UNIVERSITYOF BIRMINGHAM

asteroseismology and Galactic populations

Andrea Miglio
School of Physics and Astronomy,
University of Birmingham, UK
and

University of Aarhus, Denmark

Aerts, Christensen-Dalsgaard \& Kurtz 2009

PULSATING STARS AND STELLAR POPULATIONS STUDIES

Aerts, Christensen-Dalsgaard \& Kurtz 2009

PULSATING STARS AND STELLAR POPULATIONS STUDIES

SOLAR-LIKE OscILLATING STARS:

Standard Clocks and Rulers for Galactic Studies

Desirable properties:

- intrinsically luminous

numerous
photospheric composition proxy
of the ISM at time of birth
pulsation spectrum rich yet simple
- precise distance and age indicators
span a wide age interval sampling look-back times as long as the age of the Galaxy.

ENSEMBLE SEISMOLOGY OF G-K GIANTS

Radius

distance

Pulsating stars as distance indicators:

$$
\begin{aligned}
& \text { RR Lyrae, Cepheids: } P \propto\left(M / R^{3}\right)^{-1 / 2} \\
& \log (P)=a \log (L)+b \log (M)+c \log \left(T_{e f f}\right)+d
\end{aligned}
$$

Harvard College observatory.

OIROULAR 173.

PERIODS OF 25 VARIABLE STARS IN THE SMALL MAGELLANIC CLOUD.

The following statement regarding the periods of 25 variable stars in the Small Magellanic Cloud has been prepared by Miss Leavitt.

A Catalogue of 1777 variable stars in the two Magellanic Clouds is given in H.A. 60, No. 4. The measurement and discussion of these objects present problems of unusual difficulty, on account of the large area covered by the two regions, the extremely crowded distribution of the stars contained in them, the faintness of the variables, and the shortness of their periods. As many of them never become brighter than the fifteenth magnitude, while very few exceed the thirteenth magnitude at maximum, long exposures are neces-

Leavitt 1912

ENSEMBLE SEISMOLOGY OF G-K GIANTS

Mass age

GIANTS:

Age(RGB) ~ $\mathbf{T H}_{\mathbf{H}}$

$$
\begin{aligned}
& T_{\mathrm{H}} \sim M / L \\
& L \sim M \eta \quad \eta \sim 3.5
\end{aligned}
$$

Age(RGB) ~ M-2.5

ENSEMBLE SEISMOLOGY OF G-K GIANTS

first steps

coordinated activities

next steps

ENSEMBLE SEISMOLOGY OF G-K GIANTS

CoRoT: the pioneer

≈ 1000 red giants in CoRoT's LRcOl exofield I $<R<16$

Hekker et al. 2009

seismology of populations of stars!
population expected

Miglio et al. 2009

ENSEMBLE SEISMOLOGY OF G-K GIANTS

observed vs synthetic populations

Miglio et al. 2009

ENSEMBLE SEISMOLOGY OF G-K GIANTS

observed vs synthetic populations

Miglio et al. 2009
bear the signature of the population's mass and radius distributions

ENSEMBLE SEISMOLOGY OF G-K GIANTS

empirical tests of scaling relations
e.g.

- a few nearby/CoRoT dwarfs and giants

Bruntt et al. 2011, Miglio 2011, Bedding 2011, Lagarde et al. 2015

- interferometry

Huber et al. 2012

- Kepler dwarfs+ Hipp parallaxes

Silva Aguirre et al. 2012

- NGC679I, NGC68I9, NGC68II, NGC6633:

Miglio et al. 2012, Brogaard et al. 2012, Sandquist et al. 2013, Lagarde et al. 2015
model-based tests of $\Delta \nu$ scaling relation

EARLY RESULTS: DISTANCES

EARLY RESULTS: DISTANCES

EARLY RESULTS: DIFFERENTIAL POPULATION STUDIES

$\overline{\mathbf{Z}}_{\text {LRaOI }}<\overline{\mathbf{Z}}_{\text {LRcOI }}$

Miglio, Chiappini, Morel et al. 2013

EARLY RESULTS: DIFFERENTIAL POPULATION STUDIES

observed

$\overline{\mathbf{Z}}_{\mathrm{LRaOI}}<\overline{\mathbf{Z}}_{\mathrm{LRcO}}$

Miglio, Chiappini, Morel et al. 2013
synthetic

+ photospheric constraints
 from SAGA, APOKASC, COROGEE, GESS

e.g.

