potential fluctuate (through resonances)

Heuristic derivation

$$
\begin{aligned}
& \frac{\partial F}{\partial t}+[H, F]=0 \quad \text { with } \quad H=\frac{v}{2}+\psi \\
& F=f(\mathbf{I}, t)+\delta f(\mathbf{I}, \theta, t) \quad \text { with } \quad \frac{\partial \delta f}{\partial t} \gg \frac{\partial f}{\partial t}
\end{aligned}
$$

Easy to derive

$$
\frac{\partial f}{\partial t}=-\langle[\delta f, \delta \Phi]\rangle
$$

where [,] a Poisson bracket and \langle.$\rangle is ensemble average$ f evolves because fluctuations in f and Φ correlated

- δf depends on $\delta \phi$ through eqns of motion
- $\delta \Phi$ depends on δf through Poisson eqn

Heuristic derivation

$$
\begin{aligned}
& \frac{\partial F}{\partial t}+[H, F]=0 \quad \text { with } \quad H=\frac{v}{2}+\psi \\
& F=f(\mathbf{I}, t)+\delta f(\mathbf{I}, \theta, t) \quad \text { with } \quad \frac{\partial \delta f}{\partial t} \gg \frac{\partial f}{\partial t}
\end{aligned}
$$

$$
\frac{\partial f(\mathbf{J}, t)}{\partial t}=\frac{\partial}{\partial \mathbf{J}} \cdot\left(\dot{\mathbf{D}} \cdot \frac{\partial f}{\partial \mathbf{J}}\right) \text { where } \quad \mathbf{D}=\sum_{\mathbf{m}} D_{\mathbf{m}} \mathbf{m} \otimes \mathbf{m}
$$

Dressed fluctuations

$$
\left.D_{\boldsymbol{m}}(\boldsymbol{J})=\left.\langle | \psi_{\boldsymbol{m}}^{\text {tot }}(\omega)\right|^{2}\right\rangle(\omega=\boldsymbol{m} \cdot \boldsymbol{\Omega})=\frac{\left.\left.\langle | \psi_{\boldsymbol{m}}^{\operatorname{ext}}(\omega)\right|^{2}\right\rangle}{\left|\varepsilon_{\boldsymbol{m}}(\boldsymbol{J}, \omega)\right|^{2}}(\omega=\boldsymbol{m} \cdot \boldsymbol{\Omega})
$$

Diffusion is anisotropic

Diffusion is anisotropic

Diffusion is anisotropic

If perturbation is low frequency low order resonances dominate

Diffusion is anisotropic

Anything (e.g. $S g r$) making the potential fluctuate at low frequency will create ridges in phase space as found e.g. by Gaia.

If perturbation is low frequency low order resonances dominate

PROSPECTS

Powerful framework applicable to a whole range of nested scales

- Galactic discs
- Radial migration, chemistry and galactic archeology (GAIA)
- Disc thickening
- Galactic centres
- BH feeding/spin up
- Last parcsec pb
- Galactic haloes
- Cusp-core and feedback

NACO - VLT

- Impact of cosmic environment

Galactic Streams

- Probe properties of DHs
- Impact of SgrA on MW

Feedback Run

Radial migration: churning and blurring and thickening

traced by stellar time capsules

 Time reverse cosmic evolution of MW?
 Halle et al 2018.

Galactic Center stellar cluster

1997.5

- BH diet

Keck/UCLA Galactic Center Group

- BH spin up
- Cluster dark component

Diffusion of Streams to probe Dark Halo

- DH clumpiness (through diffusion)
- DH flattening (through induced stochasticity)

$\partial \mathbf{I}$ $\overline{\partial t} \propto \sqrt{\mathbf{D}} \xi$

Stochastic Langevin "lto" Process

$$
\begin{aligned}
& \frac{\partial f(\mathbf{J}, t)}{\partial t}=\frac{\partial}{\partial \mathbf{J}} \cdot\left(\dot{\mathbf{D}} \cdot \frac{\partial f}{\partial \mathbf{J}}\right) \text { where } \\
& \mathbf{D}=\sum D_{\mathbf{m}} \mathbf{m} \otimes \mathbf{m}
\end{aligned}
$$

Broadening of stream with phase $=$ measure of $\mathrm{D}_{\mathrm{m}}(\mathbf{J})$

for streams, diffusion at fixed orbital parameters

Galaxies are perturbed

- $\boldsymbol{\Lambda C D M}$ paradigm \Longrightarrow Live cosmic environment

- Recent theoretical works to describe the effects of fluctuations:
- External perturbations \Longrightarrow Dressed Fokker-Planck (e.g., large scale structures, satellites)
- Internal perturbations \Longrightarrow Balescu-Lenard (e.g., graininess, GMCs)

Nature vs. Nurture?
Self-induced vs. Externally-induced?

The fate of self-gravitating systems

Galaxies are self-gravitating

- Self-gravitating amplification (for linear response)

Collective effects

- Matrix method - (Kalnajs (1976) \Longrightarrow Representative basis $\left(\psi^{(p)}, \rho^{(p)}\right)$ to solve Poisson once for all.

$$
\left\{\begin{array}{l}
\Delta \psi^{(p)}=4 \pi G \rho^{(p)} \\
\int \mathrm{d} \boldsymbol{x} \psi^{(p) *}(\boldsymbol{x}) \rho^{(q)}(\boldsymbol{x})=-\delta_{p}^{q}
\end{array}\right.
$$

also Weinberg (1989)

Galaxies are self-gravitating

- Discs strongly amplify perturbations, e.g. swing amplification

Toomre (1981)

$$
\times 100^{2} \text { amplification from gravitational wake for diffusion }
$$

Self-gravitating dressing

- Represent the potential perturbations on the basis
$\begin{cases}\delta \psi^{\mathrm{ext}}(\boldsymbol{x}, t)=\sum_{p} b_{p}(t) \psi^{(p)}(\boldsymbol{x}) & \text { Imposed external perturbation. } \\ \delta \psi^{\text {self }}(\boldsymbol{x}, t)=\sum_{p} a_{p}(t) \psi^{(p)}(\boldsymbol{x}) & \text { Amplified response of the system. }\end{cases}$
- Non-Markovian amplification mechanism

$$
\boldsymbol{a}(t)=\int_{-\infty}^{t} \mathrm{~d} \tau \mathbf{M}(t-\tau)[\boldsymbol{a}(\tau)+\boldsymbol{b}(\tau)]
$$

- Dressing of the perturbations
gravitational susceptibility

$$
\underbrace{[\widehat{\boldsymbol{a}}+\widehat{\boldsymbol{b}}](\omega)}_{\begin{array}{c}
\text { Total } \\
\text { perturbations }
\end{array}}=\underbrace{[\mathbf{I}-\widehat{\mathbf{M}}(\omega)]^{-1}}_{\text {Dressing }} \cdot \underbrace{\boldsymbol{b}(\omega)}_{\text {Exterturbations }}
$$

- System's response matrix (Kalnajs (1976)

$$
\widehat{\mathbf{M}}_{p q}(\omega)=(2 \pi)^{d} \sum_{\boldsymbol{m} \in \mathbb{Z}^{d}} \int \mathrm{~d} \boldsymbol{J} \frac{\boldsymbol{m} \cdot \partial F / \partial \boldsymbol{J}}{\omega-\boldsymbol{m} \cdot \boldsymbol{\Omega}} \psi_{\boldsymbol{m}}^{(p) *}(\boldsymbol{J}) \psi_{\boldsymbol{m}}^{(q)}(\boldsymbol{J}) .
$$

\Longrightarrow Resonances at the intrinsic frequencies: $\omega=\boldsymbol{m} \cdot \boldsymbol{\Omega}$.
Secularly, gravitational susceptibility is squared!

