1)Kinematic Modelling of the Milky Way using RAVE and GCS.

2)Testing of Kepler Asteroseismic results against predictions of a stellar population synthesis based models of the Milky Way

Sanjib Sharma
Joss Bland-Hawthorn
Dennis Stello
Daniel Huber
(University of Sydney, Australia)

Basic model of the Milky Way

Assume galaxy in equilibrium and described by a DF

```
-f_{c}(r,v,t,m,Z)
```

Thin disc, Thick Disc, Stellar Halo, Bar-Bulge.

• $f(r,v,t,m,Z) \propto p(r,t) p(m|t) p(Z|t) p(v|r,t)$ - position-age mass FeH velocity

- The Besancon model (BGM).
 - p(r,t) p(m|t) p(Z|t) the main assumption

The kinematic model: Gaussian distribution function

$$p(\mathbf{v}|\mathbf{r},\tau) = \frac{1}{\sigma_R \sigma_\phi \sigma_z (2\pi)^{3/2}} \exp\left(-\frac{v_R^2}{2\sigma_R^2}\right) \exp\left(-\frac{v_z^2}{2\sigma_z^2}\right) \times \exp\left(-\frac{(v_\phi - \overline{v_\phi})^2}{2\sigma_\phi^2}\right)$$
(1)

Age Velocity dispersion (AVR)

$$\sigma_{R,\phi,z}^{\text{thin}}(R,\tau) = \sigma_{R,\phi,z,\odot}^{\text{thin}} \exp \left[-\frac{R - R_0}{R_{\sigma}^{\text{thin}}} \right]$$

$$\times \left(\frac{\tau + \tau_{\min}}{\tau_{\max} + \tau_{\min}} \right)^{\beta_{R,\phi,z}}$$

$$\sigma_{R,\phi,z}^{\text{thick}}(R) = \sigma_{R,\phi,z,\odot}^{\text{thick}} \exp \left[-\frac{R - R_0}{R_{\sigma}^{\text{thick}}} \right]$$

Asymmetric Drift

$$\overline{v_{\phi}}^{2}(\tau, R) = v_{\text{circ}}^{2}(R) + \sigma_{R}^{2} \times \left(\frac{d \ln \rho}{d \ln R} + \frac{d \ln \sigma_{\phi}^{2}}{d \ln R} + 1 - \frac{\sigma_{\phi}^{2}}{\sigma_{R}^{2}} + 1 - \frac{\sigma_{z}^{2}}{\sigma_{R}^{2}}\right) (2)$$

The kinematic model: The Shu distribution function

$$f(E_R, L, v_z) = \frac{F(L)}{\sigma^2(L)} e^{-E_R/\sigma^2(L)} \frac{e^{-v_z^2/\sigma_z^2}}{\sigma_z \sqrt{2\pi}}$$

- •L is angular momentum,
- •E_R=E-E_c(L) is the energy in excess of that required for circular motion with a given L.
- Naturally handles asymmetric distribution.

•Note vertical and planar motion are decoupled, potential separable

in $\Phi(R,z)=\Phi(R)+\Phi(z)$.

Vertical dependence of kinematics

•
$$V_c(R,z)=[v_0+\alpha_R(R-R_\odot)][1/(1+\alpha_z(z/kpc)^{1.34})]$$

- For circular velocity V_c , models of Milky Way's 3D potential predict $\alpha_z \sim 0.0374$
- Asymmetric drift also has a dependence on z.
 - we expect $\alpha_z > 0.0374$

Kinematic analysis using RAVE and GCS

- GCS: A color magnitude limited sample of stars with (x,v).
 - Very local 120 pc. (about 5000 stars)
- RAVE a spectroscopic survey with accurate, (I,b,v_{los}).
- $p(\theta \mid I,b,V_{los}) \sim p(I,b,V_{los} \mid \theta) p(\theta)$
- No use of proper motion or distances
- No use of J-K, T_{eff}, log g

Questions?

- Is the Gaussian model correct?
- What are the correlations between different parameters?
- Does GCS and RAVE give similar values?
- What are $U_{\odot}, V_{\odot}, W_{\odot}, v_{c}(R_{\odot})$?
- Schonrich et al (2010) (11.1, 12.24, 7.25) km/s, 220+- 30 km/s

Proper motion of Sgr A*

- V_c , V_\odot and R_\odot are difficult to measure but
 - $\Omega_{\odot} = (V_c + V_{\odot})/R_{\odot} \sim$ 30.24 km/s/kpc (Reid & Brunthaler 2004).
 - For R_{\odot} =8.0 kpc, $(V_c + V_\odot) \sim 242 \text{ km/s}$
- Bovy et al (2012,2014) using APOGEE data find,
 - $V_c = 218 (+-6)$ km/s, $V_{\odot} = 26$ (+-3) km/s,

Problems with Gaussian models

- In Gaussian models R_{σ}^{thin} is strongly correlated with V_{\odot} .
- Moreover, for RAVE data R_{σ}^{thin} is negative while for GCS data it is positive.
- The Gaussian model gives inconsistent results when applied to RAVE and GCS data sets, because it is not a good description of the data.

The Gaussian model fails to properly fit the wings of the distribution.

