quasi-linear evolution of The gravitating systems:

Applications to ridge formation, disc thickening Streams & stellar clusters around black holes.

Jean-Baptiste Fouvry, Christophe Pichon

Bring Home Messages

What: Quasi linear theory = stellar version of dissipation-fluctuation theorem = How do *orbital structure* of galaxies *diffuse* away from mean field locked trajectory.

How: time decoupling + matrix method (long range : non local + resonances)

Why:

- *Non-linear: qualify perturbation properties as well as equilibrium:
- (address nature nurture conundrum or probe DH). *Break the pb by scale (cf zoom simulation) or by component (BL - FP); *Statistical \equiv ensemble average of sims (cf cosmology, because NL) *Captures climate not weather;
- *Theory (can be parametrised, expressed in WKB limit, switch off gravity etc..). * BL version provide correct description of Chandrasekhar friction

Cons:

- *Time decoupling, doesn't capture today's weather;
- *Assumes integrability (but...)
- *Technically not trivial to implement in its full glory (but ...)

For gaia : account for NLs+ resonances for streams + thick disc+ bars+cusp-core

Why Secular Dynamics?

What happens to stable self-gravitating galactic discs on a Hubble time?

How does a galaxy respond

- to its environment? Nurture Dressed Fokker Planck diffusion
- to its internal graininess? Nature Balescu-Lenard diffusion

Which process matters most on cosmic timescales?

Of interest for galactic chemodynamics (GAIA), Galactic Centre, planetesimals, DM haloes...

Provide quasi-linear theories accounting for non-linear gravity for $t \gg t_{dyn}$

• Resonant effects \implies Secular evolution

What happens to **orbital structures** on **cosmic age**?

Move along Hubble Fork

Fluctuations and dissipation • Einstein (1905) and Perrin (1908): we know how ink diffuses in water.

Fluctuation-Dissipation Theorem

Power spectrum fluctuating forces

• Stars in cold galaxies undergo the same process

- \implies But, gravity is a **long-range interaction**.
 - To diffuse, stars need to **resonate**, otherwise follow the **mean field**.
 - Fluctuations are boosted by **collective effects**.

How do stars' orbits distort on cosmic times?

 $\delta\psi(\mathbf{r},t) \rightarrow \sum \delta\hat{\psi}_{\mathbf{m}}(\mathbf{J},\omega) \exp\left(i\mathbf{m}\cdot\theta - \omega t\right)$ \mathbf{m} Fluctuating Harmonic potential component

Along the unperturbed orbit

Potential fluctuate (through resonances)

 $\delta\psi(\mathbf{r},t) \rightarrow \sum \delta\hat{\psi}_{\mathbf{m}}(\mathbf{J},\omega) \exp\left(i\mathbf{m}\cdot\theta - \omega t\right)$ \mathbf{m} Fluctuating Harmonic potential component

 $\rightarrow \langle |\delta \hat{\psi}_{\mathbf{m}}(\mathbf{J},\omega)|^2 \rangle$

Along the unperturbed orbit

Potential fluctuate (through resonances)

Potential fluctuate (through resonances)

Heuristic derivation

$$\frac{\partial F}{\partial t} + [H, F] = 0 \quad \text{with} \quad H = \frac{v}{2} + \psi$$
$$F = f(\mathbf{I}, t) + \delta f(\mathbf{I}, \theta, t) \quad \text{with} \quad \frac{\partial \delta}{\partial t}$$

Easy to derive

$$\frac{\partial f}{\partial t} = -\left< \left[\delta f, \delta \Phi \right] \right>$$

where [,] a Poisson bracket and $\langle . \rangle$ is ensemble average f evolves because fluctuations in f and Φ correlated $\blacktriangleright \delta f$ depends on $\delta \phi$ through eqns of motion $\blacktriangleright \delta \Phi$ depends on δf through Poisson eqn

Heuristic derivation

$$\frac{\partial F}{\partial t} + [H, F] = 0 \quad \text{with} \quad H = \frac{v}{2} + \psi$$
$$F = f(\mathbf{I}, t) + \delta f(\mathbf{I}, \theta, t) \quad \text{with} \quad \frac{\partial \delta}{\partial t}$$

If perturbation is low frequency low order resonances dominate

23/47

Anything (e.g. Sgr) making the potential fluctuate at low frequency will create ridges in phase space as found e.g. by Gaia.

If perturbation is low frequency low order resonances dominate

PROSPECTS

Powerful framework applicable to a whole range of **nested scales**

Galactic discs

- Radial migration, chemistry and galactic archeology (GAIA)
- Disc thickening
- Galactic centres
 - ► BH feeding/spin up
 - Last parcsec pb
- Galactic haloes
 - Cusp-core and feedback
 - Impact of cosmic environment

Galactic Streams

- Probe properties of DHs
- Impact of SgrA on MW

NACO - VLT

ğ

Radial migration: churning and blurring and thickening

traced by stellar time capsules Time reverse cosmic evolution of MW?

Wednesday, 3April, 19

Galactic Center stellar cluster

• Cluster dark component

Diffusion of Streams to probe Dark Halo

- DH clumpiness (through diffusion)
- DH flattening (through induced stochasticity)

 $rac{\partial \mathbf{I}}{\partial t} \propto \sqrt{\mathbf{D}} \boldsymbol{\xi}$ Stochastic Langevin "Ito" Process

$$\frac{\partial f(\mathbf{J}, t)}{\partial t} = \frac{\partial}{\partial \mathbf{J}} \cdot \left(\mathbf{D} \cdot \frac{\partial f}{\partial \mathbf{J}} \right) \text{ where } \qquad \mathbf{D} = \sum_{\mathbf{m}} D_{\mathbf{m}} \mathbf{m} \otimes \mathbf{m}$$

Broadening of stream with phase = measure of $D_m(J)$

Dressed fluctuations $\int D_{m}(J) = \langle |\psi_{m}^{\text{tot}}(\omega)|^{2} \rangle (\omega = m \cdot \Omega) = \frac{\langle |\psi_{m}^{\text{ext}}(\omega)|^{2} \rangle}{\langle |\varepsilon_{m}(J,\omega)|^{2}} (\omega = m \cdot \Omega)$ \uparrow Nature
for streams, diffusion at fixed orbital parameters

Galaxies are perturbed • ΛCDM paradigm \Longrightarrow Live cosmic environment

- Recent theoretical works to describe the effects of **fluctuations**:
 - External perturbations \implies **Dressed Fokker-Planck** (e.g., large scale structures, satellites)
 - Internal perturbations \implies **Balescu-Lenard** (e.g., graininess, GMCs)

Nature vs. Nurture? Self-induced vs. Externally-induced?