The dressed Fokker-Planck equation

- Describe the secular evolution driven by external perturbations for a system
- inhomogeneous
- stable
- self-gravitating
- collisionless
- perturbed
- Some references:
- Binney,Lacey (1980): No dressing
- Weinberg (2001): Spherical case
- Pichon, Aubert (2006): Environment effects
- Fouvry, Pichon, Prunet (2015): 2D WKB limit
- Fouvry, Pichon, Chavanis, Monk (2016): 3D WKB limit

See also Kuzmin 1957, B+T 2008, and references in Heyvearts 2017

Dressed Fokker-Planck equation

- Dressed Fokker-Planck equation

$$
\frac{\partial F(\boldsymbol{J}, t)}{\partial t}=\frac{\partial}{\partial \boldsymbol{J}} \cdot\left[\sum_{\boldsymbol{m}} \boldsymbol{m} D_{m}(\boldsymbol{J}) \boldsymbol{m} \cdot \frac{\partial \bar{F}}{\partial \boldsymbol{J}}\right] .
$$

- Dressed diffusion coefficients

$$
D_{\boldsymbol{m}}(\boldsymbol{J})=\frac{1}{2} \sum_{p, q} \psi_{\boldsymbol{m}}^{(p)}(\boldsymbol{J}) \psi_{\boldsymbol{m}}^{(q) *}(\boldsymbol{J})\left[[\mathbf{I}-\mathbf{M}]^{-1} \cdot \widehat{\mathbf{C}} \cdot[\mathbf{I}-\widehat{\mathbf{M}}]^{-1}\right]_{p q}(\omega=\boldsymbol{m} \cdot \boldsymbol{\Omega})
$$

- Some properties:
- $F(\boldsymbol{J}, t)$: Orbital distorsion in action space.
- $\partial / \partial J_{1} \cdot$: Divergence of a flux, i.e. conservation.
- \boldsymbol{m}_{1} : Discrete Fourier vectors - Anistropic diffusion.
- $D_{m}(\boldsymbol{J})$: Anisotropic diffusion coefficients.
- $[\mathbf{I}-\widehat{M}]^{-1}$: Self-gravitating dressing.
- $\widehat{\mathbf{C}}$: Power spectrum of external perturbations.
- $m_{1} \cdot \Omega_{1}$: Fluctuations at resonance.
\Longrightarrow Master equation for externally-induced orbital distortion.

Dressed Fokker-Planck equation

- Dressed Fokker-Planck equation

$$
\frac{\partial F(\boldsymbol{J}, t)}{\partial t}=\frac{\partial}{\partial \boldsymbol{J}} \cdot\left[\sum_{\boldsymbol{m}} \boldsymbol{m}\left[D_{\boldsymbol{m}}(\boldsymbol{J}) \boldsymbol{m} \cdot \frac{\partial F}{\partial \boldsymbol{J}}\right] .\right.
$$

- Dressed diffusion coefficients

$$
D_{\boldsymbol{m}}(\boldsymbol{J})=\frac{1}{2} \sum_{p, q} \psi_{\boldsymbol{m}}^{(p)}(\boldsymbol{J}) \psi_{\boldsymbol{m}}^{(q) *}(\boldsymbol{J})\left[[\mathbf{I}-\mathbf{M}]^{-1} \cdot \widehat{\mathbf{C}} \cdot[\mathbf{I}-\widehat{\mathbf{M}}]^{-1}\right]_{p q}(\omega=\boldsymbol{m} \cdot \boldsymbol{\Omega})
$$

- Some properties:

$$
\widehat{\mathbf{M}}_{p q}(\omega) \sim \sum_{\boldsymbol{m}} \int \mathrm{d} \boldsymbol{J} \frac{\boldsymbol{m} \cdot \partial F / \partial \boldsymbol{J}}{\omega-\boldsymbol{m} \cdot \boldsymbol{\Omega}} \psi_{\boldsymbol{m}}^{(p) *}(\boldsymbol{J}) \psi_{\boldsymbol{m}}^{(q)}(\boldsymbol{J}) .
$$

The inhomogeneous Balescu-Lenard equation

- Describe the secular evolution driven by finite $-N$ effects for a system
- inhomogeneous
- stable
- self-gravitating
- isolated
- discrete
- Some references:
- Balescu (1960), Lenard (1960): Plasma case
- Weinberg (1993): Homogeneous approximation
- Heyvaerts (2010): Angle-Action - BBGKY see also Luciani Pellat (1987)
- Chavanis (2012): Angle-Action - Klimontovitch
- Fouvry, Pichon, Chavanis (2015): 2D WKB limit
- Fouvry, Pichon, Magorrian, Chavanis (2015): 2D with full amplification
- Fouvry, Pichon, Chavanis, Monk (2016): 3D WKB limit
- Fouvry, Pichon, Chavanis, (2017): Kepler solution

The inhomogeneous Balescu-Lenard equation

- Describe the secular evolution driven by finite $-N$ effects for a system
- inhomogeneous
- stable
- self-gravitating
- isolated
- discrete
- Some references:
- Changes in \mathbf{J} causes $f(\mathbf{J})$ to change
- So mean-field model evolves
- Traditional theory computes rate of evolution by summing Kepler scatterings over pairs of stars
- Recent work shows this is fundamentally mistaken

The idea behind resonant relaxation (in one cartoon).

Resonant encounters

- Resonance condition $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right) \Longrightarrow$ Distant encounters.

Here and resonate in some rotating frame

The two (blue and red) sets of orbits satisfy the resonance condition $\mathbf{m} 1 \cdot \mathbf{\Omega} \mathbf{1}=\mathbf{m} \mathbf{2} \cdot \boldsymbol{\Omega} \mathbf{2}$, and therefore will interact consistently, driving a significant distortion of their shapes.

The idea behind resonant relaxation (in one cartoon).

Resonant encounters

- Resonance condition $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right) \Longrightarrow$ Distant encounters. Here and resonate
in some rotating frame

The two (blue and red) sets of orbits satisfy the resonance condition $\mathbf{m} 1 \cdot \mathbf{\Omega} \mathbf{1}=\mathbf{m} \mathbf{2} \cdot \boldsymbol{\Omega} \mathbf{2}$, and therefore will interact consistently, driving a significant distortion of their shapes.

The idea behind resonant relaxation.

Resonant encounters

- Resonance condition $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right) \Longrightarrow$ Distant encounters.

Here and resonate in some rotating frame

The two (blue and red) sets of orbits satisfy the resonance condition $\mathbf{m} 1 \cdot \mathbf{\Omega} \mathbf{1}=\mathbf{m} \mathbf{2} \cdot \boldsymbol{\Omega} \mathbf{2}$, and therefore will interact consistently, driving a significant distortion of their shapes.

The idea behind resonant relaxation.

Resonant encounters

- Resonance condition $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right) \Longrightarrow$ Distant encounters.

Here and resonate in some rotating frame

The two (blue and red) sets of orbits satisfy the resonance condition $\mathbf{m} 1 \cdot \mathbf{\Omega} \mathbf{1}=\mathbf{m} \mathbf{2} \cdot \boldsymbol{\Omega} \mathbf{2}$, and therefore will interact consistently, driving a significant distortion of their shapes.

The idea behind resonant relaxation.

- Resonance condition $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right) \Longrightarrow$ Distant encounters.

Here and resonate in some rotating frame

No Torque departure from axial symmetry

Net Torque

The idea behind secular evolution: shot noise fluctuations resonate!

- Resonance condition: $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right)$

The two (blue and red) sets of orbits satisfy the resonance condition $\mathbf{m} 1 \cdot \mathbf{\Omega} \mathbf{1}=\mathbf{m} \mathbf{2} \cdot \mathbf{\Omega 2}$, and therefore will interact consistently, driving a significant distortion of their shapes.

The idea behind secular evolution: shot noise fluctuations resonate!

- Resonance condition: $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right)$

The two (blue and red) sets of orbits satisfy the resonance condition $\mathbf{m} 1 \cdot \mathbf{\Omega} \mathbf{1}=\mathbf{m} \mathbf{2} \cdot \mathbf{\Omega 2}$, and therefore will interact consistently, driving a significant distortion of their shapes.

The idea behind secular evolution: shot noise fluctuations resonate!

- Resonance condition: $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right)$

The two (blue and red) sets of orbits satisfy the resonance condition $\mathbf{m} 1 \cdot \mathbf{\Omega} \mathbf{1}=\mathbf{m} \mathbf{2} \cdot \mathbf{\Omega 2}$, and therefore will interact consistently, driving a significant distortion of their shapes.