Best fit parameters for the Shu model

Model	RAVE SHU	RAVE SHU	GCS SHU	
U_{\odot}	$11.2^{+0.13}_{-0.13}$	$10.92^{+0.13}_{-0.14}$	$10.16^{+0.39}_{-0.4}$	
V_{\odot}	$9.71^{+0.12}_{-0.11}$	$7.53^{+0.16}_{-0.16}$	$9.81^{+0.28}_{-0.28}$	Ì
W_{\odot}	$7.536^{+0.085}_{-0.086}$	$7.542^{+0.089}_{-0.093}$	$7.13^{+0.18}_{-0.19}$	
$\sigma_R^{ ext{thin}}$	$42.37^{+0.61}_{-0.66}$	$39.78^{+0.81}_{-0.73}$	$39.99^{+0.91}_{-0.91}$	2
$\sigma_z^{ ext{thin}}$	$26.85^{+0.85}_{-0.92}$	$24.7^{+0.66}_{-0.66}$	$23.63^{+0.85}_{-0.8}$	3
{cthick}	$38.84^{+1.2}{-0.96}$	$42.31^{+1}_{-0.9}$	$45.9^{+1.8}_{-1.8}$	
$\sigma_z^{\mathrm{thick}}$	$29.15^{+0.87}_{-0.79}$	$34.66^{+0.61}_{-0.58}$	$32.6^{+2.3}_{-2.2}$	
β_R	$0.236^{+0.011}_{-0.011}$	$0.198^{+0.014}_{-0.014}$	$0.237^{+0.013}_{-0.013}$	a
β_z	$0.398^{+0.03}_{-0.029}$	$0.328^{+0.027}_{-0.024}$	$0.366^{+0.021}_{-0.021}$	
$1/R_{\sigma}^{\mathrm{thin}}$	$0.0673^{+0.0028}_{-0.0028}$	$0.0722^{+0.0035}_{-0.0032}$	0.073	a
$1/R_{\sigma}^{\mathrm{thick}}$	$0.1555^{+0.0046}_{-0.0064}$	$0.1335^{+0.0046}_{-0.0056}$	0.132	
Θ_0	$212.6^{+1.4}_{-1.3}$	$232.8^{+1.7}_{-1.6}$	232	
R_0	8	8	8	Q
α_z	0	$0.048^{+0.0019}_{-0.0018}$	0.0471	m
α_R	0	0	0	ξ:ι.
$\chi^2_{ m red}$ RAVE	1.52	1.43	1.80	fit in
$\chi^2_{ m red}$ RAVE $\chi^2_{ m red}$ GCS	5.15	5.57	3.86	['''

α_z free makesν_c go up.

232.8+7.53=240.3 3 km/s.

GCS and RAVE also match,

 σ_{R} similar for thin and thick

Quantities in magenta were kept fixed during itting. Units are n km/s and kpc

Conclusions

- Deficiency of a Gaussian model is clearly exposed by RAVE data

 (high V_☉ ,negative R_σ^{thin}) upto 5 km/s
- For RAVE, we get Ω_☉=(V_c+V_☉)/R_☉ ~ 30.04 km/s/kpc in good agreement with Sgr A* proper motion of 30.24.
- Neglecting vertical dependence of kinematics can lead to underestimation of V_c by about 20 km/s.
- Using only (I,b,v_{los}) data from RAVE survey we obtain
 good constraints on a number of kinematic parameters of the Milky Way.
- The best fit RAVE model also fits the GCS data well.
- In future, we need a self-consistent dynamical model for more robust analysis.

Comparing Asteroseismic results of Kepler with theoretical models

- Data:
- Red Giants sample of 13,000 stars
- Sub Giant Sample of 400 stars, Chaplin et al (2011)
- Oscillation frequencies v_{max} and Δv
- Model:
 - The GALAXIA code (http://galaxia.sourceforge.net)
 - Besancon style model
 - Padova Isochrones
- Method:
 - Generate model stars
 - Predict KIC stellar parameters from photometry
 - Apply selection function to sample stars from the model

Sub-giant Sample

Photometry

Photometry

Stellar parameters

Asteroseismic Frequencies

Distribution of mass M and radius R of sub-giants

Proxy M and R
We do not know T_{eff} of KIC stars.
Unlike Chaplin et al (2011) no mismatch of p(m)

 $M' = (v_{\text{max}}/v_{\text{max.Sun}})^3/(\Delta v/\Delta v_{\text{Sun}})^4$

 $R'=(v_{max}/v_{max.Sun})/(\Delta v/\Delta v_{Sun})^{2}$

Red-giant Sample

Photometry

Photometry

Stellar parameters

Asteroseismic Frequencies

Distribution of mass M and radius R of Red Giants

In v_{max} 3% systematic and 5% random error needed to match the model.

Δv from theory

Scaling relations are not perfect.

Systematics of upto 4% (RGB).

Discussion

- If there are streaming motions of the order of 10 km/s on scales > 1kpc.
 - How reliable it is to use equilibrium DF approach to predict V_c and V_o
- Given (M,Z,Age) how accurately can we predict v_{max} and Δv from theory.
- More work needed to estimate v_{max} and Δv from theory, before we can use astero-seismology for fitting MW models to data, or measure M , R and age.

Publicly available codes that might be of interest to you

GALAXIA- http://galaxia.sourceforge.net

EBF-http://ebfformat.sourceforge.net Efficient Binary data Format

Publicly available codes that might be of interest to you

GALAXIA- http://galaxia.sourceforge.net

Galaxia is a code for generating a synthetic model of the galaxy. The input model can be analytical or one obtained from N-body simulations. The code outputs a catalog of stars according to user specified color magnitude limits.

EBF-http://ebfformat.sourceforge.net Efficient Binary data Format

"Put fun back into numerical computing, Use EBF"

- A general purpose binary file format publicly available at
- Automatic endian conversion, data type conversion
- Store multiple data items in same file
 - Time to locate an item, almost independent of number of items. Due to use of inbuilt hashtable
- Support for homogeneous multidimensional arrays and structures (also nested structures)
- Not tied to one programming languange.
 - API available in IDL, MATLAB, Python, C, C++, Fortran, Java