12

The fate of self-gravitating systems

Wednesday, 3April, 19

Galaxies are self-gravitating

• Self-gravitating amplification (for linear response)

Collective effects

 $\psi^{(p)}$ • Matrix method - (Kalnajs (1976) \implies Representative basis $(\psi^{(p)}, \rho^{(p)})$ to solve Poisson once for all.

$$\begin{cases} \Delta \psi^{(p)} = 4\pi G \rho^{(p)}, \\ \int d\boldsymbol{x} \, \psi^{(p)*}(\boldsymbol{x}) \, \rho^{(q)}(\boldsymbol{x}) = -\delta_p^q. \end{cases}$$

also Weinberg (1989)

Secular Evolution

Galaxies are self-gravitating

Discs strongly amplify perturbations, e.g. swing amplification

x100² amplification from gravitational wake for diffusion

Self-gravitating dressing

Represent the **potential perturbations** on the basis

 $\begin{cases} \delta\psi^{\text{ext}}(\boldsymbol{x},t) = \sum_{p} \boldsymbol{b}_{p}(t) \ \psi^{(p)}(\boldsymbol{x}) & \text{Imposed external perturbation.} \\ \delta\psi^{\text{self}}(\boldsymbol{x},t) = \sum_{p} \boldsymbol{a}_{p}(t) \ \psi^{(p)}(\boldsymbol{x}) & \text{Amplified response} & \text{of the system.} \end{cases}$

Non-Markovian **amplification mechanism**

$$\boldsymbol{a}(t) = \int_{-\infty}^{t} \mathrm{d}\tau \, \mathbf{M}(t - \tau) \left[\boldsymbol{a}(\tau) + \boldsymbol{b} \right]$$

Dressing of the perturbations

gravitational susceptibility

System's response matrix (Kalnajs (1976)

$$\left| \widehat{\mathbf{M}}_{pq}(\omega) = (2\pi)^d \sum_{\boldsymbol{m} \in \mathbb{Z}^d} \int d\boldsymbol{J} \, \frac{\boldsymbol{m} \cdot \partial F / \partial \boldsymbol{J}}{\omega - \boldsymbol{m} \cdot \boldsymbol{\Omega}} \psi_{\boldsymbol{m}}^{(p)*}(\boldsymbol{J}) \, \psi_{\boldsymbol{m}}^{(q)}(\boldsymbol{J}) \, . \right.$$

Resonances at the intrinsic frequencies: $\omega = m \cdot \Omega$.

Secularly, gravitational susceptibility is squared!

The dressed Fokker-Planck equation

- Describe the secular evolution driven by **external perturbations** for a system
 - inhomogeneous
 - stable
 - self-gravitating
 - collisionless
 - perturbed
- Some references:

Kuzmin 1957

- ► Binney,Lacey (1980): No dressing
- ► Weinberg (2001): Spherical case
- Pichon, Aubert (2006): Environment effects
- ► Fouvry, Pichon, Prunet (2015): 2D WKB limit
- ► Fouvry, Pichon, Chavanis, Monk (2016): 3D WKB limit

See also Kuzmin 1957, B+T 2008, and references in Heyvearts 2017

Dressed Fokker-Planck equation

• Dressed Fokker-Planck equation

$$\frac{\partial F(J,t)}{\partial t} = \frac{\partial}{\partial J} \cdot \left[\sum_{m} m D_{m}(J) \right]$$

• Dressed diffusion coefficients

$$D_{\boldsymbol{m}}(\boldsymbol{J}) = \frac{1}{2} \sum_{p,q} \psi_{\boldsymbol{m}}^{(p)}(\boldsymbol{J}) \psi_{\boldsymbol{m}}^{(q)*}(\boldsymbol{J}) \left[\left[\mathbf{I} - \mathbf{M} \right]^{-1} \cdot \widehat{\mathbf{C}} \cdot \left[\mathbf{I} - \mathbf{M} \right]^{-1} \right]^{-1} \cdot \widehat{\mathbf{C}} \cdot \left[\mathbf{I} - \mathbf{M} \right]^{-1} \cdot \widehat{\mathbf{C} \cdot \left$$

- Some properties:
 - F(J,t): Orbital distorsion in action space.
 - $\partial/\partial J_1$: Divergence of a flux, i.e. conservation.
 - m_1 : **Discrete** Fourier vectors **Anistropic** diffusion.
 - $D_m(J)$: Anisotropic diffusion coefficients.
 - \blacktriangleright $[I-\widehat{M}]^{-1}$: Self-gravitating dressing.
 - $\widehat{\mathbf{C}}$: Power spectrum of **external perturbations**.
 - $m_1 \cdot \Omega_1$: Fluctuations at resonance.
 - \implies Master equation for externally-induced orbital distortion.

Dressed Fokker-Planck equation

• Dressed Fokker-Planck equation

$$\frac{\partial F(J,t)}{\partial t} = \frac{\partial}{\partial J} \cdot \left[\sum_{m} m D_{m}(J) \right]$$

• Dressed diffusion coefficients

$$D_{\boldsymbol{m}}(\boldsymbol{J}) = \frac{1}{2} \sum_{p,q} \psi_{\boldsymbol{m}}^{(p)}(\boldsymbol{J}) \psi_{\boldsymbol{m}}^{(q)*}(\boldsymbol{J}) \left[\left[\mathbf{I} - \mathbf{M} \right]^{-1} \cdot \widehat{\mathbf{C}} \cdot \left[\mathbf{I} - \mathbf{M} \right]^{-1} \right]^{-1} \cdot \widehat{\mathbf{C}} \cdot \left[\mathbf{I} - \mathbf{M} \right]^{-1} \cdot \widehat{\mathbf{C}$$

• Some properties:

The inhomogeneous Balescu-Lenard equation

- Describe the secular evolution driven by **finite**-N effects for a system
 - inhomogeneous
 - ▶ stable
 - self-gravitating
 - ▶ isolated
 - ▶ discrete
- Some references:
 - ► Balescu (1960), Lenard (1960): Plasma case
 - Weinberg (1993): Homogeneous approximation
 - Heyvaerts (2010): Angle-Action BBGKY see also Luciani Pellat (1987)
 - Chavanis (2012): Angle-Action Klimontovitch
 - Fouvry, Pichon, Chavanis (2015): 2D WKB limit
 - ► Fouvry, Pichon, Magorrian, Chavanis (2015): 2D with full amplification
 - ► Fouvry, Pichon, Chavanis, Monk (2016): 3D WKB limit
 - ► Fouvry, Pichon, Chavanis, (2017): Kepler solution

see also Polyachenko & Shukhman 1982; Luciani & Pellat 1987; Mynick 1988; Chavanis 2013

The inhomogeneous Balescu-Lenard equation

- Describe the secular evolution driven by **finite**-N effects for a system
 - inhomogeneous
 - stable
 - self-gravitating
 - ▶ isolated
 - ▶ discrete
- Some references:
 - Changes in **J** causes $f(\mathbf{J})$ to change
 - So mean-field model evolves
 - Traditional theory computes rate of evolution by summing Kepler scatterings over pairs of stars
 - Recent work shows this is fundamentally mistaken

see also Polyachenko & Shukhman 1982; Luciani & Pellat 1987; Mynick 1988; Chavanis 2013

The idea behind **resonant relaxation** (in one cartoon).

