On a Weak Correlation between the Spins of Galaxies and Their Host Halos

- Do galaxy sizes care about halo spin at all?

Fangzhou Jiang (Arthur)

Hebrew University of Jerusalem

Avishai Dekel, Omer Kneller, Daniel Ceverino, Joel R. Primack, Andrea Maccio, Aaron Dutton, Rachel Somerville, Shy Genel, Sharon Lapiner, Tomer Nussbaum, Omry Ginzburg

On a Weak Correlation between the Spins of Galaxies and Their Host Halos

- Do galaxy sizes care about halo spin at all?

Fangzhou Jiang (Arthur)

Hebrew University of Jerusalem

work in progress

Avishai Dekel, Omer Kneller, Daniel Ceverino, Joel R. Primack, Andrea Maccio, Aaron Dutton, Rachel Somerville, Shy Genel, Sharon Lapiner, Tomer Nussbaum, Omry Ginzburg

On a Weak Correlation between the Spins of Galaxies and Their Host Halos

- Do galaxy sizes care about halo spin at all?

Fangzhou Jiang (Arthur)

Hebrew University of Jerusalem

work in progress

see also:

- R. Somerville (Mon)
- M. Fall (Tue)
- A. Kravtsov (Tue)

Avishai Dekel, Omer Kneller, Daniel Ceverino, Joel R. Primack, Andrea Maccio, Aaron Dutton, Rachel Somerville, Shy Genel, Sharon Lapiner, Tomer Nussbaum, Omry Ginzburg

- background:
 - long-standing assumption (Fall & Efstathiou80) in SAMs: $j_{
 m gal} \simeq j_{
 m halo}$

- useful in predicting (disk) galaxy sizes Rg

background:

- long-standing assumption (Fall & Efstathiou80) in SAMs: $j_{
m gal} \simeq j_{
m halo}$

$$j_{
m gal} \simeq j_{
m halo}$$

- useful in predicting (disk) galaxy sizes Ra

$$j_{\rm g} \simeq R_{\rm g} V_{
m rot} \Longrightarrow R_{\rm g} \simeq rac{j_{
m g}}{j_{
m h}} rac{j_{
m h}}{R_{
m vir} V_{
m vir}} rac{V_{
m vir}}{V_{
m rot}} R_{
m vir} \simeq \lambda_{
m h} R_{
m vir}$$

background:

- long-standing assumption (Fall & Efstathiou80) in SAMs: $J_{\rm gal} \simeq J_{\rm halo}$

- useful in predicting (disk) galaxy sizes Ra

$$j_{
m g} \simeq R_{
m g} V_{
m rot} \Longrightarrow \boxed{R_{
m g}} \simeq rac{j_{
m g}}{j_{
m h}} rac{j_{
m h}}{R_{
m vir} V_{
m vir}} rac{V_{
m vir}}{V_{
m rot}} R_{
m vir} \simeq 1$$

background:

– long-standing assumption (Fall & Efstathiou80) in SAMs: $j_{
m gal} \simeq j_{
m halo}$

- useful in predicting (disk) galaxy sizes Rg

$$j_{\rm g} \simeq R_{\rm g} V_{
m rot} \Longrightarrow \boxed{R_{\rm g}} \simeq rac{j_{
m g}}{j_{
m h}} rac{j_{
m h}}{R_{
m vir} V_{
m vir}} rac{V_{
m vir}}{V_{
m rot}} R_{
m vir} \simeq \boxed{\lambda_{
m h} R_{
m vir}}$$

- evidence: (1) λ_g and λ_h ($\lambda_x \equiv j_x/\sqrt{2}R_{\rm vir}V_{\rm vir}$ (Bullock+01)) follow similar log-normal distributions w. $\langle\lambda\rangle\approx0.035$; (2) P(0.5 λ_h R_{vir}|M_{star}) agrees with observed R_e distribution (R. Somerville's talk)

