BAYESIAN AGES FROM ASTEROSEISMOLOGY

Aldo Serenelli Institute of Space Sciences (CSIC-IEEC) Bellaterra, Spain

Model \vec{M} characterized by certain information; ie. prior probability $p(\vec{M})$ Set of observations (evidence) \vec{O}

Characterize the posterior probability of \vec{M} , ie. its probability given \vec{O}

$$p(\vec{M}|\vec{O}) = \frac{p(\vec{O}|\vec{M})p(\vec{M})}{p(\vec{O})} \xrightarrow{\text{prior}} p(\vec{M})$$

likelihood
$$p(\vec{O}|\vec{M}) = \mathcal{L}(\vec{M}|\vec{O})$$

marg. likeli.
$$p(\vec{O}) = \int p(\vec{O}|\vec{M})p(\vec{M}) d\vec{M}$$

Any model quantity(ies) PDF then obtained from

$$p(x_i) = \int \delta(x_{\vec{M}} - x_i) \, p(\vec{M} | \vec{O}) \, d\vec{M}$$

Minimalist parameter space appropriate when using individual frequencies $\vec{M} \equiv (\mathcal{M}_{ini}, \tau, Z \text{ or } [Fe/H]) \longrightarrow D_Y = \Delta Y / \Delta Z$

Minimalist parameter space appropriate when using individual frequencies $\vec{M} \equiv (\mathcal{M}_{ini}, \tau, Z \text{ or } [Fe/H]) \longrightarrow (\mathcal{M}_{ini}, \tau, Z, Y)$

Minimalist parameter space appropriate when using individual frequencies $\vec{M} \equiv (\mathcal{M}_{ini}, \tau, Z \text{ or } [Fe/H]) \longrightarrow (\mathcal{M}_{ini}, \tau, Z, Y)$

When using global seismic parameters from scaling relations

$\nu_{\rm max} = \nu_{\rm m}$	$_{ m max,\odot}rac{g/g_{\odot}}{\sqrt{T_{ m eff}/T_{ m eff,O}}}$	$= \Delta \nu = \Delta \nu_{\odot} \sqrt{1 - \frac{1}{2}}$	$\sqrt{\frac{\bar{ ho}}{\bar{ ho}_{\odot}}}$
Pipeline	$\Delta u_{\odot} \; (\mu { m Hz})$	$ u_{ m max,\odot}~(\mu{ m Hz})$	
A2Z	135.20 ± 3.14	3097.9 ± 0.1	
CAN	134.88 ± 0.04	3120.0 ± 5	
COR	133.72 ± 0.02	3104.0 ± 2	
\mathbf{OCT}	135.045 ± 0.013	3139.0 ± 5	
SYD	135.10 ± 0.10	3090.0 ± 30	

 $\longrightarrow \vec{M} \equiv (\mathcal{M}, \tau, Z, Y, \nu_{\max, \odot}, \Delta \nu_{\odot})$ $p(\vec{M}) = \text{IMF} \times \text{SFR} \times \text{AMR} \times \mathcal{F}_1(Y, Z) \times \mathcal{F}_2(\nu_{\max, \odot}) \times \mathcal{F}_3(\Delta \nu_{\odot})$

MASS LOSS

Mass Loss Rates (MLRs) of Modeled Stars

ID No.	MLR	MLR	MLR	MLR	MLR		
	Average	Fit	Reimers ^a	SC	Origlia		
	$(M_{\odot} \text{ yr}^{-1})$						
M13							
L72	2.8e-09	3.8e-09	4.1e-08	2.1e-08	4.0e-08		
L96	4.8e-09	3.6e-09	3.0e-08	1.4e-08	3.6e-08		
L592	2.6e-09	2.8e-09	8.8e-09	3.5e-09	2.2e-08		
L954	3.1e-09	4.6e-09	1.0e-07	7.1e-08	5.8e-08		
L973	1.6e-09	4.8e-09	1.2e-07	9.2e-08	6.2e-08		
M15							
K87	1.4e-09	1.4e-09	8.8e-09	3.9e-09	2.2e-08		
K341	2.2e-09	2.0e-09	5.2e-08	3.2e-08	4.5e-08		
K421	1.9e-09	2.0e-09	5.6e-08	3.5e-08	4.6e-08		
K479	2.3e-09	2.1e-09	6.5e-08	4.3e-08	4.9e-08		
K757	1.8e-09	2.1e-09	5.7e-08	3.5e-08	4.6e-08		
K969	1.4e-09	1.5e-09	1.5e-08	7.1e-09	2.7e-08		
M92							
VII-18	2.0e-09	2.1e-09	9.0e-08	4.8e-08	5.5e-08		
X-49	1.9e-09	2.0e-09	7.8e-08	4.2e-08	5.2e-08		
XII-8	2.0e-09	1.7e-09	2.7e-08	1.0e-08	3.4e-08		
XII-34	1.2e-09	1.4e-09	7.9e-09	2.5e-09	2.1e-08		

"Empirical" MLR differ by > order magnitude

Meszaros et al. 2009

MASS LOSS

KIC2444348 from APOKASC Catalog (Pinsonneault et al 2014)

Period spacing may provide further mass discrimination – to be explored

FULL PDFS

Spectroscopic data from APOKASC Catalog (Pinsonneault et al 2014)

NOT PERFECT BUT A GIANT STEP FORWARD

GOOD SPECTR/PHOT DATA

Spectroscopic data from APOKASC Catalog (Pinsonneault et al 2014) No evolutionary state assumed

Spectroscopic data from APOKASC Catalog (Pinsonneault et al 2014) No evolutionary state assumed

Helium as a Source of Syst. Uncertainty

Helium as a Source of Syst. Uncertainty

Uncertainty in helium does not seem a big problem (... not talking about clusters)

Obvious conclusions

seismology has opened the door for ages of giants

best way for dwarfs as well

much more info in full pdf than just a mean/median/mode & conf. interv.

Not so obvious

how to deal with mass loss for clump/low mass evolved RGBs

how to make use of full age pdf in galactic studies

using period spacing as further discriminant for mass