Resonant encounters

• Resonance condition $\delta_{\mathrm{D}}(\boldsymbol{m}_1\cdot\boldsymbol{\Omega}_1-\boldsymbol{m}_2\cdot\boldsymbol{\Omega}_2) \Longrightarrow$ Distant encounters.

Here and resonate in some rotating frame

The two (*blue* and *red*) sets of orbits satisfy the resonance condition $m_1 \cdot \Omega 1 = m_2 \cdot \Omega 2$, and therefore will interact consistently, driving a significant distortion of their shapes.

Wednesday, 3April, 19

The idea behind **resonant relaxation** (in one cartoon).

Resonant encounters

• Resonance condition $\delta_{\mathrm{D}}(\boldsymbol{m}_1\cdot\boldsymbol{\Omega}_1-\boldsymbol{m}_2\cdot\boldsymbol{\Omega}_2) \Longrightarrow$ Distant encounters.

Here and resonate in some rotating frame

The two (*blue* and *red*) sets of orbits satisfy the resonance condition $m_1 \cdot \Omega 1 = m_2 \cdot \Omega 2$, and therefore will interact consistently, driving a significant distortion of their shapes.

The idea behind resonant relaxation.

Resonant encounters

• Resonance condition $\delta_{\mathrm{D}}(m_1 \cdot \Omega_1 - m_2 \cdot \Omega_2) \Longrightarrow \mathrm{Distant}$ encounters.

Here and resonate in some rotating frame

The two (*blue* and *red*) sets of orbits satisfy the resonance condition $m_1 \cdot \Omega 1 = m_2 \cdot \Omega 2$, and therefore will interact consistently, driving a significant distortion of their shapes.

Wednesday, 3April, 19

The idea behind resonant relaxation.

Resonant encounters

• Resonance condition $\delta_{\mathrm{D}}(m_1 \cdot \Omega_1 - m_2 \cdot \Omega_2) \Longrightarrow \mathrm{Distant}$ encounters.

Here and resonate in some rotating frame

The two (*blue* and *red*) sets of orbits satisfy the resonance condition $m_1 \cdot \Omega 1 = m_2 \cdot \Omega 2$, and therefore will interact consistently, driving a significant distortion of their shapes.

Wednesday, 3April, 19

The idea behind resonant relaxation.

• Resonance condition $\delta_{\mathrm{D}}(m_1 \cdot \Omega_1 - m_2 \cdot \Omega_2) \Longrightarrow \mathrm{Distant}$ encounters.

Here and resonate in some rotating frame

No Torque

resonance drives recurrence

Through resonances departure from axial symmetry

Net Torque

The idea behind secular evolution: shot noise **fluctuations resonate!** • Resonance condition: $\delta_{\mathrm{D}}(\boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1 - \boldsymbol{m}_2 \cdot \boldsymbol{\Omega}_2)$

The two (*blue* and *red*) sets of orbits satisfy the resonance condition $m_1 \cdot \Omega_1 = m_2 \cdot \Omega_2$, and therefore will interact consistently, driving a significant distortion of their shapes.

The idea behind secular evolution: shot noise **fluctuations resonate!** • Resonance condition: $\delta_{\mathrm{D}}(\boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1 - \boldsymbol{m}_2 \cdot \boldsymbol{\Omega}_2)$

The two (*blue* and *red*) sets of orbits satisfy the resonance condition $m_1 \cdot \Omega_1 = m_2 \cdot \Omega_2$, and therefore will interact consistently, driving a significant distortion of their shapes.

Small recurrent (resonant) effects drive secular evolution (via orbital distorsion)

 \mathbf{J}_{ϕ}

The idea behind secular evolution: shot noise **fluctuations resonate!** • Resonance condition: $\delta_{\mathrm{D}}(\boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1 - \boldsymbol{m}_2 \cdot \boldsymbol{\Omega}_2)$

The two (*blue* and *red*) sets of orbits satisfy the resonance condition $m_1 \cdot \Omega_1 = m_2 \cdot \Omega_2$, and therefore will interact consistently, driving a significant distortion of their shapes.

Small recurrent (resonant) effects drive secular evolution (via orbital distorsion)

Inhomogeneous Balescu-Lenard equation

• Inhomogeneous Balescu-Lenard equation Heyvaerts (2010), Chavanis (2012)

$$\frac{\partial F(J_1, t)}{\partial t} = \pi (2\pi)^d \frac{M_{\text{tot}}}{N} \frac{\partial}{\partial J_1} \cdot \left[\sum_{m_1, m_2} m_1 \int dJ_2 \frac{\delta_1}{|\mathcal{D}_{m_1}|} \right]$$
$$\left[m_1 \cdot \frac{\partial}{\partial J_1} - m_2 \cdot \frac{\partial}{\partial J_2} \right]$$

- Some properties:
 - F(J,t): Orbital distorsion in action space.
 - 1/N: Driven by finite -N effects.
 - $\partial/\partial J_1$: Divergence of a flux, i.e. conservation.
 - m_1 : **Discrete** Fourier vectors **Anistropic** diffusion.
 - $\delta_{\rm D}$: **Resonance condition** for distant encounters.
 - $1/\mathcal{D}_{m_1,m_2}$: Self-gravitating dressing (squared).
 - $m_1 \cdot \Omega_1$: Secular diffusion at resonance.
 - \implies Master equation for self-induced orbital distortion.

Individual stochastic diffusion

• Self-consistent diffusion of the **system as a whole Anisotropic Balescu-Lenard equation**

$$\frac{\partial \overline{F}}{\partial \tau} = \frac{\partial}{\partial J^{s}} \cdot \left[\boldsymbol{A}(\boldsymbol{J},\tau) \,\overline{F}(\boldsymbol{J},\tau) + \boldsymbol{D}(\boldsymbol{J},\tau) \right]$$

 $A(\overline{F})$ drift vector, $D(\overline{F})$ diffusion tensor.

• Individual dynamics of a wire at position $\mathcal{J}(\tau)$ **Stochastic Langevin equation** - (Risken (1996))

$$\frac{\mathrm{d}\boldsymbol{\mathcal{J}}}{\mathrm{d}\tau} = \boldsymbol{h}(\boldsymbol{\mathcal{J}},\tau) + \boldsymbol{g}(\boldsymbol{\mathcal{J}},\tau) \cdot \boldsymbol{\Gamma}(\tau)$$

h and g vector and tensor, and Γ stochastic Langevin forces. \implies **Dual equation**, whose ensemble average gives back BL.

• In the Langevin's rewriting, **particles are dressed orbits**. \implies Huge gains in timesteps for integration.