Inhomogeneous Balescu-Lenard equation

- Inhomogeneous Balescu-Lenard equation

Heyvaerts (2010), Chavanis (2012)

$$
\begin{aligned}
\frac{\partial F\left(\boldsymbol{J}_{1}, t\right)}{\partial t}=\pi(2 \pi)^{d} \frac{M_{\mathrm{tot}}}{N} \frac{\partial}{\partial \boldsymbol{J}_{1}} \cdot & {\left[\sum_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}} \boldsymbol{m}_{1} \int \mathrm{~d} \boldsymbol{J}_{2} \frac{\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right)}{\left|\mathcal{D}_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}}\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}\right)\right|^{2}}\right.} \\
& {\left.\left[\boldsymbol{m}_{1} \cdot \frac{\partial}{\partial \boldsymbol{J}_{1}}-\boldsymbol{m}_{2} \cdot \frac{\partial}{\partial \boldsymbol{J}_{2}}\right] F\left(\boldsymbol{J}_{1}, t\right) F\left(\boldsymbol{J}_{2}, t\right)\right] . }
\end{aligned}
$$

- Some properties:
- $F(\boldsymbol{J}, t)$: Orbital distorsion in action space.
- $1 / N$: Driven by finite $-N$ effects.
- $\partial / \partial \boldsymbol{J}_{1} \cdot$: Divergence of a flux, i.e. conservation.
- \boldsymbol{m}_{1} : Discrete Fourier vectors - Anistropic diffusion.
- δ_{D} : Resonance condition for distant encounters.
- $1 / \mathcal{D}_{m_{1}, m_{2}}$: Self-gravitating dressing (squared).
- $\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}$: Secular diffusion at resonance.
\Longrightarrow Master equation for self-induced orbital distortion.

Individual stochastic diffusion

- Self-consistent diffusion of the system as a whole
\Longrightarrow Anisotropic Balescu-Lenard equation

$$
\frac{\partial \bar{F}}{\partial \tau}=\frac{\partial}{\partial \boldsymbol{J}^{\mathrm{s}}} \cdot\left[\boldsymbol{A}(\boldsymbol{J}, \tau) \bar{F}(\boldsymbol{J}, \tau)+\boldsymbol{D}(\boldsymbol{J}, \tau) \cdot \frac{\partial \bar{F}}{\partial \boldsymbol{J}^{\mathrm{s}}}\right]
$$

$\boldsymbol{A}(\bar{F})$ drift vector, $\boldsymbol{D}(\bar{F})$ diffusion tensor.

- Individual dynamics of a wire at position $\mathcal{J}(\tau)$
\Longrightarrow Stochastic Langevin equation - (Risken (1996))

$$
\frac{\mathrm{d} \mathcal{J}}{\mathrm{~d} \tau}=\boldsymbol{h}(\mathcal{J}, \tau)+\boldsymbol{g}(\mathcal{J}, \tau) \cdot \boldsymbol{\Gamma}(\tau) \cdot \quad \mathrm{g}(\mathcal{J}, \tau) \propto \sqrt{\mathbf{D}}
$$

\boldsymbol{h} and \boldsymbol{g} vector and tensor, and $\boldsymbol{\Gamma}$ stochastic Langevin forces.
\Longrightarrow Dual equation, whose ensemble average gives back BL.

- In the Langevin's rewriting, particles are dressed orbits.
$\Longrightarrow \underline{\text { Huge gains in timesteps for integration. }}$

Difficulties of the Balescu-Lenard equation

- Balescu-Lenard equation

$$
\begin{array}{r}
\frac{\partial F\left(\boldsymbol{J}_{1}, t\right)}{\partial t}=\pi(2 \pi)^{d} \frac{M_{\mathrm{tot}}}{N} \frac{\partial}{\partial \boldsymbol{J}_{1}} \cdot\left[\sum_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}} \boldsymbol{m}_{1} \int \mathrm{~d} \boldsymbol{J}_{2} \frac{\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right)}{\left|\mathcal{D}_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}}\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}\right)\right|^{2}}\right. \\
\left.\left[\boldsymbol{m}_{1} \cdot \frac{\partial}{\partial \boldsymbol{J}_{1}}-\boldsymbol{m}_{2} \cdot \frac{\partial}{\partial \boldsymbol{J}_{2}}\right] F\left(\boldsymbol{J}_{1}, t\right) F\left(\boldsymbol{J}_{2}, t\right)\right] .
\end{array}
$$

- Dressed susceptibility coefficients

$$
\frac{1}{\mathcal{D}_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}}\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \omega\right)}=\sum_{p, q} \psi_{\boldsymbol{m}_{1}}^{(p)}\left(\boldsymbol{J}_{1}\right)[\mathbf{I}-\widehat{\mathbf{M}}(\omega)]_{p q}^{-1} \psi_{\boldsymbol{m}_{2}}^{(q) *}\left(\boldsymbol{J}_{2}\right) .
$$

Difficulties:

- Inhomogeneous system
- Angle-action $(\boldsymbol{x}, \boldsymbol{v}) \mapsto(\boldsymbol{\theta}, \boldsymbol{J})$.
- Long-range system
- Basis elements $\psi^{(p)}$.
- Self-gravitating system
- Response matrix $\widehat{\mathbf{M}}(\omega)$.
- Resonant encounters
- Resonance $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right)$.

Balescu-Lenard - Global approach

- Balescu-Lenard equation

$$
\begin{aligned}
\frac{\partial F\left(\boldsymbol{J}_{1}, t\right)}{\partial t}=\pi(2 \pi)^{d} \frac{M_{\mathrm{tot}}}{N} \frac{\partial}{\partial \boldsymbol{J}_{1}} \cdot & {\left[\sum_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}} \boldsymbol{m}_{1} \int \mathrm{~d} \boldsymbol{J}_{2} \frac{\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right)}{\left|\mathcal{D}_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}}\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}\right)\right|^{2}}\right.} \\
& {\left.\left[\boldsymbol{m}_{1} \cdot \frac{\partial}{\partial \boldsymbol{J}_{1}}-\boldsymbol{m}_{2} \cdot \frac{\partial}{\partial \boldsymbol{J}_{2}}\right] F\left(\boldsymbol{J}_{1}, t\right) F\left(\boldsymbol{J}_{2}, t\right)\right] . }
\end{aligned}
$$

- Dressed susceptibility coefficients

$$
\frac{1}{\mathcal{D}_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}}\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \omega\right)}=\sum_{p, q} \psi_{\boldsymbol{m}_{1}}^{(p)}\left(\boldsymbol{J}_{1}\right)[\mathbf{I}-\widehat{\mathbf{M}}(\omega)]_{p q}^{-1} \psi_{\boldsymbol{m}_{2}}^{(q) *}\left(\boldsymbol{J}_{2}\right) .
$$

Difficulties:
integrate twice over phase space

- Inhomogeneous system
- Angle-action $(\boldsymbol{x}, \boldsymbol{v}) \mapsto(\boldsymbol{\theta}, \boldsymbol{J}) \Longrightarrow 2 D$ discs are explicitly integrable.
- Long-range system
- Basis elements $\psi^{(p)} \Longrightarrow$ Global basis elements.
- Self-gravitating system
- Response matrix $\widehat{\mathbf{M}}(\omega) \Longrightarrow$ Numerical linear theory.
- Resonant encounters
- Resonance $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right) \Longrightarrow$ Integrate along resonant lines.

Balescu-Lenard - Global approach

- Balescu-Lenard equation

$$
\begin{aligned}
& \frac{\partial F\left(\boldsymbol{J}_{1}, t\right)}{\partial t}=\pi(2 \pi)^{d} \frac{M_{\mathrm{tot}}}{N} \frac{\partial}{\partial \boldsymbol{J}_{1}} \cdot\left[\sum_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}} \boldsymbol{m}_{1} \int \mathrm{~d} \boldsymbol{J}_{2} \frac{\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right)}{\left|\mathcal{D}_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}}\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}\right)\right|^{2}}\right. \\
& {\left.\left[\boldsymbol{m}_{1} \cdot \frac{\partial}{\partial \boldsymbol{J}_{1}}-\boldsymbol{m}_{2} \cdot \frac{\partial}{\partial \boldsymbol{J}_{2}}\right] F\left(\boldsymbol{J}_{1}, t\right) F\left(\boldsymbol{J}_{2}, t\right)\right] . }
\end{aligned}
$$

- Dressed susceptibility coefficients

$$
\frac{1}{\mathcal{D}_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}}\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \omega\right)}=\sum_{p, q} \psi_{\boldsymbol{m}_{1}}^{(p)}\left(\boldsymbol{J}_{1}\right)[\mathbf{I}-\widehat{\mathbf{M}}(\omega)]_{p q}^{-1} \psi_{\boldsymbol{m}_{2}}^{(q) *}\left(\boldsymbol{J}_{2}\right) .
$$

$$
\widehat{\mathbf{M}}_{p q}(\omega) \sim \sum_{\boldsymbol{m}} \int \mathrm{d} \boldsymbol{J} \frac{\boldsymbol{m} \cdot \partial F / \partial \boldsymbol{J}}{\omega-\boldsymbol{m} \cdot \boldsymbol{\Omega}} \psi_{\boldsymbol{m}}^{(p) *}(\boldsymbol{J}) \psi_{\boldsymbol{m}}^{(q)}(\boldsymbol{J}) .
$$

Double integral over phase space: an applied-math numerical challenge

- Resonant poles and action integrals.
- Gauss method with $\left(r_{\mathrm{p}}, r_{\mathrm{a}}\right)$ as actions.
- Validation with unstable modes.