- background:
 - long-standing assumption (Fall & Efstathiou80) in SAMs: $j_{
 m gal} \simeq j_{
 m halo}$
 - useful in predicting (disk) galaxy sizes Rg

$$j_{
m g} \simeq R_{
m g} V_{
m rot} \Longrightarrow \boxed{R_{
m g}} \simeq rac{j_{
m g}}{j_{
m h}} rac{j_{
m h}}{R_{
m vir} V_{
m vir}} rac{V_{
m vir}}{V_{
m rot}} R_{
m vir} \simeq \boxed{\lambda_{
m h} R_{
m vir}} V_{
m rot} \simeq V_{
m circ} \simeq V_{
m vir}$$

- evidence: (1) $\lambda_{\rm g}$ and $\lambda_{\rm h}$ ($\lambda_{\rm x} \equiv j_{\rm x}/\sqrt{2}R_{\rm vir}V_{\rm vir}$ (Bullock+01)) follow similar log-normal distributions w. $<\!\lambda>\!\approx\!0.035$; (2) P(0.5 $\lambda_{\rm h}R_{\rm vir}|M_{\rm star}$) agrees with observed R_e distribution (R. Somerville's talk)
- \bullet test $\lambda_{\rm g} \stackrel{?}{\simeq} \lambda_{\rm h}$ using zoom-in hydro simulations
 - VELA: 34 gals, z≥1 (bracketing Milky Way if run to z=0), ART,
 m_{cell}≈8.3x10⁴M_{sun}(dm), 10³M_{sun}(gas), E_{cell}≈17-35pc
 - NIHAO: 13 Milky-Way-size gals, run to z=0, GASOLINE, m_p≈1.7×10⁶M_{sun} (dm), 3.2×10⁵M_{sun} (gas), E≈400pc, much higher density threshold for SF and much stronger fdbk
 - (tentative) <u>Illustris(-TNG)</u> simulation

λ distributions

see also Teklu+15

see also Teklu+15

regression line: $\log \lambda_{\rm g} = a + (1+b) \log \lambda_{\rm h}$

At $z\geq 1$, no correlation between $\frac{\lambda_0}{\lambda_0}$ and $\frac{\lambda_h}{\lambda_h}$ (b\approx-1)

M_{vir} ≈ 10^{11.4}M_{sun}: characteristic mass at which galaxies "compactify" to form "blue nuggets" (BN)

regression line:

 $\log \lambda_{\rm g} = a + (1+b)\log \lambda_{\rm h}$

No correlation between λ_{gal} and λ_{halo} at $z \ge 1$ in different M_{vir} , z bins

M_{vir} ≈ 10^{11.4}M_{sun}: characteristic mass at which galaxies "compactify" to form "blue nuggets" (BN)

regression line:

$$\log \lambda_{\rm g} = a + (1+b)\log \lambda_{\rm h}$$

- No correlation between λ_{gal} and λ_{halo} at z≥1 in different M_{vir}, z bins
- λgal is higher for higher-Mvir (post-compaction) systems

λgal - λhalo correlation

regression line: $\log \lambda_{\rm g} = a + (1+b)\log \lambda_{\rm h}$ the same, lack of correlation at z≥1

regression line: $\log \lambda_{\rm g} = a + (1+b) \log \lambda_{\rm h}$

- the same, lack of correlation at z≥1
- a correlation develops towards lower z (-1<b<0)</p>

- change of baryon's spin wrt that at infall
- $\lambda_{
 m g} = \lambda_{
 m h} rac{\lambda_{
 m g}}{\lambda_{
 m h}}$ may depend systematically on $\lambda_{
 m h}$
 - suppose $\langle rac{\lambda_{
 m g}}{\lambda_{
 m h}}
 angle \propto \lambda_{
 m h}^b$

- change ofbaryon's spin wrtthat at infall
- $\lambda_{\rm g} = \lambda_{\rm h} \frac{\lambda_{\rm g}}{\lambda_{\rm h}}$ may depend systematically on $\lambda_{\rm h}$
 - suppose $\langle rac{\lambda_{
 m g}}{\lambda_{
 m h}}
 angle \propto \lambda_{
 m h}^b$

$$\log \lambda_{\mathrm{g}} = a + (1+b)\log \lambda_{\mathrm{h}}$$
 $b \approx -1$ at high-z
 $-1 < b < 0$ at low-z