Pinsonneault et al.

Martig et al.

Casagrande et al.

Chiappini et al.

Rodrigues et al.

Valentini et al.

Anders et al.

what have we learnt

2013 Sesto

Andraa Miglio
Patrick Eggenterger
Eob Girardi
Jasefina Montalbán Editors
Asteroseismology of Stellar
Populations in the Milky Way

e.g.
Uncertainties in Models of Stellar Structure and Evolution Arlette Noels and Angela Bragaglia
Photospheric Constraints, Current Uncertainties in Models of Stellar Atmospheres, and Spectroscopic Surveys.
Bertrand Plez and Nicolas Grevesse

asteroseismology of STEllar Populations

Open collaboration, 3 areas of expertise:

- Galactic astrophysics

Spectroscopy

Stellar structure, evolution, seismology

~ 100 scientists from ~ 20 countries

Enrico	Corsaro	X			
Eric	Depagne		X	X	
Eric	Michel	X		X	
Frederic	Thevenin		X		
Gail	Zasowski		X		APOGEE spectroscopy, photometry / reddening
Guy	Davies	X			
Gyula	Szabo		X		spectroscopy of bright objects
Holger	Lehman		X		brighter objects Thueringer
Ian	Roxburgh			X	
Isa	Brandao			X	Gaia-ESO survey
Jason	Drury	X			
Jennifer	Johnson		X		APOGEE
Jerome	Ballot	X			
Joao Pedro	Marques			X	
Jose Dias	do Nascimento Jr.		X		
Josefina	Montalban			X	
Joss	Hawthorn		X		
Juan Carlos	Suarez	X			
Leo	Girardi			X	
Luca	Casagrande		X		
Marc	Pinsonneault		X	X	APOGEE / photometry / modelling
Marcio	Catelan				
Maria	Bergemann		X		
Maria Pia	Di Mauro			X	
Marian	Suran			X	
Marica	Valentini		X		RAVE, Gaia-ESO
Martin	Asplund		X		Hermes, AAOmega
Mathieu	Vrard	X			
Maurizio	Salaris			X	
Nadege	Lagarde			X	
Orlagh	Creevey			X	
Othman	Benomar	X			
Paola	Marigo			X	

Enrico	Corsaro	X			
Eric	Depagne		X	X	
Eric	Michel	X		X	
Frederic	Thevenin		X		
Gail	Zasowski		X		APOGEE spectroscopy. photometry / reddening
Guy	Davies	X			
Gyula	Szabo		X		spectroscopy of bright objects
Holger	Lehman		X		brighter objects Thueringer
Ian	Roxburgh			X	
Isa	Brandao			X	Gaia-ESO survey
Jason	Drury	X			
Jennifer	Johnson		X		APOGEE
Jerome	Ballot	X			
Joao Pedro	Marques			X	
Jose Dias	do Nascimento Jr.		X		
Josefina	Montalban			X	
Joss	Hawthorn		X		
Juan Carlos	Suarez	X			
Leo	Girardi			X	
Luca	Casagrande		X		
Marc	Pinsonneault		X	X	APOGEE / photometry /modelling
Marcio	Catelan				
Maria	Bergemann		X		
Maria Pia	Di Mauro			X	
Marian	Suran			X	
Marica	Valentini		X		RAVE, Gaia-ESO
Martin	Asplund		X		Hermes, AAOmega
Mathicu	Vrard	X			
Maurizio	Salaris			X	
Nadege	Lagarde			X	
Orlagh	Creevey			X	
Othman	Benomar	X			
Paola	Marigo			X	
Patrick	Gaulme	X			
Patrick	Eggenberger			X	