Difficulties of the Balescu-Lenard equation

• Balescu-Lenard equation

$$\frac{\partial \mathbf{F}(\mathbf{J}_{1}, t)}{\partial t} = \pi (2\pi)^{d} \frac{M_{\text{tot}}}{N} \frac{\partial}{\partial \mathbf{J}_{1}} \cdot \left[\sum_{\mathbf{m}_{1}, \mathbf{m}_{2}} \mathbf{m}_{1} \int d\mathbf{J}_{2} \frac{\delta}{|\mathcal{D}_{\mathbf{m}_{1}}|} \right]$$

• Dressed susceptibility coefficients

$$\frac{1}{\mathcal{D}_{m_1,m_2}(J_1,J_2,\omega)} = \sum_{p,q} \psi_{m_1}^{(p)}(J_1) \left[\mathbf{I} - \widehat{\mathbf{M}}(\omega) \right]$$

Difficulties:

- Inhomogeneous system
 - ► Angle-action $(\boldsymbol{x}, \boldsymbol{v}) \mapsto (\boldsymbol{\theta}, \boldsymbol{J}).$
- Long-range system
 - Basis elements $\psi^{(p)}$.
- Self-gravitating system
 - Response matrix $M(\omega)$.
- **Resonant encounters**
 - $\blacktriangleright \text{ Resonance } \delta_{\mathrm{D}}(\boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1 \boldsymbol{m}_2 \cdot \boldsymbol{\Omega}_2).$

$egin{aligned} & oldsymbol{ ilde{D}}_{ ext{D}}egin{aligned} & oldsymbol{ ilde{D}}_{ ext{D}}}egin{aligned} & olds$ $\left| \boldsymbol{m}_1 \cdot \frac{\partial}{\partial \boldsymbol{J}_1} - \boldsymbol{m}_2 \cdot \frac{\partial}{\partial \boldsymbol{J}_2} \right| \left| F(\boldsymbol{J}_1, t) \left| F(\boldsymbol{J}_2, t) \right| .$ $\psi_{n_2}^{(q)} \psi_{m_2}^{(q)} (J_2)$.

Balescu-Lenard - Global approach

• Balescu-Lenard equation $\frac{\partial F(\boldsymbol{J}_1, t)}{\partial t} = \pi (2\pi)^d \frac{M_{\text{tot}}}{N} \frac{\partial}{\partial \boldsymbol{J}_1} \cdot \left[\sum_{\boldsymbol{m}_1, \boldsymbol{m}_2} m_1 \int d\boldsymbol{J}_2 \frac{\delta_{\text{D}}(\boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1 - \boldsymbol{m}_2 \cdot \boldsymbol{\Omega}_2)}{|\mathcal{D}_{\boldsymbol{m}_1, \boldsymbol{m}_2}(\boldsymbol{J}_1, \boldsymbol{J}_2, \boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1)|^2}\right]$ • Dressed susceptibility coefficients $\frac{\mathbf{I}}{\mathcal{D}_{\boldsymbol{m}_1,\boldsymbol{m}_2}(\boldsymbol{J}_1,\boldsymbol{J}_2,\omega)} = \sum_{\boldsymbol{n},\boldsymbol{q}} \psi_{\boldsymbol{m}_1}^{(p)}(\boldsymbol{J}_1) \left[\mathbf{I} - \widehat{\mathbf{M}}(\omega) \right]_{pq}^{-1} \psi_{\boldsymbol{m}_2}^{(q)*}(\boldsymbol{J}_2) \right].$ Difficulties: integrate twice over phase space Inhomogeneous system • Angle-action $(\boldsymbol{x}, \boldsymbol{v}) \mapsto (\boldsymbol{\theta}, \boldsymbol{J}) \Longrightarrow | 2D$ discs are explicitly integrable. Long-range system ▶ Basis elements $\psi^{(p)} \implies |$ Global basis elements. Self-gravitating system

- Response matrix $\mathbf{M}(\omega) \Longrightarrow |$ Numerical linear theory.
- **Resonant encounters**
 - Resonance $\delta_{\mathrm{D}}(\boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1 \boldsymbol{m}_2 \cdot \boldsymbol{\Omega}_2) \Longrightarrow$ | Integrate along resonant lines.

Balescu-Lenard - Global approach • Balescu-Lenard equation $\frac{\partial F(\boldsymbol{J}_1, t)}{\partial t} = \pi (2\pi)^d \frac{M_{\text{tot}}}{N} \frac{\partial}{\partial \boldsymbol{J}_1} \cdot \left[\sum_{\boldsymbol{m}_1, \boldsymbol{m}_2} \boldsymbol{m}_1 \int d\boldsymbol{J}_2 \frac{\delta_{\text{D}}(\boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1 - \boldsymbol{m}_2 \cdot \boldsymbol{\Omega}_2)}{|\mathcal{D}_{\boldsymbol{m}_1, \boldsymbol{m}_2}(\boldsymbol{J}_1, \boldsymbol{J}_2, \boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1)|^2} \right]$ $\left[\boldsymbol{m}_1 \cdot \frac{\partial}{\partial \boldsymbol{J}_1} - \boldsymbol{m}_2 \cdot \frac{\partial}{\partial \boldsymbol{J}_2} \right] \boldsymbol{F}(\boldsymbol{J}_1, t) \boldsymbol{F}(\boldsymbol{J}_2, t) \right].$ Dressed susceptibility coefficients $\frac{\mathbf{I}}{\mathcal{D}_{\boldsymbol{m}_1,\boldsymbol{m}_2}(\boldsymbol{J}_1,\boldsymbol{J}_2,\omega)} = \sum_{\boldsymbol{n},\boldsymbol{a}} \psi_{\boldsymbol{m}_1}^{(p)}(\boldsymbol{J}_1) \left[\mathbf{I} - \widehat{\mathbf{M}}(\omega) \right]_{pq}^{-1} \psi_{\boldsymbol{m}_2}^{(q)*}(\boldsymbol{J}_2) \right].$ $\widehat{\mathbf{M}}_{pq}(\omega) \sim \sum \! \left/ \mathrm{d} J \, \frac{\boldsymbol{m} \cdot \partial F / \partial J}{\omega - \boldsymbol{m} \cdot \boldsymbol{\Omega}} \, \psi_{\boldsymbol{m}}^{(p)*}(\boldsymbol{J}) \, \psi_{\boldsymbol{m}}^{(q)}(\boldsymbol{J}) \, . \right.$ $(COR, COR) = (\mathbf{m}_1, \mathbf{m}_2)$ (ILR,ILR) Double integral over phase space: an applied-math numerical challenge (OLR,COR) **Resonant poles** and **action integrals**. (COR,ILR) Gauss method with $(r_{\rm p}, r_{\rm a})$ as actions. Validation with **unstable modes**. Fouvry et al. (2015) r^{i}

 r^i

Wednesday, 3April, 19

N-body alternative

Depletion of circular orbit

An example of secular evolution • In configuration space

• Spontaneous appearance of uncorrelated transient spiral waves.

