
#### Swarm of Black Holes **Evidence for** near Sgr A\* α

Michael Muno (UCLA/Hubble Fellow)
Fred Baganoff (MIT), Eric Pfahl (UVa),
Niel Brandt, Gordon Garmire (Penn State)
Mark Morris, Andrea Ghez,
Jessica Lu, Seth Hornstein (UCLA)

#### Five Years of Chandra Observations of the Galactic Center

- accreting black holes and neutron stars. To search for rare objects, such as
  - How does accretion occur at low rates?
- solar-mass black hole (Sgr A\*) grows. To understand how the central 4 10<sup>6</sup>
- Why is Sgr A\* accreting at such a low rate?
- Does stellar dynamics feed stars into Sgr A\*?
- How did dozens of young, massive stars come to lie within 1 pc of Sgr A\*?



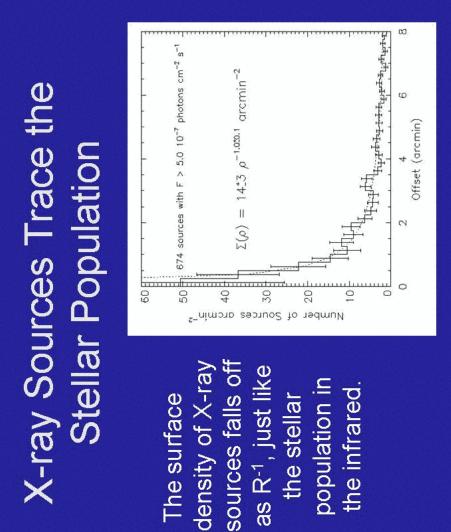
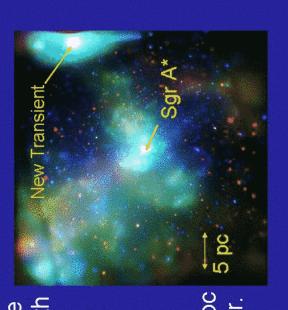


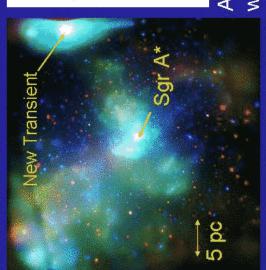


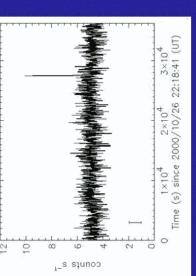

Image creates with binsim, by Rob Hynes

- dwarfs, the brightest 10% of which are detectable. Most of the X-ray sources are accreting white
  - Accreting neutron stars and black holes are 100 times rarer, and most are accreting at low rates.


#### Searching for Accreting Compact Objects

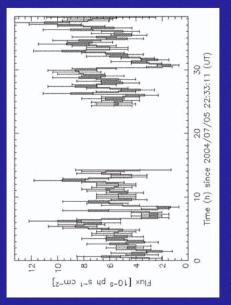
- Sources that produce sudden outbursts with L<sub>X</sub>>10<sup>34</sup> erg s<sup>-1</sup> are likely to be accreting black holes and neutron stars.
- We found 7 such transients within 25 pc of the Galactic center.





### Searching for Accreting Compact Objects

- Sources that produce sudden outbursts with L<sub>X</sub>>10<sup>34</sup> erg s<sup>-1</sup> are likely to be accreting black holes and neutron stars.
- We found 7 such transients within 25 pc of the Galactic center.




#### Neutron Star Low-Mass X-ray Binary Thermonuclear Bursts from a

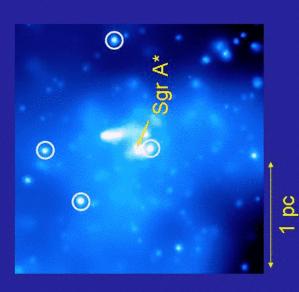




An X-ray burst lasting 100 s was produced by unstable He burning on the neutron star.

#### Another LMXB (0.1 pc from Sgr A\*) with Periodic Eclipses

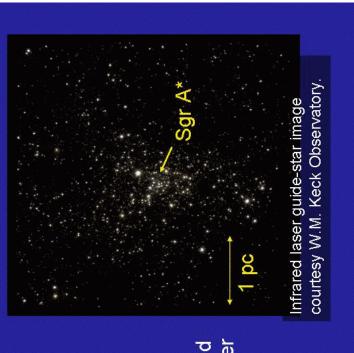



The X-ray light curve displays partial eclipses at the 8 hour orbital period.