Analysis and interpretation of K2 data for Galactic studies: a collaborative effort

K2 data analysis
spectroscopy
modelling

Eric	Michel	x		x	
Frederic	Thevenin		X		
Gail	Zasowski		X		APOGEE spectroscopy. photometry / reddening
Guy	Davies	x			
Gyula	Szabo		X		spectroscopy of bright objects
Holger	Lehman		X		brighter objects Thueringer
lan	Roxburgh			X	
Isa	Brandoo			X	Gaia-ESO survey
Jason	Drury	X			
Jennifer	Johnson		X		APOGEE
Jerome	Ballot	X			
Joao Pedro	Marques			X	
Jose Dias			X		
Joselina	Montalban			X	
Joss	Hawthorn		X		
$\begin{gathered} \text { Juan } \\ \text { Carlos } \end{gathered}$	Suarez	X			
Leo	Girardi			X	
Luca	Casagrande		X		
Marc	Pinsonneault		X	X	APOGEE/photometry /modelling
Marcio	Catelan				
Maria	Bergemann		X		
Maria Pia	Di Mauro			X	
Marian	Suran			X	
Marica	Valentini		X		RAVE, Gaia-ESO
Martin	Asplund		X		Hermes, AAOmega
Mathicu	Vrard	X			
Maurizio	Salaris			X	
Nadege	Lagarde			X	
Orlagh	Creevey			X	
Othman	Benomar	X			
Paola	Marigo			X	
Patrick	Gaulme	X			
Patrick	Eggenberger			X	
Paul	Beck	X			
Rafa	Garcia	X			
Rafael	Peralta	x		x	

example

Analysis and interpretation of K2 data for Galactic studies: a collaborative effort

K2 data analysis

spectroscopy
modelling

Gyula	Szabo		X		spectroscopy of bright objects
Holger	Lehman		X		brighter objects Thueringer
Ian	Roxburgh			X	
Isa	Brandao			X	Gaia-ESO survey
Jason	Drury	X			
Jennifer	Johnson		X		APOGEE
Jerome	Ballot	X			
Joao Pedro	Marques			X	
Jose Dias	$\begin{array}{c\|} \hline \text { do } \\ \text { Nascimento } \\ \text { Jr. } \end{array}$		X		
Josefina	Montalban			X	
Joss	Hawthom		X		
Juan Carlos	Suarez	X			
Leo	Girardi			X	
Luca	Casagrande		X		
Mare	Pinsonneault		X	X	APOGEE / photometry /modelling
Marcio	Catelan				
Maria	Bergemann		X		
Maria Pia	Di Mauro			X	
Marian	Suran			X	
Marica	Valentini		X		RAVE, Gaia-ESO
Martin	Asplund		X		Hermes, AAOmega
Mathicu	Vrand	X			
Maurizio	Salaris			X	
Nadege	Lagarde			X	
Orlagh	Creevey			X	
Othman	Benomar	X			
Paola	Marigo			X	
Patrick	Gaulme	X			
Patrick	Eggenberger			X	
Paul	Beck	X			
Rafa	Garcia	X			
Rafael	Peralta	X		X	
Rasmus	Handberg	X			
Reza	Samadi			X	
Rhita Maria	Ouazzani			X	

Jason	Drury	X			
Jennifer	Johnson		X		APOGEE
Jerome	Ballot	X			
Joao Pedro	Marques			X	
Jose Dias	$\begin{gathered} \text { do } \\ \text { Nascimento } \\ \text { Jr. } \end{gathered}$		X		
Josefina	Montalban			X	
Joss	Hawthorn		X		
Juan Carlos	Suarcz	X			
Leo	Girardi			X	
Luca	Casagrande		X		
Marc	Pinsonneault		X	X	APOGEE / photometry /modelling
Marcio	Catelan				
Maria	Bergemann		X		
Maria Pia	Di Mauro			X	
Marian	Suran			X	
Marica	Valentini		X		RAVE, Gaia-ESO
Martin	Asplund		X		Hermes, AAOmega
Mathicu	Vrard	X			
Maurizio	Salaris			X	
Nadege	Lagarde			X	
Orlagh	Creevey			X	
Othman	Benomar	X			
Paola	Marigo			X	
Patrick	Gaulme	X			
Patrick	Eggenberger			X	
Paul	Beck	X			
Rafa	Garcia	X			
Rafael	Peralta	X		X	
Rasmus	Handberg	X			
Reza	Samadi			X	
Rhita Maria	Ouazzani			X	
Sanjib	Sharma				
Santi	Cassisi			X	
Sarbani	Basu			X	
Saskia	Hekker	X			
Savita	Mathur	X			
Schastien	Deheuyels	X			