An example of secular evolution

• In orbital space

• Long-term appearance of a dominant narrow **resonant ridge**.

snap=00

The fate of secular evolution

The fate of secular evolution

Wednesday, 3April, 19

3000

Balescu-Lenard Global - Application

• **Diffusion flux** in action space

$$\frac{\partial F}{\partial t} = \operatorname{div}(\boldsymbol{\mathcal{F}}_{\operatorname{tot}}(\boldsymbol{J})) \,.$$

• Predicted contours for $\operatorname{div}(\boldsymbol{\mathcal{F}}_{\mathrm{tot}})(t=0^+)$

Balescu-Lenard Global - Application

• **Diffusion flux** in action space

$$\frac{\partial F}{\partial t} = \operatorname{div}(\boldsymbol{\mathcal{F}}_{\operatorname{tot}}(\boldsymbol{J})) \,.$$

• Predicted contours for $\operatorname{div}(\boldsymbol{\mathcal{F}}_{\mathrm{tot}})(t=0^+)$

Solves a long standing puzzle of galactic dynamics: **uncorrelated** swing-amplified spiral sequences *secularly* induce formation of very *specific* families of distorted (churned *and* blurred) orbits forming a resonant *ridge*.

Scaling with N $\tilde{h}(t,N)$

3

2.5

2

1.5

ξ=0.5

100

- Two entangled sources of **fluctuations**
 - Unavoidable Poisson shot noise
 - Irreversible secular evolution
- Quantify the **amount of evolution** $\tilde{h}(t, N) = \left\langle \int d\boldsymbol{J} \left[F(t, \boldsymbol{J}, N) - \left\langle F(0, \boldsymbol{J}, N) \right\rangle \right]^2 \right\rangle$ 0.5
- Initial behaviour

$$\tilde{h}(t,N) \simeq \tilde{h}_0^N + t \, \tilde{h}_1^N + \frac{t^2}{2} \, \tilde{h}_2^N \Longrightarrow \begin{cases} h_0^N \propto N^{-1} \text{ (Poiss)} \\ \tilde{h}_1^N = 0 \\ \tilde{h}_2^N \propto N^{-2} \text{ (Coll)} \end{cases}$$

• N-body measurements

Process displays characteristic scaling with N and cosmic time

sson shot noise)

isional scaling)

Balescu-Lenard Global - Timescale

• Normalised Balescu-Lenard equation

$$\frac{\partial F}{\partial t} = \frac{1}{N} C_{\rm BL}[F] \implies \left[\frac{\partial F}{\partial \tau} = C_{\rm BL}[F] \right] \text{ w}$$

The role of swing amplification

• Removing **loosely wound** basis elements

Proof in importance of self-gravity+ flexibility of Kinetic formalism

Late time evolution

• 2-body (resonant) relaxation \implies small-scale structures in the DF Destabilisation at the collisionless level

'Radial migration' drives the system to a new state of equilibrium which turns out to be unstable: the system then **redistributes** AM on a dynamical timescale

Late times

The WKB approach

• Difficulty: $\delta \psi \xleftarrow{\text{Poisson}}_{non-local} \delta \rho = \int dv \, \delta F$.

 \Rightarrow Restriction to **tightly wound perturbations** (WKB approximation).

New wavelet basis

$$\psi^{(p)} = \psi^{[k_r, k_\phi, R_0]}(R, \phi) = \mathcal{A} e^{i(k_r R + k_\phi \phi)} \exp$$

 \implies Explicit, biorthogonal and both local and global.

Fouvry et al. (2015)

radial view

The WKB calculation

• **Diagonal** response matrix

$$\widehat{\mathbf{M}}_{pq} = \widehat{\mathbf{M}}_{[k_r^p, k_{\phi}^p, R_0], [k_r^q, k_{\phi}^q, R_0]} = \delta_{k_r^p}^{k_r^q} \delta_{k_{\phi}^p}^{k_{\phi}^q} \lambda$$

$$\lambda(k_r, k_{\phi}, R_0) = \frac{2\pi G\xi\Sigma}{\kappa^2(1-s^2)} \mathcal{F}(s, \chi) \,. \qquad \begin{cases} *s = \frac{\omega - k_{\phi}\Omega}{\kappa^2}, \\ *\chi = \frac{\sigma_r^2 k_r^2}{\kappa^2}, \\ *\mathcal{F}(s, \chi) \quad (reconstruction) \end{cases}$$

 $[k_r^p, k_\phi^p, R_0]$.

eduction factor).

alnajs (65), Lin&Shu(66)

 25^{-1} Fourry et al. (2015)

The WKB calculation

Diagonal response matrix

$$\widehat{\mathbf{M}}_{pq} = \widehat{\mathbf{M}}_{[k_r^p, k_{\phi}^p, R_0], [k_r^q, k_{\phi}^q, R_0]} = \delta_{k_r^p}^{k_r^q} \delta_{k_{\phi}^p}^{k_{\phi}^q} \lambda$$

(recovers the Toomre-Lin-Shu dispersion relation).

Restriction to local resonances: $\delta_{\rm D}(\boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1 - \boldsymbol{m}_2 \cdot \boldsymbol{\Omega}_2)$

$$\begin{cases} \boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1(R_1) - \boldsymbol{m}_2 \cdot \boldsymbol{\Omega}_2(R_2) = 0 \\ |R_1 - R_2| \le (\text{few})\sigma \end{cases} \implies \begin{cases} \boldsymbol{m}_2 \\ R_2 \end{cases}$$

 $\lambda_{[k_r^p,k_\phi^p,R_0]}$.

$\mu_2 = m_1 \; ,$

 $_2 = R_1$.

Fouvry et al. (2015)

The WKB calculation

Diagonal response matrix

$$\widehat{\mathbf{M}}_{pq} = \widehat{\mathbf{M}}_{[k_r^p, k_{\phi}^p, R_0], [k_r^q, k_{\phi}^q, R_0]} = \delta_{k_r^p}^{k_r^q} \, \delta_{k_{\phi}^p}^{k_{\phi}^q} \, \lambda$$

(recovers the Toomre-Lin-Shu dispersion relation).

Restriction to local resonances: $\delta_{\rm D}(m_1 \cdot \Omega_1 - m_2 \cdot \Omega_2)$

$$\begin{cases} \boldsymbol{m}_1 \cdot \boldsymbol{\Omega}_1(R_1) - \boldsymbol{m}_2 \cdot \boldsymbol{\Omega}_2(R_2) = 0 \\ |R_1 - R_2| \le (\text{few})\sigma \end{cases} \implies \begin{cases} \boldsymbol{m}_2 \\ R_2 \end{cases}$$

Explicit quadratures for the dressed diffusion flux

 $\lambda[k_r^p, k_{\phi}^p, R_0]$.

 $_{\nu_2}\!=\!m_1\,,$ $_2 = R_1$.