Infrared images reveal no infrared companion with K<15, ruling out a high-mass star.

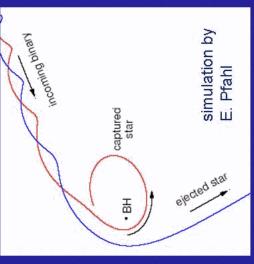
Muno et al. (2005b)

### An Overabundance of X-ray Binaries in the Central Parsec

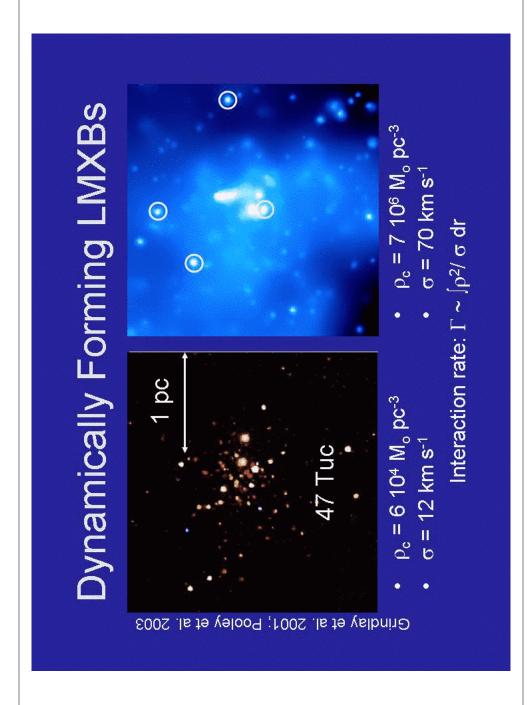

- 4 of 7 transients are within 1 pc of the Galactic Center.
  The chance of this happening randomly is <2x10-4.</li>
- Transients are 20 times more abundant per unit stellar mass within 1 pc than within1--25 pc.



# Young High-Mass X-ray Binaries


- Seven Myr ago, several formed among on order dozen massive stars 10<sup>4</sup> stars.
- descended from these Up to 300 black holes may have already stars.
- be in HMXBs, or on order Up to 10% of these could 30 systems

Muno et al. (2005a)

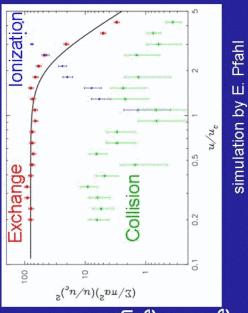



## **Oynamically Forming LN**

pc

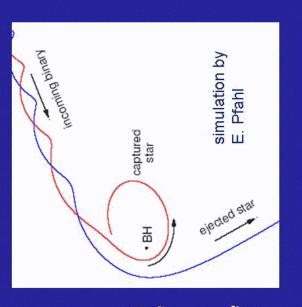


In globular clusters, LMXBs are over-abundant by a factor of 100 per unit stellar mass, because neutron stars dynamically settle into the cores and form LMXBs through single-binary exchanges. Grindlay et al. 2001; Pooley et al. 2003




#### MXBs Form When Black Holes Capture Stars

dynamically settled into the central pc (Morris 1993, Miralda-Escudé & Gould 2000).


Pfahl & Loeb (in prep.) estimate that these form LMXBs via binary-single interactions at a rate of 10-6 yr-1.

 Over the dynamical time scale of 10 Gyr, 10<sup>3</sup> LMXBs could form.



#### LMXBs Form When Black Holes Capture Stars

- 104 black holes have dynamically settled into the central pc (Morris 1993, Miralda-Escudé & Gould 2000).
- Pfahl & Loeb (in prep.) estimate that these form LMXBs via binary-single interactions at a rate of 10-6 yr-1.
- Over the dynamical time scale of 10 Gyr, 10<sup>3</sup> LMXBs could form.



### Summary and Implications

- Transient X-ray binaries are over-abundant The best explanation is that a cusp of compact objects surrounds Sgr A\* within 1 pc of Sgr A\*. .
- This could prevent low-mass stars from remaining in the region.
- onto tight orbits around Sgr A\* (Alexander & Livio This could allow high-mass stars to be captured 2004).
- This could result in detectable gravitational wave (LISA) events from galactic nuclei in the Local Group (talk to Eric Pfahl!).