Josefina	Montalban			X	
Joss	Hawthorn		X		
$\begin{gathered} \text { Juan } \\ \text { Carlos } \end{gathered}$	Suarcz	X			
Leo	Girardi			X	
Luca	Casagrande		X		
Marc	Pinsonneault		X	X	APOGEE/photometry / modelling
Marcio	Catelan				
Maria	Bergemann		X		
Maria Pia	Di Mauro			X	
Marian	Suran			X	
Marica	Valentini		X		RAVE, Gaia-ESO
Martin	Asplund		X		Hermes, AAOmega
Mathieu	Vrard	X			
Maurizio	Salaris			X	
Nadege	Lagarde			X	
Orlagh	Creevey			X	
Othman	Benomar	X			
Paola	Marigo			X	
Patrick	Gaulme	X			
Patrick	Eggenberger			X	
Paul	Beck	X			
Rafa	Garcia	X			
Rafael	Peralta	X		X	
Rasmus	Handberg	X			
Reza	Samadi			X	
Rhita Maria	Ouazzani			X	
Sanjib	Sharma				
Santi	Cassisi			X	
Sarbani	Basu			X	
Saskia	Hekker	X			
Savita	Mathur	X			
Sebastien	Deheuvels	X			
Steve	Kawaler	X		X	already experience with K2 SC
Steven	Bloemen	X			
Thaise	Rodrigues			X	
Thierry	Morel		X		Gaia-ESO, not only
Thomas	Kallinger	X			

Analysis and interpretation of K2 data for Galactic studies: a collaborative effort

K2 data analysis

spectroscopy

modelling

catar	(1)		N		
Marc	Pinsonneault		X	X	APOGEE / photometry /modelling
Marcio	Catelan				
Maria	Bergemann		X		
Maria Pia	Di Mauro			X	
Marian	Suran			X	
Marica	Valentini		X		RAVE, Gaia-ESO
Martin	Asplund		X		Hermes, AAOmega
Mathicu	Vrard	X			
Maurizio	Salaris			X	
Nadege	Lagarde			X	
Orlagh	Creevey			X	
Othman	Benomar	X			
Paola	Marigo			X	
Patrick	Gaulme	X			
Patrick	Eggenberger			X	
Paul	Beck	X			
Rafa	Garcia	X			
Rafacl	Peralta	X		X	
Rasmus	Handberg	X			
Reza	Samadi			X	
Rhita Maria	Ouazzani			X	
Sanjib	Sharma				
Santi	Cassisi			X	
Sarbani	Basu			X	
Saskia	Hekker	X			
Savita	Mathur	X			
Sebastien	Deheuvels	X			
Steve	Kawaler	X		X	already experience with K2 SC
Steven	Blocmen	X			
Thaise	Rodrigues			X	
Thierry	Morel		X		Gaia-ESO, not only
Thomas	Kallinger	X			
Tim	White	X			and interferomertric data, when possible
Tim	Bedding	X			
Ulrike	Heiter		X		Gaia-ESO
Victor	Silva Aguirre		X	X	