Fouvry et al. (2015)

Balescu-Lenard WKB - Application

29/47

Illustration of **flexibility** of WKB solution

Importance of the response eigenvalues

Wednesday, 3April, 19

Secular disc thickening ?

vertical ridges

Treat self consistently thickening due to spiral waves and GMC deflections

Wednesday, 3April, 19

Vertical distorsion of orbit

Stellar disc thickening Spontaneous thickening via Poisson shot noise/GMCs0.4 0.40.4t = 0t = 3500Vertical ridge 0.3 0.3 0.3 0.2 0.2 0.2 J_z J_z J_z 0.1 0.1 0.1 0.0 0.0 0.0 20 20 10 10 J_{ϕ} J_{ϕ} Initial times Late times (N-body)Solway (2012)

Solway (2012)

Stellar disc thickening

vertical velocity

The role of resonances

 $\boldsymbol{m} = (m_{\phi}, m_r, m_z)$

- **—** (2,-1,-1)
- **—** (2,-1,0)
- (2,-1,1)
- --- (2,0,-1)
- **---** (2,0,0)
- **---** (2,0,1)
- J_{ϕ} ---- (2,1,-1)
 - (2,1,0)
 - (2,1,1)

The role of external perturbations

• Diffusion sourced by **stochastic fluctuations**

$$\delta\psi^{\text{ext}}(\boldsymbol{x},t) = \sum_{p} b_{p}(t) \psi^{(p)}(\boldsymbol{x}) \implies \boxed{C_{pq}(t_{1}-t_{2})}$$

- Exemple of perturbations: $Halo \iff Disc$.
 - Dark matter clumps Halo \rightsquigarrow Disc

Disc \rightsquigarrow Halo Feedback Run t=300 Myrkpc kpc Rebekka Bieri - IAP

 $) = \left\langle b_p(t_1) \, b_q^*(t_2) \right\rangle.$

Supernova feedback

63 / 49

Method: quasi-linear theory

Why Kinetic Theory?	
Universal	Applied throughout sci
Statistical	Mean response & fluct Parameter space explo
Modular/flexible	Add/remove physical p metals+sinks+mass sp
Very large timesteps	Gravitational polarization
Non-linear	Nurture/nature split.

ience.

tuations/ oration.

processes: pectrum.

ion built in.

CONCLUSIONS

• From linear response to secular evolution.

Stellar dynamics enters the cosmic framework.

Frameworks for the effects of **external and internal** perturbations.

Nature vs. Nurture

- First implementation of **Balescu-Lenard** in (astro)physics
- Approach complementary to N-body and Monte Carlo methods

BL = master equation describing self-consistently resonant relaxation

Bring Home Messages

What: Quasi linear theory = stellar version of dissipation-fluctuation theorem = How do *orbital structure* of galaxies *diffuse* away from mean field locked trajectory.

How: time decoupling + matrix method (long range : non local + resonances)

Why:

*Non-linear: qualify perturbation properties as well as equilibrium:

(address nature - nurture conundrum or probe DH). *Break the pb by scale (cf zoom simulation) or by component (BL - FP); *Statistical \equiv ensemble average of sims (cf cosmology) *Captures climate not weather; *Correct description of Chandrasekhar friction *Theory (can be parametrised, expressed in WKB limit, switch off gravity etc..).

Cons:

*Time decoupling, doesn't capture today's weather; *Assumes integrability (but...)

*Technically not trivial to implement in its full glory (but ...)

For gaia : account for NLs+ resonances for stream+ thick disc+ bars+cusp-core

Application 2

The case of quasi-Keplerian systems

0.4

0.2

-0.2

-0.4

Dec (")

S5

0.4

S6

• Describe the secular evolution driven by finite-N effects for a quasi-Keplerian system

Last parsec pb? EMRI? TDE??

- Some references:
 - ► Rauch, Tremaine (1996): Resonant relaxation
 - Meritt et al. (2011): Schwarzschild barrier
 - Bar-Or, Alexander (2014, 2016): η -formalism
 - Sridhar, Touma (2016): Gilbert's method for Landau
 - Fouvry, Pichon, Magorrian (2016): BBGKY approach
 - ► Fouvry, Pichon, Chavanis (2017): First Implementation

Galactic Center stellar cluster

• Cluster dark component

q-K systems are dynamically degenerate

• SMBH dominates the potential: $\varepsilon = M_{\star}/M_{\bullet} \ll 1$ \implies Keplerian orbits are **closed**. **Dynamical degeneracy**: $\forall \mathbf{J}, \mathbf{n} \cdot \boldsymbol{\Omega}_{\text{Kep}}(\mathbf{J}) = 0$.

KECK Observations

• Orbit-Average: $|Stars \implies Wires|$

N-body simulations (B. Bar-Or)

Quasi-Keplerian systems

- BH dominates the dynamics: $\varepsilon = M_{\star}/M_{\bullet} \ll 1$ \implies Keplerian orbits are **closed**.
- Dynamical degeneracy: $\forall J, n \cdot \Omega_{\text{Kep}}(J) = 0$. \implies Delaunay variables $J = \left(\underbrace{I = J_r + L}_{\text{Fast } J^{\text{f}}}, \underbrace{L, L_z}_{\text{Slow } J^{\text{s}}}\right) ; \quad \theta = \left(\underbrace{\theta^{\text{f}}}_{\text{Kep. }}, \underbrace{\theta^{\text{s}}}_{\text{Int. of}}\right)$

$$\mathbf{\Omega}_{\mathrm{Kep}} = \left(\Omega_{\mathrm{Kep}}, 0, 0
ight).$$

phase motion

- Orbits characterised by **wires' coordinates** $\mathcal{E} = (\boldsymbol{J}, \boldsymbol{\theta}^{\mathrm{s}}).$
- System **phase-mixed** w.r.t. the Kep. phase $F(\boldsymbol{J},\boldsymbol{\theta})\simeq \overline{F}(\boldsymbol{\mathcal{E}})$.
- Keplerian wires **precess** in θ^{s}

The degenerate Balescu-Lenard equation

• The master equation of resonant relaxation

- Some properties:
 - $\overline{F}(J,\tau)$: Orbital distorsion.
 - $\partial \tau$: $\tau = t M_{\star}/M_{\bullet}$, BH dominance.
 - 1/N: 1/N resonant relaxation.
 - $\partial/\partial J_1^{s}$: Adiabatic conservation.
 - $\delta_{\rm D}$: Resonance on precessions.
 - $1/\mathcal{D}_{m_1^{\mathrm{s}},m_2^{\mathrm{s}}}$: Self-gravity.

using averaging over fast angle

$$\overline{F}(\boldsymbol{J},\boldsymbol{\theta}^{\mathrm{s}}) = \int \frac{\mathrm{d}\boldsymbol{\theta}^{\mathrm{d}}}{(2\pi)^{d-k}} F(\boldsymbol{J},\boldsymbol{\theta}^{\mathrm{s}},\boldsymbol{\theta}^{\mathrm{d}}) \,.$$

avoid Dirac of zero!

Fouvry et al. (2016)

Balescu-Lenard and Schwarzschild barrier • Precession frequencies: self-consistent + relativistic - (Kocsis et al. (2011))

- **Precession frequencies increase.**
- Resonant coupling with the disc becomes impossible.
- Schwarzschild barrier (Merritt et al. (2011), Bar-Or et al. (2016)).