To explain the non-correlation requires mechanisms for initially high- λ_h systems to lose sAM in baryons and low- λ_h system to gain sAM in baryons, i.e., anti-correlation between λ_g/λ_h and λ_h

- @ galaxy compaction (Dekel & Burkert 14)
 - a system starts with low λ_h and thus low λ_{gas}
 - low λ_{gas} -> high \sum_{1kpc} (compaction)
 - "Blue Nugget" (BN) forms -> high central SFR, gas depletion
 - freshly accreted gas with high λ_{gas} forms a ring

- @ galaxy compaction (Dekel & Burkert 14)
 - a system starts with low λ_h and thus low λ_{gas}
 - low λ_{gas} -> high \sum_{1kpc} (compaction)
 - "Blue Nugget" (BN) forms -> high central SFR, gas depletion
 - freshly accreted gas with high λgas forms a ring

compaction happens at a characteristic mass scale Mstar *10^{9.5-10}Msun Mvir *10^{11.4}Msun (caveat: depend on SF, fdbk etc)

Dekel+17 in prep

Fangzhou Jiang, May 17 KITP

mergers

- halo mergers cause λ_h to rise (orbital AM dominating λ_h), while λ_g is untouched yet
- halo re-virializes -> λ_h drops, while λ_g temporarily rises due to the subsequent galaxy merger

mergers

- halo mergers cause λ_h to rise (orbital AM dominating λ_h), while λ_g is untouched yet
- halo re-virializes -> λ_h drops, while λ_g temporarily rises due to the subsequent galaxy merger

(see also C. Lee's poster)

mergers

- halo mergers cause λ_h to rise (orbital AM dominating λ_h), while λ_g is untouched yet
- halo re-virializes -> λ_h drops, while λ_g temporarily rises due to the subsequent galaxy merger

(see also C. Lee's poster)

mergers

- halo mergers cause λ_h to rise (orbital AM dominating λ_h), while λ_g is untouched yet
- halo re-virializes -> λ_h drops, while λ_g temporarily rises due to the subsequent galaxy merger

(see also C. Lee's poster)

remove post-halomerger snapshots

- removing post-halo-merger steps only gives a weak correlation,
- mergers alone cannot explain the non-correlation between λ_g and λ_h

Danovich+15

time domain effect: λ_g more dominated by recently accreted gas;
 λ_h is integrated over accretion history — so variations in incoming streams from cosmic web affect gas more than the halo

Danovich+15

time domain effect: λ_g more dominated by recently accreted gas;
 λ_h is integrated over accretion history — so variations in incoming streams from cosmic web affect gas more than the halo

Danovich+15

- <u>violent disk instability</u>: low spin (stellar/gas clumps) migrate in, higher sAM material remains at outskirts

time domain effect: λ_g more dominated by recently accreted gas;
 λ_h is integrated over accretion history — so variations in incoming streams from cosmic web affect gas more than the halo

Danovich+15

- <u>violent disk instability</u>: low spin (stellar/gas clumps) migrate in, higher sAM material remains at outskirts
- <u>feedback</u>: may preferentially remove low-spin or highspin gas, part of which come back with higher/lower spin

time domain effect: λ_g more dominated by recently accreted gas;
 λ_h is integrated over accretion history — so variations in incoming streams from cosmic web affect gas more than the halo

Danovich+15

- <u>violent disk instability</u>: low spin (stellar/gas clumps) migrate in, higher sAM material remains at outskirts
- feedback: may preferentially remove low-spin or highspin gas, part of which come back with higher/lower spin

The settlement of λ_g is a very complicated process, no wonder not correlated with λ_h