N -body alternative

How: Ensemble average rate of change of action to compute secular flux
$\frac{\partial f}{\partial t}+\nabla \cdot \mathcal{F}=0 \quad$ with $\quad \mathcal{F}=\left\langle\frac{\Delta \mathbf{I}}{\Delta t}\right\rangle$

An example of secular evolution

- Sellwood's 2012 numerical experiment
- Stationnary stable tapered Mestel disc
- N-body code with 500 M particles
- Appearance of transient spiral waves
- Archetype of radial migration

Angular momentum ${ }^{J}{ }_{\phi}$
~ radius
Secular diffusion in action-space

An example of secular evolution

- In configuration space

- Spontaneous appearance of uncorrelated transient spiral waves.

An example of secular evolution

- In orbital space

- Long-term appearance of a dominant narrow resonant ridge.

The fate of secular evolution

The fate of secular evolution

stellar discs are so (dynamically) unlikely they will drive themselve out of equibriium

Balescu-Lenard Global - Application

- Diffusion flux in action space

$$
\frac{\partial F}{\partial t}=\operatorname{div}\left(\mathcal{F}_{\mathrm{tot}}(\boldsymbol{J})\right)
$$

- Predicted contours for $\operatorname{div}\left(\mathcal{F}_{\text {tot }}\right)\left(t=0^{+}\right)$

Balescu-Lenard Global - Application

- Diffusion flux in action space

$$
\frac{\partial F}{\partial t}=\operatorname{div}\left(\mathcal{F}_{\mathrm{tot}}(\boldsymbol{J})\right)
$$

- Predicted contours for $\operatorname{div}\left(\mathcal{F}_{\text {tot }}\right)\left(t=0^{+}\right)$

Solves a long standing puzzle of galactic dynamics: uncorrelated swing-amplified spiral sequences secularly induce formation of very specific families of distorted (churned and blurred) orbits forming a resonant ridge.

Scaling with N

- Two entangled sources of fluctuations
- Unavoidable Poisson shot noise
- Irreversible secular evolution
- Quantify the amount of evolution $\tilde{h}(t, N)=\left\langle\int \mathrm{d} \boldsymbol{J}[F(t, \boldsymbol{J}, N)-\langle F(0, \boldsymbol{J}, N)\rangle]^{2}\right\rangle$

- Initial behaviour
$\tilde{h}(t, N) \simeq \tilde{h}_{0}^{N}+t \tilde{h}_{1}^{N}+\frac{t^{2}}{2} \tilde{h}_{2}^{N} \Longrightarrow\left\{\begin{array}{l}\tilde{h}_{0}^{N} \propto N^{-1}(\text { Poisson shot noise }) \\ \tilde{h}_{1}^{N}=0 \\ \tilde{h}_{2}^{N} \propto N^{-2}(\text { Collisional scaling })\end{array}\right.$
- N-body measurements
$\log \left(\tilde{h}_{0}(\mathrm{~N})\right)$

$\log \left(\tilde{h}_{2}(\mathrm{~N})\right)$

Process displays characteristic scaling with N and cosmic time

Balescu-Lenard Global - Timescale

- Normalised Balescu-Lenard equation

$$
\frac{\partial F}{\partial t}=\frac{1}{N} C_{\mathrm{BL}}[F] \Longrightarrow \frac{\partial F}{\partial \tau}=C_{\mathrm{BL}}[F] \quad \text { with } \quad \tau=\frac{t}{N}
$$

- Comparison with S12's simulation

$$
\frac{\Delta \tau_{\mathrm{S} 12}}{\Delta \tau_{\mathrm{BL}}} \sim 1
$$

\Longrightarrow Appropriate timescales.

Balescu-Lenard
Secularly, gravitational susceptibility is squared!
In Mestel disc I Mopolarize $10^{2} \mathrm{M}_{\circ}$

$$
10^{4}=\left(10^{2}\right)^{2}=10000!!
$$

The role of swing amplification

- Removing loosely wound basis elements

- Turning off collective effects $1 /|\mathcal{D}|^{2} \rightarrow|A|^{2}$

\Longrightarrow Self-gravitating amplification of loosely wound perturbations
Proof in importance of self-gravity+ flexibility of Kinetic formalism
- Phase transition: $\mathbf{B L} \Longrightarrow$ Vlasov.

Late times

- 2-body (resonant) relaxation \Longrightarrow small-scale structures in the DF Destabilisation at the collisionless level
'Radial migration' drives the system to a new state of equilibrium which turns out to be unstable: the system then redistributes AM on a dynamical timescale

The WKB approach

- Difficulty: $\delta \psi \underset{\text { non-local }}{\stackrel{\text { Poisson }}{ }} \delta \rho=\int \mathrm{d} \boldsymbol{v} \delta F$.
\Rightarrow Restriction to tightly wound perturbations (WKB approximation).
- New wavelet basis

$$
\psi^{(p)}=\psi^{\left[k_{r}, k_{\phi}, R_{0}\right]}(R, \phi)=\mathcal{A} \mathrm{e}^{\mathrm{i}\left(k_{r} R+k_{\phi} \phi\right)} \exp \left[-\frac{\left(R-R_{0}\right)^{2}}{2 \sigma^{2}}\right] .
$$

\Longrightarrow Explicit, biorthogonal and both local and global.

The WKB calculation

- Diagonal response matrix

$$
\widehat{\mathbf{M}}_{p q}=\widehat{\mathbf{M}}_{\left[k_{r}^{p}, k_{\phi}^{p}, R_{0}\right],\left[k_{r}^{q}, k_{\phi}^{q}, R_{0}\right]}=\delta_{k_{r}^{p}}^{k_{q}^{q}} \delta_{k_{\phi}^{p}}^{k_{\phi}^{q}} \lambda_{\left[k_{r}^{p}, k_{\phi}^{p}, R_{0}\right]} .
$$

$$
\left\{\begin{array}{l}
* s=\frac{\omega-k_{\phi} \Omega}{\kappa} \\
* \chi=\frac{\sigma_{r}^{2} k_{r}^{2}}{\kappa^{2}} \\
* \mathcal{F}(s, \chi) \quad \text { (reduction factor) } \\
\quad \text { Kalnajs (65), Lin\&Shu(66) }
\end{array}\right.
$$

The WKB calculation

- Diagonal response matrix

$$
\widehat{\mathbf{M}}_{p q}=\widehat{\mathbf{M}}_{\left[k_{r}^{p}, k_{\phi}^{p}, R_{0}\right],\left[k_{r}^{q}, k_{\phi}^{q}, R_{0}\right]}=\delta_{k_{r}^{p}}^{k_{r}^{q}} \delta_{k_{\phi}^{p}}^{k_{\phi}^{q}} \lambda_{\left[k_{r}^{p}, k_{\phi}^{p}, R_{0}\right]} .
$$

(recovers the Toomre-Lin-Shu dispersion relation).