Individual stochastic diffusion

• Self-consistent diffusion of the **system as a whole Anisotropic Balescu-Lenard equation**

$$\frac{\partial \overline{F}}{\partial \tau} = \frac{\partial}{\partial J^{s}} \cdot \left[\boldsymbol{A}(\boldsymbol{J},\tau) \,\overline{F}(\boldsymbol{J},\tau) + \boldsymbol{D}(\boldsymbol{J},\tau) \right]$$

 $A(\overline{F})$ drift vector, $D(\overline{F})$ diffusion tensor.

• Individual dynamics of a wire at position $\mathcal{J}(\tau)$ **Stochastic Langevin equation** - (Risken (1996))

$$\frac{\mathrm{d}\boldsymbol{\mathcal{J}}}{\mathrm{d}\tau} = \boldsymbol{h}(\boldsymbol{\mathcal{J}},\tau) + \boldsymbol{g}(\boldsymbol{\mathcal{J}},\tau) \cdot \boldsymbol{\Gamma}(\tau)$$

h and g vector and tensor, and Γ stochastic Langevin forces. \implies **Dual equation**, whose ensemble average gives back BL.

• In the Langevin's rewriting, **particles are dressed orbits**. \implies Huge gains in timesteps for integration.

Non-resonant orbits

Resonant orbits

eccentricity

Resonant relaxation near SMBH

Resonant relaxation near SMBH

Multi species ?

Resonant relaxation segregates adiabatically lighter stars towards SMBH

T. Context 2. Galactic Centers 3. Bales **Scalar Resonant Relaxation in Galactic Nuclei**

T. Context 2. Galactic Centers 3. Bales **Scalar Resonant Relaxation in Galactic Nuclei**

Wednesday, 3April, 19

Two-body relaxation

CONCLUSIONS

• From linear response to secular evolution.

Stellar dynamics enters the cosmic framework.

Frameworks for the effects of **external and internal** perturbations.

Nature vs. Nurture

- First implementation of **Balescu-Lenard** in (astro)physics
- Approach complementary to N-body and Monte Carlo methods

BL = master equation describing self-consistently resonant relaxation

Resonance 101

Resonance 101

Tumbling orbit instability (a.k.a. HMF)

•Phase Portrait

Coupling

 $\Psi_{12} = A \cos(2\phi_1 - 2\phi_2)$

Tumbling orbit instability (a.k.a. HMF)

Phase Portrait

Tumbling orbit instability (a.k.a. HMF)

 Phase Portrait less orbits Isocontour of the $\Omega - \Omega_{\max}$ distribution function **F(**Ω,φ) 0.5 $\mathbf{F}(\Omega)$ σ_{Ω} more orbits ? Coupling -0.5 $\phi - \Omega_{max} t$ $\Psi_{12} = A \cos(2\phi_1 - 2\phi_2)$ 0.2 0.409.8 11 0 0.6

Tumbling orbit instability (a.k.a. HMF)

 Phase Portrait less orbits Isocontour of the $\Omega - \Omega_{\max}$ distribution function **F(**Ω,φ) 0.5 $\mathbf{F}(\Omega)$ σ_{Ω} more orbits ? Coupling -0.5 $\phi - \Omega_{max} t$ $\Psi_{12} = A \cos(2\phi_1 - 2\phi_2)$ 0.2 0.409.8 11 0 0.6

Tumbling orbit instability (a.k.a. HMF)

Wednesday, 3April, 19

Origin of Balescu-Lenard Equation

Liouville's Equation

- System of N identical interacting particles, $\boldsymbol{w} = (\boldsymbol{x}, \boldsymbol{v})$.
- Hamiltonian of the system: $H_N = \frac{1}{2} \sum_{i=1}^N v_i^2 + \sum_{i=1}^N U(x_i x_j)$.
- Individual dynamics governed by Hamilton's equation

$$\frac{\mathrm{d}\boldsymbol{x}_{i}}{\mathrm{d}t} = \frac{\partial H_{N}}{\partial \boldsymbol{v}_{i}} \quad ; \quad \frac{\mathrm{d}\boldsymbol{v}_{i}}{\mathrm{d}t}$$
• *N*-body DF $f^{(N)}(\boldsymbol{w}_{1},...,\boldsymbol{w}_{N},t)$ governed
$$0 = \frac{\partial f^{(N)}}{\partial t} + \mathrm{div}\left[\dot{\boldsymbol{w}} f^{(N)}\right]$$

$$= \frac{\partial f^{(N)}}{\partial t} + \sum_{i=1}^{N} \left\{\boldsymbol{v}_{i} \cdot \frac{\partial f^{(N)}}{\partial \boldsymbol{x}_{i}}\right\}$$

$$= \frac{\partial f^{(N)}}{\partial t} + \sum_{i=1}^{N} \left\{\frac{\partial H_{N}}{\partial \boldsymbol{v}_{i}} \cdot \frac{\partial f^{(N)}}{\partial t}\right\}$$

$$= \frac{\partial f^{(N)}}{\partial t} + \left[f^{(N)}, H_{N}\right].$$

• Exact and reversible equation but in a 6ND phase-space.

3e+4

1000

31.6

 $\frac{\boldsymbol{v}_i}{t} = -\frac{\partial H_N}{\partial \boldsymbol{x}_i} \,.$

d by Liouville's equation

continuity equation

Origin of Balescu-Lenard Equation

BBGKY Hierarchy

• Reduced DF in 6nD phase space

$$f_n(\boldsymbol{w}_1, ..., \boldsymbol{w}_n, t) = \frac{N!}{(N-n)!} \int \mathrm{d}\boldsymbol{w}_{n+1} \,\mathrm{d}\boldsymbol{w}_N \, f^{(N-n)!}$$

• Reduced n-body Hamiltonian

$$H_n = \frac{1}{2} \sum_{i=1}^n v_i^2 + \sum_{i < j \le n} U_{i,j}.$$

• n^{th} -BBGKY equation for f_n

$$\frac{\partial f_n}{\partial t} + [f_n, H_n] = \sum_{i=1}^n \int d\boldsymbol{x}_{n+1} \, d\boldsymbol{v}_{n+1} \frac{\partial U_{i,n}}{\partial \boldsymbol{x}_n}$$

• Content

- ▶ n-body dynamics: Liouville's equation and $(n+1)^{\text{th}}$ order *collision term*.
- Exact hierarchy of equation: **Requires a truncation.**

 $^{N)}(\boldsymbol{w}_{1},...,\boldsymbol{w}_{N},t)$.

 $rac{n+1}{\boldsymbol{c}_i} \cdot rac{\partial f_{n+1}}{\partial \boldsymbol{v}_i} \,.$

th order *collision term*. **ion**.

