The Best and Brightest Metal-poor Stars

Kevin Schlaufman

Kavli Fellow, MIT

The Milky Way and its Stars: Stellar Astrophysics, Galactic Archaeology, and Stellar Populations 3 February 2015

Schlaufman & Casey (2014), ApJ, 797, 13 Casey & Schlaufman (2015), ApJ, submitted

The Best and Brightest Metal-poor Stars

Kevin Schlaufman and Andy Casey
Kavli Fellow, MIT loA Cambridge

Schlaufman & Casey (2014), ApJ, 797, 13 Casey & Schlaufman (2015), ApJ, submitted

Metal-poor Star Candidates

Apparent Magnitude Distribution

Distance Distribution

Follow-up Program

Most Metal-poor Stars in the Bulge

Kevin Schlaufman 3 February 2015 Schlaufman & Casey (2014)

Star (2MASS)	T eff	log g	[Fe/H]
J183713-314109	4797	0.99	-2.70
J181503-375120	4728	1.09	-2.84
J155730-293922	4720	1.12	-3.02

There's a 70% chance that at least one of these stars formed at *z* ≥ 10!

J183713-314109 4797	0.99	-2.70
J181503-375120 4728	1.09	-2.84
J155730-293922 4720	1.12	-3.02

Detailed Abundances

Exploiting This Technique

A few possibilities...

- (1) Metal-poor K giants as tracers of the distance halo
 - Dark Energy Spectroscopic Instrument (DESI), Subaru Prime Focus Spectrograph, William Herschel Telescope WEAVE, 4MOST,...
- (2) Asteroseismology of extremely metal-poor stars
 - *K2*, Transiting Exoplanet Survey Satellite (TESS), CHaracterising ExOPlanets Satellite (CHEOPS), PLAnetary Transits and Oscillations of stars (PLATO),...
- (3) Extremely metal-poor stars in dwarf galaxies, including the Magellenic Clouds
- (4) Extremely metal-poor stars in highly-reddened regions (e.g., the bulge)
- (5) Extremely metal-poor stars in the halos of nearby galaxies with JWST/NIRCam grism spectroscopy
- (6) HST/STIS and/or HST/COS UV spectroscopy of brightest confirmed extremely metal-poor stars
- (7) Gaia parallaxes and proper motions for orbital analyses

The Old...

Spectroscopy First

While classical searches for metalpoor stars have achieved many successes, they are not perfect:

- (1) They are resource intensive.
- (2) They fail in regions of high extinction and/or reddening.
- (3) They fail in crowded regions.
- (4) They only identify candidates with faint apparent magnitudes.

The Old and the New

Spectroscopy First

While classical searches for metalpoor stars have achieved many successes, they are not perfect:

- (1) They are resource intensive.
- (2) They fail in regions of high extinction and/or reddening.
- (3) They fail in crowded regions.
- (4) They only identify candidates with faint apparent magnitudes.

WISE Photometry

The infrared selection of Schlaufman & Casey (2014) addresses many of those issues:

- (1) It uses only public APASS optical, 2MASS infrared, and WISE mid-infrared photometry.
- (2) A infrared-only variant is well suited to the identification of metal-poor stars in highly extincted and reddened fields.
- (3) It works well in crowded fields.
- (4) It identifies many bright candidates