- Restriction to local resonances: $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right)$

$$
\left\{\begin{array} { l }
{ \boldsymbol { m } _ { 1 } \cdot \boldsymbol { \Omega } _ { 1 } (R _ { 1 }) - \boldsymbol { m } _ { 2 } \cdot \boldsymbol { \Omega } _ { 2 } (R _ { 2 }) = 0 } \\
{ | R _ { 1 } - R _ { 2 } | \leq (\text { few }) \sigma }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\boldsymbol{m}_{2}=\boldsymbol{m}_{1}, \\
R_{2}=R_{1}
\end{array}\right.\right.
$$

The WKB calculation

- Diagonal response matrix

$$
\widehat{\mathbf{M}}_{p q}=\widehat{\mathbf{M}}_{\left[k_{r}^{p}, k_{\phi}^{p}, R_{0}\right],\left[k_{r}^{q}, k_{\phi}^{q}, R_{0}\right]}=\delta_{k_{r}^{p}}^{k_{p}^{q}} \delta_{k_{\phi}^{p}}^{k_{\phi}^{q}} \lambda_{\left[k_{r}^{p}, k_{\phi}^{p}, R_{0}\right]} .
$$

(recovers the Toomre-Lin-Shu dispersion relation).

- Restriction to local resonances: $\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1} \cdot \boldsymbol{\Omega}_{1}-\boldsymbol{m}_{2} \cdot \boldsymbol{\Omega}_{2}\right)$

$$
\left\{\begin{array} { l }
{ \boldsymbol { m } _ { 1 } \cdot \boldsymbol { \Omega } _ { 1 } (R _ { 1 }) - \boldsymbol { m } _ { 2 } \cdot \boldsymbol { \Omega } _ { 2 } (R _ { 2 }) = 0 } \\
{ | R _ { 1 } - R _ { 2 } | \leq (\text { few }) \sigma }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\boldsymbol{m}_{2}=\boldsymbol{m}_{1}, \\
R_{2}=R_{1}
\end{array}\right.\right.
$$

- Explicit quadratures for the dressed diffusion flux

Balescu-Lenard WKB - Application

- Diffusion flux in action space

Radial migration + disc heating

$$
\frac{\partial F}{\partial t}=\operatorname{div}\left(\mathcal{F}_{\mathrm{tot}}(\boldsymbol{J})\right)
$$

- Predicted contours for $\operatorname{div}\left(\mathcal{F}_{\text {tot }}\right)\left(t=0^{+}\right)$

Illustration of flexibility of WKB solution

The effect of the Halo mass

- Importance of the response eigenvalues

$$
\lambda\left(k_{r}, k_{\phi}, R_{0}\right)=\frac{2 \pi G \xi \Sigma}{\kappa^{2}\left(1-s^{2}\right)} \mathcal{F}(s, \chi) \quad\left\{\begin{array}{l}
* s=\frac{\omega-k_{\phi} \Omega}{\kappa} \\
* \chi=\frac{\sigma_{r}^{2} k_{r}^{2}}{\kappa^{2}} \\
* \mathcal{F}(s, \chi) \quad \text { (reduction factor) }
\end{array}\right.
$$

- Increase of the active fraction ξ
- Transition: ILR \longrightarrow COR
- heating \longrightarrow radial migration

Blurring
Churning

angular momentum

Secular disc thickening ?

vertical ridges

Treat self consistently thickening due to spiral waves and GMC deflections

Stellar disc thickening

- Thick discs are not guaranteed to be integrable \Longrightarrow Generalisation of the WKB approximation

- Same results hold
- Biorthogonal basis
- Diagonal \widehat{M}
- Local resonances
- New thickened Q factor

$$
Q_{\text {thick }}=Q_{\text {thin }} \exp \left[1.61 \frac{\sigma_{z} / \nu}{\sigma_{r} / \kappa}\right]
$$

Stellar disc thickening

- Spontaneous thickening via Poisson shot noise/GMCs

Initial times
Solway (2012)

Late times (N-body)
Solway (2012)

BL - WKB
Fouvry et al. (2016)

Stellar disc thickening

Illustration of the increase of the velocity dispersion $\boldsymbol{S}_{z}\left(R_{g}, t\right)$

Disc thickening - Bars

- The effect of central decaying bars
$\widehat{C}\left[J_{\phi}, \omega\right] \propto A_{\mathrm{b}}\left(J_{\phi}\right) \exp \left[-\frac{\left(\omega-m_{\mathrm{p}} \Omega_{\mathrm{p}}\right)^{2}}{2 \sigma_{\mathrm{p}}^{2}}\right] \Longrightarrow\left\{\begin{array}{l}A_{\mathrm{b}}: \text { Bar profile } \\ \Omega_{\mathrm{p}}: \text { Pattern speed } \\ \sigma_{\mathrm{p}}: \text { Decay frequency }\end{array}\right.$

Long-lived bars

Short-lived bars

Positive flux
Negative flux

The role of resonances

- Perturbations evaluated at resonance:

$$
\widehat{C}(\omega=\boldsymbol{m} \cdot \boldsymbol{\Omega})
$$

$$
\begin{aligned}
\boldsymbol{m} & =\left(m_{\phi}, m_{r}, m_{z}\right) \\
- & (2,-1,-1) \\
- & (2,-1,0) \\
- & (2,-1,1) \\
-\infty & (2,0,-1) \\
-\infty & (2,0,0) \\
& -\infty(2,0,1) \\
\phi & \cdots(2,1,-1) \\
\cdots & (2,1,0) \\
\cdots & (2,1,1)
\end{aligned}
$$

The role of external perturbations

- Diffusion sourced by stochastic fluctuations

$$
\delta \psi^{\mathrm{ext}}(\boldsymbol{x}, t)=\sum_{p} b_{p}(t) \psi^{(p)}(\boldsymbol{x}) \Longrightarrow C_{p q}\left(t_{1}-t_{2}\right)=\left\langle b_{p}\left(t_{1}\right) b_{q}^{*}\left(t_{2}\right)\right\rangle
$$

- Exemple of perturbations: Halo \Longleftrightarrow Disc.
- Dark matter clumps

Halo \rightsquigarrow Disc

- Supernova feedback

Disc \rightsquigarrow Halo

Method: quasi-linear theory

Why Kinetic Theory?	
Universal	Applied throughout science.
Statistical	Mean response \& fluctuations/ Parameter space exploration.
Modular/flexible	Add/remove physical processes: metals+sinks+mass spectrum.
Very large timesteps	Gravitational polarization built in.
Non-linear	Nurture/nature split.

CONCLUSIONS

- From linear response to secular evolution.

Stellar dynamics enters the cosmic framework.

- Frameworks for the effects of external and internal perturbations.

Nature vs. Nurture

- First implementation of Balescu-Lenard in (astro)physics
- Approach complementary to N-body and Monte Carlo methods
$B L=$ master equation describing self-consistently resonant relaxation

Bring Home Messages

What: Quasi linear theory = stellar version of dissipation-fluctuation theorem
= How do orbital structure of galaxies diffuse away from mean field locked trajectory.
How: time decoupling + matrix method (long range : non local + resonances)
Why:
*Non-linear: qualify perturbation properties as well as equilibrium:
(address nature - nurture conundrum or probe DH).
*Break the pb by scale (cf zoom simulation) or by component (BL - FP);
*Statistical \equiv ensemble average of sims (cf cosmology)
*Captures climate not weather;

* Correct description of Chandrasekhar friction
*Theory (can be parametrised, expressed in WKB limit, switch off gravity etc..).
Cons:
*Time decoupling, doesn't capture today's weather;
* Assumes integrability (but...)
*Technically not trivial to implement in its full glory (but ...)
For gaia : account for NLs+ resonances for stream+ thick disc+ bars+cusp-core

Application 2

The case of quasi-Keplerian systems

- Describe the secular evolution driven by finite $-N$ effects for a quasi-Keplerian system
- inhomogeneous
- dynamically degenerate
- stable
- self-gravitating
- discrete
- How efficiently are BHs fed?

Last parsec pb? EMRI? TDE??

- Some references:

- Rauch, Tremaine (1996): Resonant relaxation
- Meritt et al. (2011): Schwarzschild barrier
- Bar-Or, Alexander (2014, 2016): η-formalism
- Sridhar, Touma (2016): Gilbert's method for Landau
- Fouvry, Pichon, Magorrian (2016): BBGKY approach
- Fouvry, Pichon, Chavanis (2017): First Implementation

Galactic Center stellar cluster

1997.5

- BH diet

Keck/UCLA Galactic Center Group

- BH spin up
- Cluster dark component

q-K systems are dynamically degenerate

- SMBH dominates the potential: $\varepsilon=M_{\star} / M_{\bullet} \ll 1$
\Longrightarrow Keplerian orbits are closed.
Dynamical degeneracy: $\forall \mathbf{J}, \mathbf{n} \cdot \boldsymbol{\Omega}_{\mathrm{Kep}}(\mathbf{J})=0$.