Origin of Balescu-Lenard Equation

From **BBGKY** to Vlasov

• Two-body correlation function

$$f_2(w_1, w_2) = f_1(w_1) f_1(w_2) + g_2(w_1)$$

• BBGKY-n=1 equation

$$\frac{\partial f_1}{\partial t} + \boldsymbol{v}_1 \cdot \frac{\partial f_1}{\partial \boldsymbol{x}_1} - \frac{\partial f_1}{\partial \boldsymbol{v}_1} \cdot \frac{\partial}{\partial \boldsymbol{x}_1} \left[\int d\boldsymbol{w}_2 U_{1,2} f_1(\boldsymbol{w}_2) \right] =$$

Separable system with no particle correlation: $g_2 = 0$.

$$\begin{cases} \int \mathrm{d}\boldsymbol{v}_2 \, \boldsymbol{f}_1(\boldsymbol{x}_2, \boldsymbol{v}_2, t) = \rho(\boldsymbol{x}_2, t) \,, \\ \int \mathrm{d}\boldsymbol{x}_2 \, \rho(\boldsymbol{x}_2, t) U(\boldsymbol{x}_1 - \boldsymbol{x}_2) = \Phi(\boldsymbol{x}_1, t) \,. \end{cases} \Longrightarrow \begin{bmatrix} \frac{\partial \boldsymbol{f}_1}{\partial t} + \boldsymbol{v}_1 \cdot \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 & \text{if } \mathbf{v}_1 \cdot \boldsymbol{v}_2 \\ \frac{\partial \boldsymbol{f}_1}{\partial t} + \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 & \text{if } \mathbf{v}_1 \cdot \boldsymbol{v}_2 \\ \frac{\partial \boldsymbol{f}_2}{\partial t} + \boldsymbol{v}_2 \cdot \boldsymbol{v$$

• We recover Vlasov equation for an uncorrelated system of N particles to describe the secular **collisionless** evolution.

 $, \boldsymbol{w}_2)$.

 $\int \mathrm{d} \boldsymbol{w}_2 \frac{\partial U_{1,2}}{\partial \boldsymbol{x}_1} \cdot \frac{\partial \boldsymbol{g}_2}{\partial \boldsymbol{y}_1} \, .$

∂f_1	$\partial \Phi$	∂f_1	- 0
$\overline{\partial x_1}$	$\overline{\partial x_1}$	$\overline{\partial oldsymbol{v}_1}$	-0.

Origin of Balescu-Lenard Equation From BBGKY to Balescu-Lenard

- Taking into account two-body correlations but truncation at the order 1/N (*i.e.* $g_3 \equiv 0$).
- BBGKY-n=2 equation

$$\begin{aligned} &\frac{\partial g_2(1,2)}{\partial t} + \left[\boldsymbol{v}_1 \cdot \frac{\partial}{\partial \boldsymbol{x}_1} + \boldsymbol{v}_2 \cdot \frac{\partial}{\partial \boldsymbol{x}_2} \right] g_2(1,2) \\ &- \left[\int \mathrm{d}\boldsymbol{x}_3 \, \mathrm{d}\boldsymbol{v}_3 \, \frac{\partial U_{1,3}}{\partial \boldsymbol{x}_1} f_1(3) \cdot \frac{\partial}{\partial \boldsymbol{v}_1} + \int \mathrm{d}\boldsymbol{x}_3 \, \mathrm{d}\boldsymbol{v}_3 \, \frac{\partial U_{2,3}}{\partial \boldsymbol{x}_2} f_1(3) \cdot \frac{\partial}{\partial \boldsymbol{v}_2} \right] g_2(1,2) \\ &- \left[\int \mathrm{d}\boldsymbol{x}_3 \, \mathrm{d}\boldsymbol{v}_3 \, \frac{\partial U_{1,3}}{\partial \boldsymbol{x}_1} g_2(2,3) \right] \cdot \frac{\partial f_1(1)}{\partial \boldsymbol{v}_1} - \left[\int \mathrm{d}\boldsymbol{x}_3 \, \mathrm{d}\boldsymbol{v}_3 \, \frac{\partial U_{2,3}}{\partial \boldsymbol{x}_2} g_2(1,3) \right] \cdot \frac{\partial f_1(2)}{\partial \boldsymbol{v}_2} \\ &= \frac{\partial U_{1,2}}{\partial \boldsymbol{x}_1} \cdot \left[\frac{\partial}{\partial \boldsymbol{v}_1} - \frac{\partial}{\partial \boldsymbol{v}_2} \right] f_1(1) f_1(2) \end{aligned}$$

- Complex to solve for f_1 and g_2 , especially in inhomogeneous systems.
- But VERY symmetric. Bogoliubov's synchronization hypothesis (g varies much faster than f)

Origin of Balescu-Lenard Equation From **BBGKY** to **Balescu-Lenard**

- Taking into account two-body correlations but truncation at the order 1/N (*i.e.* $g_3 \equiv 0$).
- BBGKY n = 2 equation

$$\frac{\partial g_2(1,2)}{\partial t} + \left[\boldsymbol{v}_1 \cdot \frac{\partial}{\partial \boldsymbol{x}_1} + \boldsymbol{v}_2 \cdot \frac{\partial}{\partial \boldsymbol{x}_2} \right] g_2(1,2)$$

$$- \left[\int \mathrm{d}\boldsymbol{x}_3 \,\mathrm{d}\boldsymbol{v}_3 \,\frac{\partial U_{1,3}}{\partial \boldsymbol{x}_1} f_1(3) \cdot \frac{\partial}{\partial \boldsymbol{v}_1} + \int \mathrm{d}\boldsymbol{x}_3 \,\mathrm{d}\boldsymbol{v}_3 \,\frac{\partial U_{2,3}}{\partial \boldsymbol{x}_2} f_2 \right]$$

$$- \left[\int \mathrm{d}\boldsymbol{x}_3 \,\mathrm{d}\boldsymbol{v}_3 \,\frac{\partial U_{1,3}}{\partial \boldsymbol{x}_1} g_2(2,3) \right] \cdot \frac{\partial f_1(1)}{\partial \boldsymbol{v}_1} - \left[\int \mathrm{d}\boldsymbol{x}_3 \,\mathrm{d}\boldsymbol{v}_3 \,\frac{\partial U_{2,3}}{\partial \boldsymbol{x}_2} f_3 \right]$$

$$= \frac{\partial U_{1,2}}{\partial \boldsymbol{x}_1} \cdot \left[\frac{\partial}{\partial \boldsymbol{v}_1} - \frac{\partial}{\partial \boldsymbol{v}_2} \right] f_1(1) f_1(2)$$

- Complex to solve for f_1 and g_2 , especially in inhomogeneous systems.
- But VERY symmetric. Bogoliubov's synchronization hypothesis (g varies much faster than f)

$$g(1,2,t) = \int d1' \int d2' P_2(1,2|1',2',t) S(1',$$

Structure of BBGKY2 \Rightarrow P_2 factorizes into 2 Vlasov propagators

$\partial_t g(1,2) + V_1(g(1,2)) + V_2(g(1,2)) = S(1,2)$

 $\left| f_1(3) \cdot \frac{\partial}{\partial v_2} \right| g_2(1,2)$ $\left[\frac{\partial U_{2,3}}{\partial \boldsymbol{x}_{2}}\boldsymbol{g}_{2}(1,3)\right] \cdot \frac{\partial \boldsymbol{f}_{1}(2)}{\partial \boldsymbol{v}_{2}}$

2', 0)