Maurizio	Salaris			X	
Nadege	Lagarde			X	
Orlagh	Creevey			X	
Othman	Benomar	X			
Paola	Marigo			X	
Patrick	Gaulme	X			
Patrick	Eggenberger			X	
Paul	Beck	X			
Rafa	Garcia	X			
Rafael	Peralta	X		X	
Rasmus	Handberg	X			
Reza	Sumadi			X	
Rhita Maria	Ouazzani			X	
Sanjib	Sharma				
Santi	Cassisi			X	
Sarbani	Basu			X	
Saskia	Hekker	X			
Savita	Mathur	X			
Sebastien	Deheuvels	X			
Steve	Kawaler	X		X	already experience with K2 SC
Steven	Bloemen	X			
Thaise	Rodrigues			X	
Thierry	Morel		X		Gaia-ESO, not only
Thomas	Kallinger	X			
Tim	White	X			and interferomertric data, when possible
Tim	Bedding	X			
Ulrike	Heiter		X		Gaia-ESO
Victor	Silva Aguirre		X	X	
Warrick	Ball			X	
Yveline	Lebreton			X	
Yvonne	Elsworth	X			
Zhao	Guo		X		

Analysis and interpretation of K2 data for Galactic studies: a collaborative effort

K2 data analysis
spectroscopy

modelling

example 2

isochrone fitting (old problem), has to be revisited in the light of new constraints

systematic uncertainties:
collaborative project involving several codes

example 3

asteroSTEP:

Hare\&hounds exercises

andrea miglio*. luca casagrande, joris de ridder, gail zasowski on behalf of

the asteroSTEP collaboration ${ }^{\prime}$

Inferring the full, detailed chemodynamical evolution of the Milky Way is a long sought-after goal now being made achievable by unprecedented quantities and types of stellar catalogs. However, interpretation of these data relies critically on understanding the uncertainties and biases inherent to the methods used. Here, we report on the status of a large collaborative project that aims at assessing under which conditions and with which accuracy the properties of a stellar population can be recovered, given current state-of-the-art analysis methods. We seek a comprehensive understanding of the impacts of target selection biases and uncertainties on classical (spectroscopic, astrometric, photometric) and asteroseismic data. In this poster, we describe how this collaboration is structured into teams and tasks, the generation of mock Milky Way catalogs, and progress along other aspects of the project.

Team A:
 Generating artificial datasets
 members: Annie Robin, Sanjib Shorma, Leo Girardi
 - Generate various sets of artificial data representative of populations of giants in the fields of COROT and Kepler (including the fields of the 2 -wheel mission)

- Use parametrized models of the Milly Way (TRILEGAL, Besancon, Galaxia, ...)
- The team's output will be artificial observational data such as:
- seismic data (such as large frequency separation nu_max, and the period spacing).
- spectroscopic data (effective temperature, chemical abundances, radial velocity).
- photometric constraints (apparent magnitudes, colours)

Team B:
Introducing noise and biases coordinator: Luca Cosogrande

e.g. color-magnitude diagrams:

Inferring the full, detailed chemodynamical evolution of the Milky Way is a long sought-after goal now being made achievable by unprecedented quantities and types of stellar catalogs. However, interpretation of these data relies critically on understanding the uncertainties and biases inherent to the methods used. Here, we report on the status of a large collaborative project that aims at assessing under which conditions and with which accuracy the properties of a stellar population can be recovered, given current state-of-the-art analysis methods. We seek a comprehensive understanding of the impacts of target selection biases and uncertainties on classical (spectroscopic, astrometric, photometric) and asteroseismic data. In this poster, we describe how this collaboration is structured into teams and tasks, the generation of mock Milky Way catalogs, and progress along other aspects of the project.