KECK Observations

N-body simulations (B. Bar-Or)

- Orbit-Average: Stars \Longrightarrow Wires

Quasi-Keplerian systems

- BH dominates the dynamics: $\varepsilon=M_{\star} / M_{\bullet} \ll 1$ \Longrightarrow Keplerian orbits are closed.
- Dynamical degeneracy: $\forall \boldsymbol{J}, \boldsymbol{n} \cdot \boldsymbol{\Omega}_{\mathrm{Kep}}(\boldsymbol{J})=0$. \Longrightarrow Delaunay variables

$$
\begin{aligned}
& \boldsymbol{J}=(\underbrace{I=J_{r}+L}_{\text {Fast } J^{\mathrm{f}}}, \underbrace{L, L_{z}}_{\text {Slow } \boldsymbol{J}^{\mathrm{s}}}) \\
& \boldsymbol{\Omega}_{\mathrm{Kep}}=\left(\Omega_{\mathrm{Kep}}, 0,0\right)
\end{aligned}
$$

- Orbits characterised by wires' coordinates

$$
\mathcal{E}=\left(\boldsymbol{J}, \boldsymbol{\theta}^{\mathbf{s}}\right) .
$$

- System phase-mixed w.r.t. the Kep. phase

$$
F(\boldsymbol{J}, \boldsymbol{\theta}) \simeq \bar{F}(\mathcal{E}) .
$$

- Keplerian wires precess in $\boldsymbol{\theta}^{\text {s }}$

$$
\boldsymbol{\Omega}^{\mathrm{s}}=\frac{\partial \bar{\Phi}_{\mathrm{prec}}}{\partial \boldsymbol{J}^{\mathrm{s}}}=\frac{\partial\left[\bar{\Phi}_{\mathrm{self}}+\bar{\Phi}_{\mathrm{rel}}+\bar{\Phi}_{\mathrm{ext}}\right]}{\partial \boldsymbol{J}^{\mathrm{s}} \searrow_{\text {DMBH }}}
$$

The degenerate Balescu-Lenard equation

- The master equation of resonant relaxation

$$
\begin{aligned}
\frac{\partial \bar{F}(\boldsymbol{J}, \tau)}{\partial \tau}=\frac{1}{N} \frac{\partial}{\partial \boldsymbol{J}_{1}^{\mathrm{s}}} \cdot[& \sum_{\boldsymbol{m}_{1}^{\mathrm{s}}, \boldsymbol{m}_{2}^{\mathrm{s}}} \boldsymbol{m}_{1}^{\mathrm{s}} \int \mathrm{~d} \boldsymbol{J}_{2} \frac{\delta_{\mathrm{D}}\left(\boldsymbol{m}_{1}^{\mathrm{s}} \cdot \boldsymbol{\Omega}_{1}^{\mathrm{s}}-\boldsymbol{m}_{2}^{\mathrm{s}} \cdot \boldsymbol{\Omega}_{2}^{\mathrm{s}}\right)}{\left|\mathcal{D}_{\boldsymbol{m}_{1}^{\mathrm{s}}, \boldsymbol{m}_{2}^{\mathrm{s}}}\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \boldsymbol{m}_{1}^{\mathrm{s}} \cdot \boldsymbol{\Omega}_{1}^{\mathrm{s}}\right)\right|^{2}} \\
& \left.\times\left[\boldsymbol{m}_{1}^{\mathrm{s}} \cdot \frac{\partial}{\partial \boldsymbol{J}_{1}^{\mathrm{s}}}-\boldsymbol{m}_{2}^{\mathrm{s}} \cdot \frac{\partial}{\partial \boldsymbol{J}_{2}^{\mathrm{s}}}\right] \bar{F}\left(\boldsymbol{J}_{1}, \tau\right) \bar{F}\left(\boldsymbol{J}_{2}, \tau\right)\right] .
\end{aligned}
$$

- Some properties:
- $\bar{F}(\boldsymbol{J}, \tau)$: Orbital distorsion.
- $\partial \tau: \tau=t M_{\star} / M_{\bullet}$, BH dominance.
- $1 / N: 1 / N$ resonant relaxation.

- $\partial / \partial \boldsymbol{J}_{1}^{\mathrm{s}} \cdot:$ Adiabatic conservation.
- δ_{D} : Resonance on precessions.
- $1 / \mathcal{D}_{\boldsymbol{m}_{1}^{\mathrm{s}}, \boldsymbol{m}_{2}^{\mathrm{s}}}$: Self-gravity.
using averaging over fast angle

$$
\bar{F}\left(\boldsymbol{J}, \boldsymbol{\theta}^{\mathrm{s}}\right)=\int \frac{\mathrm{d} \boldsymbol{\theta}^{\mathrm{d}}}{(2 \pi)^{d-k}} F\left(\boldsymbol{J}, \boldsymbol{\theta}^{\mathrm{s}}, \boldsymbol{\theta}^{\mathrm{d}}\right)
$$

\rightarrow avoid Dirac of zero!

Physical origin of

Schwarzschild barrier

One PN and I.5PN relativistic correction

Balescu-Lenard and Schwarzschild barrier

- Precession frequencies: self-consistent + relativistic - (Kocsis et al. (2011))

- When stars move inward
- Precession frequencies increase.
- Resonant coupling with the disc becomes impossible.
- Schwarzschild barrier-(Merritt et al. (2011), Bar-Or et al. (2016)).

Individual stochastic diffusion

- Self-consistent diffusion of the system as a whole
\Longrightarrow Anisotropic Balescu-Lenard equation

$$
\frac{\partial \bar{F}}{\partial \tau}=\frac{\partial}{\partial \boldsymbol{J}^{\mathrm{s}}} \cdot\left[\boldsymbol{A}(\boldsymbol{J}, \tau) \bar{F}(\boldsymbol{J}, \tau)+\boldsymbol{D}(\boldsymbol{J}, \tau) \cdot \frac{\partial \bar{F}}{\partial \boldsymbol{J}^{\mathrm{s}}}\right]
$$

$\boldsymbol{A}(\bar{F})$ drift vector, $\boldsymbol{D}(\bar{F})$ diffusion tensor.

- Individual dynamics of a wire at position $\mathcal{J}(\tau)$
\Longrightarrow Stochastic Langevin equation - (Risken (1996))

$$
\frac{\mathrm{d} \mathcal{J}}{\mathrm{~d} \tau}=\boldsymbol{h}(\mathcal{J}, \tau)+\boldsymbol{g}(\mathcal{J}, \tau) \cdot \boldsymbol{\Gamma}(\tau) \cdot \quad \mathrm{g}(\mathcal{J}, \tau) \propto \sqrt{\mathbf{D}}
$$

\boldsymbol{h} and \boldsymbol{g} vector and tensor, and $\boldsymbol{\Gamma}$ stochastic Langevin forces.
\Longrightarrow Dual equation, whose ensemble average gives back BL.

- In the Langevin's rewriting, particles are dressed orbits.
\Longrightarrow Huge gains in timesteps for integration.

Langevin view of the Schwarzschild barrier

- Langevin stochastic diffusion of orbits

Resonant relaxation near SMBH

Flux map in action space
$\delta \mathrm{N} \quad$ Langevin MC

Slow action

Resonant relaxation near SMBH

$\delta \mathrm{N} \quad$ Langevin MC

Flux map in action space
 Slow action

Multi species?

Resonant relaxation segregates adiabatically lighter stars towards SMBH

Scalar Resonant Relaxation in Galactic Nuclei

Diffusion coefficients in orbital space

Scalar Resonant Relaxation in Galactic Nuclei

Diffusion coefficients in orbital space

Scalar Resonant Relaxation in Galactic Nuclei

Typical diffusion timescales

Typical diffusion timescales Context
How to feed : a supermassive black hole?
Stellar diffusion in galactic centers

+ Origin and structure of SgrA*
+ Relaxation in eccentricity, orientation
Sources of gravitational waves
+ BHs-binary mergers
+ EMRIs, TDE

Scalar Resonant Relaxation

Vector Resonant Relaxation

CONCLUSIONS

- From linear response to secular evolution.

