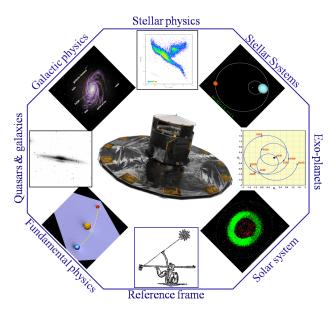

Gaia mission and data processing status

Anthony Brown

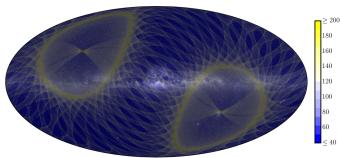
Sterrewacht Leiden, Leiden University

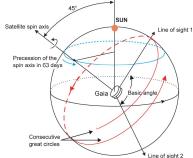
Gaia summary

- Gaia: science with 1 billion objects in three dimensions
- ESA corner stone mission building on the Hipparcos heritage
- Astrometry, Photometry and Spectroscopy
- Satellite and payload, by industry, management and operations by ESA, data processing by scientists (DPAC)
- Launch 19 December 2013 with Soyuz from Kourou
- Commissioning formally completed
 18 July 2014
- 5 years of operations at L2

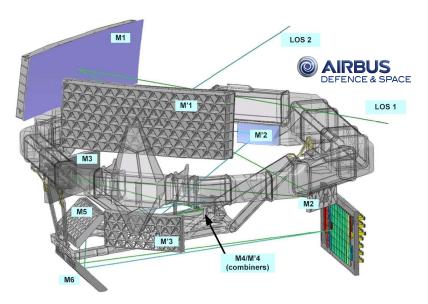

- First intermediate data release summer 2016, but Science Alerts start earlier
 - first parallaxes and proper motions in early 2017

www.cosmos.esa.int/gaia

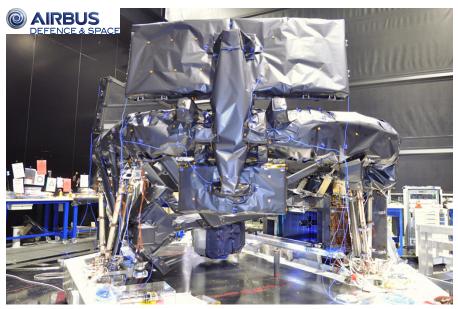

Science topics

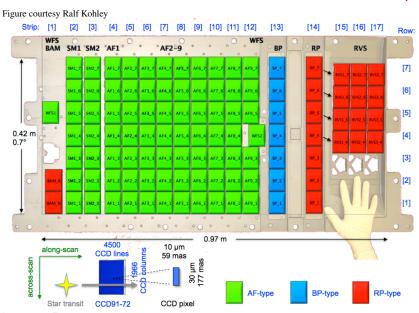


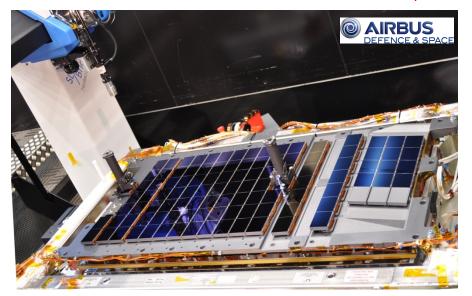
Survey principle


- Three simultaneous observing modes
- Two lines of sight separated by 106.5°
- Complete to G = 20 (V = 20–22) radial velocities to G = 16
- Observing programme: autonomous on-board detection and unbiased
- Quasi-regular time-sampling over 5 years (~ 70 observations)
- Angular resolution comparable to HST

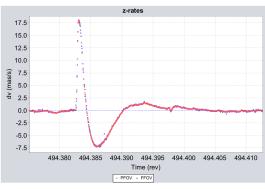
Telescope and payload


Telescope and payload


Telescope and payload


Focal plane

Focal plane



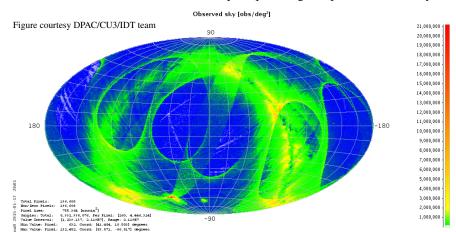
Commissioning results

- Micro propulsion system working well
- Attitude and orbit control system functioning well
- Phased array antenna operating with healthy link budget
- Clock working at required accuracy
- 106 CCDs, electronics, data acquisition and storage all functioning