Team A:
 Generating artificial datasets
 members: Annie Robin, Sanjib Sharma, Leo Girardi

- Generate various sets of artificial data representative of populations of giants in the fields of CoRoT and Kepler (induding the fields of the 2 -wheel mission)
- Use parametrized models of the Milly Way (TRILEGAL, Besancon, Galaxia,...)
- The team's output will be artificial observational data such as:
- seismic data (such as large frequency separation nu_max, and the period spacing).
- spectroscopic data (effective temperature, chemical abundances, radial velocity).
- photometric constraints (apparent magnitudes, colours)
- astrometric constraints (parallaxes and proper motions) as we will obtain them with Gaia

Team B:

Introducing noise and biases
coordinator: Luca Casogrande
members: Andrea Miglia, joris De Ridder, Bill Choplin, Goil Zosowski, Rafa Garcia, Rob Former, Enda Farrell, Berry Holl

- Add random (possibly non-gaussian) and systematic uncertainties to the "unbiased stellar population" generated by Team A.
- Add reddening biases

e.g. color-magnitude diagrams:

Team C:

now being made achievable by unprecedented quantities and types of stellar catalogs. However, interpretation of these data relies critically on understanding the uncertainties and biases inherent to the methods used. Here, we report on the status of a large collaborative project that aims at assessing under which conditions and with which accuracy the properties of a stellar population can be recovered, given current state-of-the-art analysis methods. We seek a comprehensive understanding of the impacts of target selection biases and uncertainties on classical (spectroscopic, astrometric, photometric) and asteroseismic data. In this poster, we describe how this collaboration is structured into teams and tasks, the generation of mock Milky Way catalogs, and progress along other aspects of the project.

Team A:

Generating artificial datasets

members: Annie Robin, Sanjb Sharma, Leo Girurdi

- Generate various sets of artificial data representative of populations of glants in the fields of CoRoT and Kepler (including the fields of the 2 -wheel mission)
- Use parametrized models of the Milly Way (TRILEGAL, Besancon, Galaxia,...)
- The team's output will be artificial observational data such as:
- seismic data (such as large frequency separation nu_max, and the period spacing).
- spectroscopic data (effective temperature, chemical abundances, radial velocity).
- photometric constraints (apparent magnitudes. colours)
* astrometric constraints (parallaxes and proper motions) as we will obtain them with Gaia

Team C:

Retrieving the stellar parameters
members: Victor Siva Aguirre, Dennis Stello, Thaise Rodrigues, Benoit, Mosser, Orlagh Creevey, Maurizio Salaris, Santino Cossisi, Adriano Pietrinferni, Sarbani Basu, Josefina Montafban, Aldo Serenelt, Marie Martig, Scllid Degflinnocents

- Use stellar evolution and pulsation codes to model the "observed" stellar properties to estimate their age.

e.g. color-magnitude diagrams:

Team B:
Introducing noise and biases
coordinator:Luca Cosogrande
members: Andreo Miglio, Jonis De Ridder, Bill Chaplin, Goil Zosowski, Rafa Garcia, Rob Farmer. Endo Forrell, Berry Holl

- Add random (possibly non-gaussian) and systematic uncertainties to the unbiased stellar population" generated by Team A.
- Add reddening biases
- Add target selection biases

Generating artificial datasets
members: Annie Rabin Sanjib Sharma, Leo Girardi

- Generate various sets of artificial data representative of populations of giants in the fields of CoRoT and Kepler (including the fields of the 2 -wheel mission)
- Use parametrized models of the Milky Way (TRILEGAL, Besancon, Galaxia,...)
- The team's output will be artificial observational data such as:
- seismic data (such as large frequency separation nu_max, and the period spacing).
- spectroscopic data (effective temperature, chemical abundances, radial velocity).
* photometric constraints (apparent magnitudes, colours)
* astrometric constraints (parallaxes and proper motions) as we will obtain them with Gaia

Team C:

Retrieving the stellar parameters
members: Victor Siva Aguirre, Dennis Stello, Thaise Rodrigues, Benoit Mosser. Orlagh Creevey. Maurzio Salaris, Santino Cossisici Adriano Pietrinferni, Sarbani Bosu, Josefina Montalban, Aldo Serenell. Marie Martig, Sclla Degilnnocentif

- Use stellar evolution and pulsation codes to model the "observed" stellar properties to estimate their age, distance, mass, etc.
- Carefully keep record of the assumptions you use, such as which opacities you use, mixing length, overshoot parameter, etc.
- No information from team A will be available.