Stellar dynamics enters the cosmic framework.

- Frameworks for the effects of external and internal perturbations.

Nature vs. Nurture

- First implementation of Balescu-Lenard in (astro)physics
- Approach complementary to N-body and Monte Carlo methods
$B L=$ master equation describing self-consistently resonant relaxation

Resonance 101

- What is a resonance
angular frequency
$\stackrel{?}{\Omega}-\Omega_{0}=\frac{\ell}{m} \kappa$
-Where is a star resonant?

- Resonant Orbital Stream =
ensemble of star describing a given resonant orbit
(reduction into dust)
quasi resonant streams = relative motion
tumbling stream

Resonance 101

- What is a resonance
angular frequency
$\stackrel{?}{\Omega}-\Omega_{0}=\frac{\ell}{m} \kappa$
-Where is a star resonant ?
epicyclic radial frequency

- Resonant Orbital Stream =
ensemble of star describing a given resonant orbit
(reduction into dust)
quasi resonant streams = relative motion tumbling stream
- Why the resonance? collisionless dynamics No net torque Net Torque resonant interaction?

Resonant Orbital Stream Non Resonant Orbital Stream large relative motion = large inertia

Resonance 101

- What is a resonance $\stackrel{?}{\Omega}-\Omega_{0}=\frac{\ell}{m} \kappa$ '
- Where is a star resonant?
epicyclic radial frequency

- Resonant Orbital Stream =
ensemble of star describing a given resonant orbit (reduction into dust)
quasi resonant streams = relative motion tumbling stream
- Why the resonance ? collisionless dynamics No net torque Net Torque resonant interaction?

Resonant Orbital Stream
Non Resonant Orbital Stream large relative motion = large inertia

Resonance 101

- What is a resonance $\stackrel{?}{\Omega}-\Omega_{0}=\frac{\ell}{m} \kappa$ '
- Where is a star resonant?
epicyclic radial frequency

- Resonant Orbital Stream =
ensemble of star describing a given resonant orbit
(reduction into dust)
quasi resonant streams = relative motion tumbling stream
- Why the resonance ? collisionless dynamics No net torque Net Torque resonant interaction?

Resonant Orbital Stream
Non Resonant Orbital Stream large relative motion = large inertia

Resonance 101

- What is a a resonance $?$
- Where is a star resonant?
epicyclic radial frequency

- Resonant Orbital Stream = ensemble of star describing a given resonant orbit (reduction into dust)
quasi resonant streams = relative motion tumbling stream
- Why the resonance? collisionless dynamics

Resonant Orbital Stream
Non Resonant Orbital Stream large relative motion = large inertia

- Gravity maximizes overlap

- Inertia may repel

How does a given stream reacts to a given torque?

- Cooperative Streams:
positive moment of intertia : ILR
- Donkey Streams:
negative moment of inertia : CR
Corotation Resonance:
Donkey

Effective potential rotating frame Ω

$$
\dot{v}=-\nabla \psi_{e f f}+2 \Omega \times v
$$

Gyroscopic behaviour - orbit remains near equipotential: away from the bar

Contest: gravity vs inertia : spontaneous evolution?
Tumbling orbit instability (a.k.a. HMF)
Phase Portrait

Contest: gravity vs inertia : spontaneous evolution?
Tumbling orbit instability (a.k.a. HMF)

Contest: gravity vs inertia : spontaneous evolution?
Tumbling orbit instability (a.k.a. HMF)

Contest: gravity vs inertia : spontaneous evolution?

Tumbling orbit instability (a.k.a. HMF)

Contest: gravity vs inertia : spontaneous evolution?

Tumbling orbit instability (a.k.a. HMF)

Heat quenches the instability

\longleftarrow precession rate

Contest: gravity vs inertia : spontaneous evolution?

Tumbling orbit instability (a.k.a. HMF)

Heat quenches the instability
\longleftarrow precession rate

Azimuthal Instability
$\int \frac{\partial F / \partial \Omega}{\Omega-\Omega_{p}} d \Omega=\frac{-2^{2}}{4 \pi G A^{2}}$
precession rate

$$
\left\langle\partial^{2} F / \partial \Omega^{2}\right\rangle \approx \frac{M}{\sigma_{\Omega}^{2}}
$$

gravity.
Maxwellian

Contest: gravity vs inertia : spontaneous evolution?

Tumbling orbit instability (a.k.a. HMF)

Heat quenches the instability
\longleftarrow precession rate

Contest: gravity vs inertia : spontaneous evolution?

Tumbling orbit instability (a.k.a. HMF)

Heat quenches the instability
\longleftarrow precession rate

$m \geq 2$ while $k>0 \Longrightarrow$ That's why some galaxies

Contest: gravity vs inertia : spontaneous evolution?

Tumbling orbit instability (a.k.a. HMF)

Heat quenches the instability
\longleftarrow precession rate

Two stream instability

$$
\left\langle\partial^{2} F / \partial \Omega^{2}\right\rangle \approx \frac{M}{\sigma_{\Omega}^{2}}
$$

In plasma $G \rightarrow-e^{2} / m$
$m \geq 2$ while $k>0 \Longrightarrow$ That's why some galaxies

Contest: gravity vs inertia : spontaneous evolution?

Tumbling orbit instability (a.k.a. HMF)

Phase Portrail

Heat quenches the instability
\longleftarrow precession rate

Two stream instability

In plasma $G \rightarrow-e^{2} / m$
$m \geq 2$ while $k>0 \Longrightarrow$ That's why some galaxies

- Thermodynamical criteria

Maximize Entropy at L, E fixed

Bar

$$
\frac{A}{k_{B} T} \geq 2
$$

Liouville's Equation

- System of N identical interacting particles, $\boldsymbol{w}=(\boldsymbol{x}, \boldsymbol{v})$.
- Hamiltonian of the system: $H_{N}=\frac{1}{2} \sum_{i=1}^{N} \boldsymbol{v}_{i}^{2}+\sum_{i<j}^{N} U\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)$.
- Individual dynamics governed by Hamilton's equation

$$
\frac{\mathrm{d} \boldsymbol{x}_{i}}{\mathrm{~d} t}=\frac{\partial H_{N}}{\partial \boldsymbol{v}_{i}} ; \quad \frac{\mathrm{d} \boldsymbol{v}_{i}}{\mathrm{~d} t}=-\frac{\partial H_{N}}{\partial \boldsymbol{x}_{i}} .
$$

- N-body DF $f^{(N)}\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{N}, t\right)$ governed by Liouville's equation

$$
0=\frac{\partial f^{(N)}}{\partial t}+\operatorname{div}\left[\dot{\boldsymbol{w}} f^{(N)}\right] \quad \text { continuity equation }
$$

$$
=\frac{\partial f^{(N)}}{\partial t}+\sum_{i=1}^{N}\left\{\boldsymbol{v}_{i} \cdot \frac{\partial f^{(N)}}{\partial \boldsymbol{x}_{i}}+\boldsymbol{F}_{i} \cdot \frac{\partial f^{(N)}}{\partial \boldsymbol{v}_{i}}\right\}
$$

$$
=\frac{\partial f^{(N)}}{\partial t}+\sum_{i=1}^{N}\left\{\frac{\partial H_{N}}{\partial \boldsymbol{v}_{i}} \cdot \frac{\partial f^{(N)}}{\partial \boldsymbol{x}_{i}}-\frac{\partial H_{N}}{\partial \boldsymbol{x}_{i}} \cdot \frac{\partial f^{(N)}}{\partial \boldsymbol{v}_{i}}\right\}
$$

$$
=\frac{\partial f^{(N)}}{\partial t}+\left[f^{(N)}, H_{N}\right]
$$

- Exact and reversible equation but in a $6 N D$ phase-space.