λ_{gal} and $\lambda_{inner\ halo}$ still have a correlation

- fairly strong correlation between λ_g and $\lambda_{dm}(\langle r \rangle)$ out to $r=0.2R_{vir}$, but not at very high-z
- consistent with EAGLE (Zavala+16, see also J.Schaye's talk): tight correlation between the <u>loss of sAM</u> of the inner (0.1Rvir) DM and that of the baryons, by following Lagrangian volumes

Alignment

- strong correlation of orientation: $\langle \cos\theta \rangle = 0.72$ (gas-DM), 0.61 (stars-DM)
- the mechanisms smearing out the λ_g λ_h magnitude correlation should not randomize the alignment too much
- alignment weakens slightly towards lower-z, also seen in Illustris (Zjupa & Springel 2017)

$$j_{\mathrm{g}} \simeq R_{\mathrm{g}} V_{\mathrm{rot}} = R_{\mathrm{g}} \simeq \frac{j_{\mathrm{g}}}{j_{\mathrm{h}}} \frac{j_{\mathrm{h}}}{R_{\mathrm{vir}} V_{\mathrm{vir}}} \frac{V_{\mathrm{vir}}}{V_{\mathrm{rot}}} R_{\mathrm{vir}} \simeq \lambda_{\mathrm{h}} R_{\mathrm{vir}}$$

VELA and NIHAO gives different answer

$$j_{\mathrm{g}} \simeq R_{\mathrm{g}} V_{\mathrm{rot}} = R_{\mathrm{g}} \simeq \frac{j_{\mathrm{g}}}{j_{\mathrm{h}}} \frac{j_{\mathrm{h}}}{R_{\mathrm{vir}} V_{\mathrm{vir}}} \frac{V_{\mathrm{vir}}}{V_{\mathrm{rot}}} R_{\mathrm{vir}} \simeq \lambda_{\mathrm{h}} R_{\mathrm{vir}}$$

VELA and NIHAO gives different answer

$$j_{
m g} \simeq R_{
m g} V_{
m rot}$$
 == $R_{
m g} \simeq rac{j_{
m g}}{j_{
m h}} rac{j_{
m h}}{R_{
m vir} V_{
m vir}} rac{V_{
m vir}}{V_{
m rot}} R_{
m vir} \simeq \lambda_{
m h} R_{
m vir}$ random $V_{
m rot}^2 = V_{
m circ}^2 - lpha \sigma^2$ Fangzhou Jiang, May 17 KITP

VELA and NIHAO gives different answer

$$j_{
m g} \simeq R_{
m g} V_{
m rot} = R_{
m g} \simeq rac{j_{
m g}}{j_{
m h}} rac{j_{
m h}}{R_{
m vir} V_{
m vir}} rac{V_{
m vir}}{V_{
m rot}} R_{
m vir} \sim \lambda_{
m h} R_{
m vir}$$
 random $V_{
m rot}^2 = V_{
m circ}^2 - lpha \sigma^2$

Fangzhou Jiang, May 17 KITP

Summary

- with baryonic physics, λ_{halo} similar to DMO; baryonic spin (λ_{gas} , λ_{star}) also log-normal, higher in more massive (post-compaction) halos
- ono correlation between λ_{gal} and λ_{halo} at z>1; weak correlation at lower z; λ_{gal} and $\lambda_{dm(<0.2Rv)}$ still correlated; $\lambda_{gal}-\lambda_{halo}$ alignment always good

- mechanisms that smear out the correlation at infall need to
 - cause an anti-correlation between λ_g/λ_h and λ_h
 - be less effective at low-z
 - not randomize the orientation

Advertisement: SatGen — a poor(wise) man's satellite galaxy population factory

EPS merger trees

+

orbit integration

+

(sub)halo response

SHAM+

Jiang & van den Bosch 15,16 similar model: Zentner+05

Vcirc

Vcirc

$$\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} = -\frac{\partial\Phi_{\mathrm{halo}+\mathrm{disk}}(r)}{\partial r}\frac{\mathbf{r}}{r} + \mathbf{F}_{\mathrm{df}}$$

motivation: see S. Garrison-Kimmel's talk