Team E:

Assessing the different methods and codes used

- Carot LRed
- Cokor LReor
- Kepier
- 12 Fieloo
- k2 Fieldi
- Ka fielda

Team B:

Introducing noise and biases
coordinator: Luca Casogrande
members: Andreo Miglia. Jonis De Ridder, Bili Chaplin, Goil Zosowsk, Rafa Garcia, Rob Farmer, Enda Farrell Berry Holl

- Add random (possibly non-gaussian) and systematic uncertainties to the "unbiased stellar population" generated by Team A.
- Add reddening biases
- Add target selection biases

Team D:

Retrieving the galactic parameters

members: Genry Gilmore, JossBland-Howthom, AlejandruRecio-Blanca, ManMinchev, JoBoyy. Borja Anguiano, Georges Kordopatis, Friedrich Anders

- Given the stellar properties derived by Team C, recover the global galactic population properties that constrain the chemical and dynamical evolution of the galactic disk.
- Estimate the age-metallicity and age-velocity dispersion relations as a function of the position in the disk Retrieve possible gradients.
- Estimate the initial mass function.

e.g. color-magnitude diagrams:

such as:
- seismic data (such as large frequency separation, nu_max, and the period spacing),
* spectroscopic data (effective temperature, chemical abundances, radial velocity).
- photometric constraints (apparent magnitudes, colours)
- astrometric constraints (parallaxes and proper motions) as we will obtain them with Gaia

Team C:

Retrieving the stellar parameters

members. Victor Siviva Aguirre, Dennis Stello, Thaise Rodrigues, Benoit, Mosser, Orlagh Creevey. Maurizo Salaris, Santino Cossisi, Adriano Pietrinferni, Sarbani Bosu, Josefino Montalban, Aldo Serenell, Marie Martig Scilla Degilhnocenti

- Use stellar evolution and pulsation codes to model the "observed" stellar properties to estimate their age. distance, mass, etc
- Carefully keep record of the assumptions you use, such as which opacities you use, moxing length. overshoot parameter, etc.
- No information from team A will be available.

Team E:

Assessing the different methods and codes used

- Given the input and output population parameters. compare the results of the different groups using different methods/codes.
- Establish the reliability of the error bars returned by team D.
- Assess how robust the results are as a function of the noise levels.
- Make recommendations for an optimized observation strategy for the Kepler, CORoT and APOGEE teams.

Team B:

Introducing noise and biases coordinator: Luca Casagrande
members: Andreo Miglio, Jonis De Ridder, Bill Choplin, Gail Zosowski, Rafa Garcia, Rob Farmer. Enda Farrell, Berry Holl

- Add random (possibly non-gaussian) and systematic uncertainties to the "unbiased stellar population" generated by Team A.
- Add reddening biases
- Add target selection biases

Team D:

Retrieving the galactic parameters

members: Gerry Glimore, JossBland-Howthorn, AlejandraRedio-Blanca, ManMinchev, JoBovy, Borja Anguiana, Georges Kordopatis, Friedrich Anders

- Given the stellar properties derived by Team C, recover the global galactic population properties that constrain the chemical and dynamical evolution of the galactic disk.
- Estimate the age-metalicity and age-velocity dispersion relations as a function of the position in the disk Retrieve possible gradients.
- Estimate the initial mass function.
- Estimate the star formation rate as a function of the position in the disk
* email address: amiglio@bham.ac.uk
'asteroeismology of STElarPopulations aims to foster, and coordinate collaborations between researchers interested in stellar population studies using CoRoT, Kepler, and K2 data. Currently about 90 scientists from 16 countries are members of asteroSTEP.

first steps

coordinated activities

next steps

Ensemble seismology

impose that a solution $\left(\nu_{\max }, \Delta \nu,[\mathrm{Fe} / \mathrm{H}], T_{\text {eff }}\right)$ belongs to an evolutionary track

Ensemble seismology

impose that a solution $\left(\nu_{\max }, \Delta \nu,[\mathrm{Fe} / \mathrm{H}], T_{\text {eff }}\right)$ belongs to an evolutionary track