BBGKY Hierarchy

- Reduced DF in $6 n \mathbf{D}$ phase space

$$
f_{n}\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}, t\right)=\frac{N!}{(N-n)!} \int \mathrm{d} \boldsymbol{w}_{n+1} \mathrm{~d} \boldsymbol{w}_{N} f^{(N)}\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{N}, t\right)
$$

- Reduced n-body Hamiltonian

$$
H_{n}=\frac{1}{2} \sum_{i=1}^{n} \boldsymbol{v}_{i}^{2}+\sum_{i<j \leq n} U_{i, j} .
$$

- $n^{\text {th }}-$ BBGKY equation for f_{n}

$$
\frac{\partial f_{n}}{\partial t}+\left[f_{n}, H_{n}\right]=\sum_{i=1}^{n} \int \mathrm{~d} \boldsymbol{x}_{n+1} \mathrm{~d} \boldsymbol{v}_{n+1} \frac{\partial U_{i, n+1}}{\partial \boldsymbol{x}_{i}} \cdot \frac{\partial f_{n+1}}{\partial \boldsymbol{v}_{i}} .
$$

- Content
- n-body dynamics: Liouville's equation and $(n+1)^{\text {th }}$ order collision term.
- Exact hierarchy of equation: Requires a truncation.

From BBGKY to Vlasov

- Two-body correlation function

$$
f_{2}\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right)=f_{1}\left(\boldsymbol{w}_{1}\right) f_{1}\left(\boldsymbol{w}_{2}\right)+g_{2}\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right)
$$

- BBGKY $-n=1$ equation

$$
\frac{\partial f_{1}}{\partial t}+\boldsymbol{v}_{1} \cdot \frac{\partial f_{1}}{\partial \boldsymbol{x}_{1}}-\frac{\partial f_{1}}{\partial \boldsymbol{v}_{1}} \cdot \frac{\partial}{\partial \boldsymbol{x}_{1}}\left[\int \mathrm{~d} \boldsymbol{w}_{2} U_{1,2} f_{1}\left(\boldsymbol{w}_{2}\right)\right]=\int \mathrm{d} \boldsymbol{w}_{2} \frac{\partial U_{1,2}}{\partial \boldsymbol{x}_{1}} \cdot \frac{\partial g_{2}}{\partial \boldsymbol{v}_{1}}
$$

- Separable system with no particle correlation: $g_{2}=0$.

$$
\left\{\begin{array}{l}
\int \mathrm{d} \boldsymbol{v}_{2} f_{1}\left(\boldsymbol{x}_{2}, \boldsymbol{v}_{2}, t\right)=\rho\left(\boldsymbol{x}_{2}, t\right), \\
\int \mathrm{d} \boldsymbol{x}_{2} \rho\left(\boldsymbol{x}_{2}, t\right) U\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)=\Phi\left(\boldsymbol{x}_{1}, t\right) .
\end{array} \Longrightarrow \frac{\partial f_{1}}{\partial t}+\boldsymbol{v}_{1} \cdot \frac{\partial f_{1}}{\partial \boldsymbol{x}_{1}}-\frac{\partial \Phi}{\partial \boldsymbol{x}_{1}} \cdot \frac{\partial f_{1}}{\partial \boldsymbol{v}_{1}}=0 .\right.
$$

- We recover Vlasov equation for an uncorrelated system of N particles to describe the secular collisionless evolution.

From BBGKY to Balescu-Lenard

- Taking into account two-body correlations but truncation at the order $1 / N$ (i.e. $g_{3} \equiv 0$).
- BBGKY $-n=2$ equation

$$
\begin{aligned}
& \frac{\partial g_{2}(1,2)}{\partial t}+\left[\boldsymbol{v}_{1} \cdot \frac{\partial}{\partial \boldsymbol{x}_{1}}+\boldsymbol{v}_{2} \cdot \frac{\partial}{\partial \boldsymbol{x}_{2}}\right] g_{2}(1,2) \\
& -\left[\int \mathrm{d} \boldsymbol{x}_{3} \mathrm{~d} \boldsymbol{v}_{3} \frac{\partial U_{1,3}}{\partial \boldsymbol{x}_{1}} f_{1}(3) \cdot \frac{\partial}{\partial \boldsymbol{v}_{1}}+\int \mathrm{d} \boldsymbol{x}_{3} \mathrm{~d} \boldsymbol{v}_{3} \frac{\partial U_{2,3}}{\partial \boldsymbol{x}_{2}} f_{1}(3) \cdot \frac{\partial}{\partial \boldsymbol{v}_{2}}\right] g_{2}(1,2) \\
& -\left[\int \mathrm{d} \boldsymbol{x}_{3} \mathrm{~d} \boldsymbol{v}_{3} \frac{\partial U_{1,3}}{\partial \boldsymbol{x}_{1}} g_{2}(2,3)\right] \cdot \frac{\partial f_{1}(1)}{\partial \boldsymbol{v}_{1}}-\left[\int \mathrm{d} \boldsymbol{x}_{3} \mathrm{~d} \boldsymbol{v}_{3} \frac{\partial U_{2,3}}{\partial \boldsymbol{x}_{2}} g_{2}(1,3)\right] \cdot \frac{\partial f_{1}(2)}{\partial \boldsymbol{v}_{2}} \\
& =\frac{\partial U_{1,2}}{\partial \boldsymbol{x}_{1}} \cdot\left[\frac{\partial}{\partial \boldsymbol{v}_{1}}-\frac{\partial}{\partial \boldsymbol{v}_{2}}\right] f_{1}(1) f_{1}(2)
\end{aligned}
$$

- Complex to solve for f_{1} and g_{2}, especially in inhomogeneous systems.
- But VERY symmetric.

Bogoliubov's synchronization hypothesis (g varies much faster than f)

From BBGKY to Balescu-Lenard

- Taking into account two-body correlations but truncation at the order $1 / N$ (i.e. $g_{3} \equiv 0$).
- BBGKY $-\boldsymbol{n}=\mathbf{2}$ equation $\partial_{t} g(1,2)+V_{1}(g(1,2))+V_{2}(g(1,2))=S(1,2)$

$$
\begin{aligned}
& \frac{\partial g_{2}(1,2)}{\partial t}+\left[\boldsymbol{v}_{1} \cdot \frac{\partial}{\partial \boldsymbol{x}_{1}}+\boldsymbol{v}_{2} \cdot \frac{\partial}{\partial \boldsymbol{x}_{2}}\right] g_{2}(1,2) \\
& -\left[\int \mathrm{d} \boldsymbol{x}_{3} \mathrm{~d} \boldsymbol{v}_{3} \frac{\partial U_{1,3}}{\partial \boldsymbol{x}_{1}} f_{1}(3) \cdot \frac{\partial}{\partial \boldsymbol{v}_{1}}+\int \mathrm{d} \boldsymbol{x}_{3} \mathrm{~d} \boldsymbol{v}_{3} \frac{\partial U_{2,3}}{\partial \boldsymbol{x}_{2}} f_{1}(3) \cdot \frac{\partial}{\partial \boldsymbol{v}_{2}}\right] g_{2}(1,2) \\
& -\left[\int \mathrm{d} \boldsymbol{x}_{3} \mathrm{~d} \boldsymbol{v}_{3} \frac{\partial U_{1,3}}{\partial \boldsymbol{x}_{1}} g_{2}(2,3)\right] \cdot \frac{\partial f_{1}(1)}{\partial \boldsymbol{v}_{1}}-\left[\int \mathrm{d} \boldsymbol{x}_{3} \mathrm{~d} \boldsymbol{v}_{3} \frac{\partial U_{2,3}}{\partial \boldsymbol{x}_{2}} g_{2}(1,3)\right] \cdot \frac{\partial f_{1}(2)}{\partial \boldsymbol{v}_{2}} \\
& =\frac{\partial U_{1,2}}{\partial \boldsymbol{x}_{1}} \cdot\left[\frac{\partial}{\partial \boldsymbol{v}_{1}}-\frac{\partial}{\partial \boldsymbol{v}_{2}}\right] f_{1}(1) f_{1}(2)
\end{aligned}
$$

- Complex to solve for f_{1} and g_{2}, especially in inhomogeneous systems.
- But VERY symmetric.

Bogoliubov's synchronization hypothesis (g varies much faster than f)

$$
g(1,2, t)=\int d 1^{\prime} \int d 2^{\prime} P_{2}\left(1,2 \mid 1^{\prime}, 2^{\prime}, t\right) S\left(1^{\prime}, 2^{\prime}, 0\right)
$$

Structure of BBGKY2 $\Rightarrow P_{2}$ factorizes into 2 Vlasov propagators