Micro-meteoroid hit example, figure courtesy F. van Leeuwen

Unwanted surprises

- Stray light both from astronomical sources and the Sun
 - Sun stray light due to scattering by fibres at sunshield edges
 - ▶ Impacts faint sources, especially in spectroscopy
- Transmission loss due to continuing contamination of mirrors by water
 - ▶ Water source not yet exhausted, maximum contamination rate now at 3 mmag/day
 - Currently primarily blue light is affected
- Basic Angle variation larger than expected
- Video Processing Unit (VPU) resets observed around high density regions


- Stray light
 - Root cause understood
 - Data processing software adapted to model background fluctuations
 - On-board S/W modification being implemented for the spectroscopy
- Contamination
 - A new decontamination procedure has been executed involving a short heating of mirrors (executed 22–23 September) → full transmission recovery and re-focus 24 October with continued monitoring
- Basic Angle variation larger than expected
 - ▶ Analysis of dedicated measurements have verified reality of Basic Angle variation
 - ▶ Working group established to chase the root cause of the variations
- VPU software patch with more diagnostics was uplinked

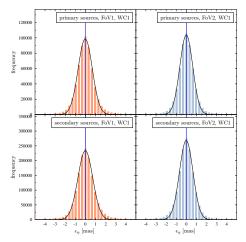
Data collection stats

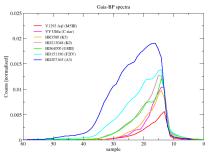
Number of astrometric observations per square degree up to end of January

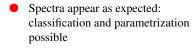
Whole sky seen by Gaia! — Up to 21 million per square degree

As of End Jan 2015: 16 billion astrometric/photometric transits, 1.6 billion spectroscopic

Early astrometric performance assessment




Figure courtesy First Look team


- ODAS Residuals 0.6 mas at G = 15 in June/July
 - ▶ target is 0.3 mas
 - Caveats at this stage
 - coarse attitude model
 - poor PSF calibrations, no source colours
 - imperfect stray light corrections
 - throughput loss
- For clean telescopes throughput is as expected
- Read noise within requirements
- Corrections for bias non-uniformity under control
- High accuracy timing works nominally (detailed verification pending)

Early photometric performance assessment

- For clean telescopes throughput is as expected
- Read noise within requirements
- Corrections for bias non-uniformity under control

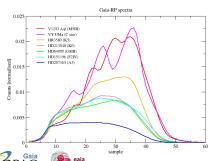
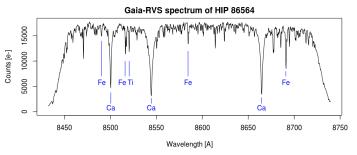



Figure courtesy C. Jordi & J.-M. Carrasco

Preliminary RVS performance at bright end

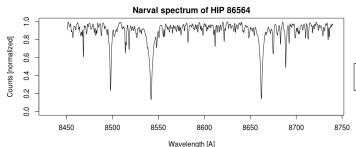
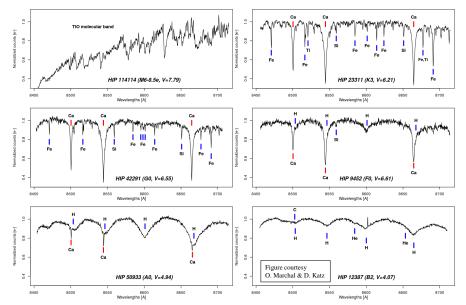
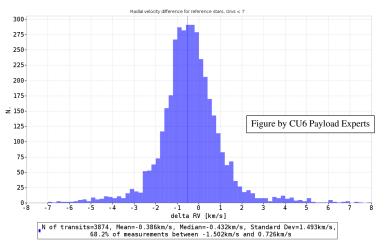
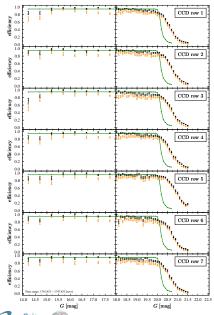
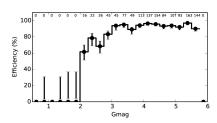



Figure courtesy D. Katz, O. Marchal, C. Soubiran


Preliminary RVS performance at bright end

Preliminary RVS performance at bright end



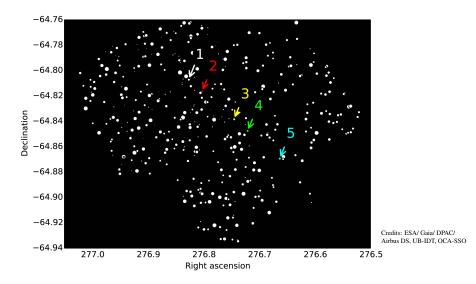

- Differences between measured and expected v_{rad} for bright ($G_{\text{RVS}} < 7$) ground based radial velocity standards
- 68% of measurements are within 1.1 km s⁻¹ from the median