- consider model-computed $\Delta \nu$

Ensemble seismology

impose that a solution $\left(\nu_{\max }, \Delta \nu,[\mathrm{Fe} / \mathrm{H}], T_{\text {eff }}\right)$ belongs to an evolutionary track

- consider model-computed $\Delta \nu$
consider period spacing, small frequency separations

Ensemble seismology

impose that a solution $\left(\nu_{\max }, \Delta \nu,[\mathrm{Fe} / \mathrm{H}], T_{\text {eff }}\right)$ belongs to an evolutionary track

- consider model-computed $\Delta \nu$
consider period spacing, small frequency separations
- model individual frequencies

Ensemble seismology

- impose that a solution $\left(\nu_{\max }, \Delta \nu,[\mathrm{Fe} / \mathrm{H}], T_{\text {eff }}\right)$ belongs to an evolutionary track
- consider model-computed $\Delta \nu$
consider period spacing, small frequency separations
- model individual frequencies
examples of current efforts in Birmingham

TESTING NEAR-CORE MIXING IN RC STARS

Bossini et al, in preparation
testing stellar structure

improve accuracy of model predictions

SEISMOLOGY OF GIANTS IN CLUSTERS

mean density from individual radialmodes frequenciesmore stringent tests of scaling relations

stars that evolved through 'non-standard' evolution are being identified.
Brogaard et al. 2015
Handberg, Miglio, Brogaard, in preparation

ACOUSTIC GLITCHES IN GIANTS

CoRoT

Hell ionisation zone in a red giant

Miglio et al. 2010

where

$$
\begin{aligned}
& t(r)=\int_{0}^{r} \frac{\mathrm{~d} r^{\prime}}{c} \\
& c^{2}=\Gamma_{1} \frac{P}{\rho} \\
& \Gamma_{1}=\left(\frac{\operatorname{\partial n} P}{\partial \ln \rho}\right)_{\mathrm{ad}}
\end{aligned}
$$

ACOUSTIC GLITCHES IN GIANTS

Kepler giants in NGC6819

ACOUSTIC GLITCHES IN GIANTS

Kepler giants in NGC6819

aiming for the Milky Way but ... need for accurate stellar models!

average seismic parameters depend to some extent on stellar structure (and physics within)internal mixing: interpretation of photospheric abundancesage estimates: model dependent

aiming for the Milky Way but ... need for accurate stellar models!

average seismic parameters depend to some extent on stellar structure (and physics within)internal mixing: interpretation of photospheric abundancesage estimates: model dependent

CoRoT, Kepler, K2: calibration fields for GAIA and gold standards for Galactic astronomy

PLATO: FIELD OFVIEW

UNIVERSITYOF BIRMINGHAM

DISCUSSION

would an open platform to exchange expertise / foster collaborations be worth keeping / expanding?

K2: no proprietary light curves, but proprietary spectroscopic data:
"run away and publish" or wide collaborations?
Hare\&Hounds exercises are the way to go?
asteroseismology of red giants: just scratching the surface
asteroseismology of sun-like stars: few and nearby targets, but relevant as age calibrators
age determination: precision vs. accuracy.
differential ages as a first step?

DISCUSSION

PLATO: come up with criteria for target/field selection, lobby for targets

592. WE-Heraeus-Seminar - 1st to 5th June 2015

Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models

Venue:

Physics Center Bad Honnef
Hauptstrasse 5
53604
Bad Honnef (near Bonn, Germany)
The Physics Center is run by the Deutsche Physikalische Gesellschaft e. V. (DPG) and is supported by the University of Bonn and the state North Rhine - Westphalia.

The stately mansion housing the Physikzemtrum is surrounded by a park at the foot of the Siebengebirge ("The Seven Hills") on the right bank of the Rhine River.

This seminar is generously Aunded by the Wilhelm und Elise Heraeus-Sotung.

Click here to learn more about the foundation.

Keplèr

https://escience.aip.de/592-WE-Heraeus-Seminar/cms/