Detection efficiencies

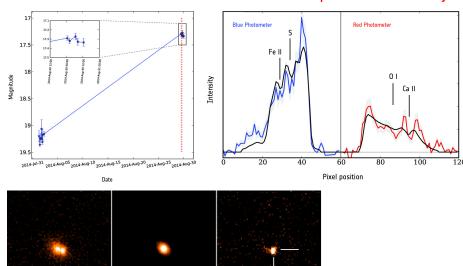
- Faint end efficiencies measured against dedicated Ecliptic Pole survey
- Bright end extended to $G \approx 0$ through detection algorithm improvements and employment of special observing mode

Figures courtesy DPAC-FL team and SOC Calibration Team

Solar system objects



Credits: ESA/Gaia/DPAC/Airbus DS, UB-IDT, OCA-SSO

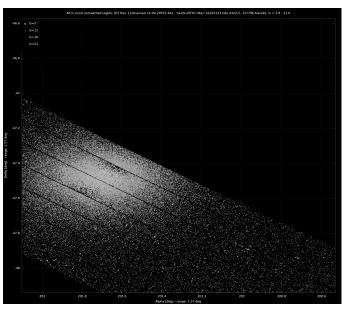

Solar system objects

First supernova discovery

Credits: M. Fraser/ S. Hodgkin/ Ł. Wyrzykowski/ H. Campbell/ N. Blagorodnova/ Z. Kostrzewa-Rutkowska/ Liverpool Telescope/

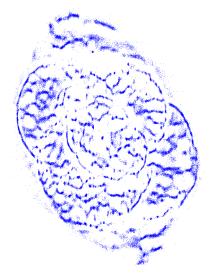
SDSS/ ESA/ Gaia/ DPAC

Omega Centauri



Credits: ESO/ INAF-VST/ OmegaCAM

Omega Centauri


The Gaia view

The Cat's Eye

Credits: ESA/ Gaia/ DPAC/ UB/ IEEC

The Cat's Eye



Credits: NASA, ESA, HEIC, and The Hubble Heritage Team (STScI/AURA)

The Cat's Eye

Credits: NASA, ESA, HEIC, and The Hubble Heritage Team (STScI/AURA)

Credits: ESA/ Gaia/ DPAC/ UB/ IEEC

Scientific performance predictions

Performance predictions for G2V star			
V magnitude	Astrometry	Photometry	Spectroscopy
	(parallax)	(BP/RP integrated)	(radial velocity)
3 to 12	5–14 μ as	4 mmag	
3 to 12.3			$1 \; {\rm km} \; {\rm s}^{-1}$
15	$24 \mu as$	4 mmag	
15.2			$15 \; km \; s^{-1}$
20	540 μ as	60 (RP) – 80 (BP) mmag	

Calculations by: Airbus DS, D. Katz, C. Jordi, L. Lindegren, J. de Bruijne

Up-to-date information always at:

http://www.cosmos.esa.int/web/gaia/science-performance

Time line

- Routine phase started with 28 days of Ecliptic Pole Scanning
- Now operating in optimised Nominal Scanning Law
 - catch bright stars near Jupiter in 2017 to detect quadrupole light bending
- No bright magnitude limit
 - Stars G = 3-20.7 observed in nominal mode (and G = 2-3 with 75% probability)
 - ▶ Stars brighter than 3 mag with Sky Mapper imaging
- Activities to be finished:
 - ▶ Magnitude limit for astrometry and photometry (now 20.7)
 - ▶ Magnitude limit for spectroscopy (now 16.2)
 - Upgrade of on-board SW to optimize spectroscopy
 - Decontamination as needed followed by focus check
 - Completion of BA and stray light WG tasks and possible follow-up
 - Sort out ground station time for larger amounts of telemetry
 - Consolidate intermediate release schedule for summer 2016 and early 2017

Discussion points

- Provide your wishes for Gaia data access facilities here:
 - http://great.ast.cam.ac.uk/Greatwiki/GaiaDataAccess
 - For already collected inputs see: http: //www.rssd.esa.int/SA/GAIA/docs/library/AB-026.htm
- Back to basics
 - $ightharpoonup \sim 10$ million stars with 1% parallaxes over 2.5 kpc volume around sun
 - precise CMDs, calibration of luminosities, stellar physics, (re-)calibration alternative distance indicators
- Can I trust the Gaia data?
 - Extensive data validation effort before each release
 - **Keep in mind:** Gaia will observe $\sim 500\,000$ quasars
 - ► Feedback on 'features' in the data will be much appreciated (and used)
- Can the user be trusted with the Gaia data?
 - ▶ Make sure you understand the data (covariance matrix astrometric parameters, star-to-star error correlations, observational coverage, ...)

