The Galaxy-Halo Connection for the BOSS CMASS Sample

Shun Saito

Max-Planck-Institut für Astrophysik, Garching, Germany

Leauthaud, **SS**+, MNRAS (2017). **SS**, Leauthaud, Hearin+, MNRAS (2016). Leauthaud, Bundy, **SS**+, MNRAS (2016). Bundy, Leauthaud, **SS**+, ApJS (2015).

Quantifying and Understanding the Galaxy-Halo Connection @KITP, UC Santa Barbara, USA 18th May 2017

The BOSS CMASS sample

The Baryon Oscillation Spectroscopic Survey (2009-2014)

Eisenstein+(2011)

Rich Statistics from BOSS & Cosmology

- **LARGE**-scale galaxy clustering
- BAO : ~ 1% distance
- RSD : ~ 7% growth of LSS

Alam+(2017)

- How was the analysis validated?
- → extensively tested against mocks

which assumes a gal-halo connection

• Are Massive Galaxies simple enough?

 Do we even understand the galaxy-halo connection for massive galaxies *at the statistical level of BOSS*?
→ highly relevant to both cosmology & galaxy evolution

Stellar Mass, M* is probably the most relevant quantity
→ let's look at M* & its completeness for CMASS

CMASS-Halo Studies

Paper	Model	Statistics	sample/ completeness	comments
White+(2011)	HOD	Wp	full/ down-sampling	
Guo+(2014)	HOD	Wp	red subsample	
Reid+(2014)	HOD	W _p + ξι	full/ down-sampling	
Guo+(2015)	HOD	W _p + ξι	red subsample	Zheng's talk
More+(2015)	HOD	W_p + ΔΣ	M*-limited subsample	cosmology
Rodriguez- Torres+(2016)	SHAM	ξι	full/ SDSS SMF	BigMDPL
SS+(2016)	SHAM	W _p , ξι	full/ <i>S82 SMF</i>	MDR1
Leauthaud+(2017)	-	ΔΣ	full	comparison

*incomplete list

Stripe 82 Massive Galaxy Catalog (S82MGC)

- SDSS photometry is shallow!

Bundy, Leauthaud, **SS**+ (2015)

- SDSS *Co-Adds* photometry (~2mag deeper) over 139.4 deg²
- Combined w/ UKIDSS NIR bands → more robust M^{*} estimates

→ 0.1-0.2dex offset in a redshift-dependent way

www.massivegalaxies.com

CMASS Selection Function

low/high z dominated by **color**/luminosity selection.

Shun Saito (MPA)

S82MGC SMF

◆ S82-MGC: best constrain high-mass end, $\log(M_*/M_{\odot}) \gtrsim 11.5$ complete at $\log(M_*/M_{\odot}) \gtrsim 11.3$

◆ CMASS ≠ Constant Mass!! redshift-dependent M* completeness

S82MGC SMF

◆ S82-MGC: best constrain high-mass end, $\log(M_*/M_{\odot}) \gtrsim 11.5$ complete at $\log(M_*/M_{\odot}) \gtrsim 11.3$

◆ CMASS ≠ Constant Mass!! redshift-dependent M* completeness

S82MGC SMF

♦ S82-MGC: best constrain high-mass end, $\log(M_*/M_{\odot}) \gtrsim 11.5$

complete at $\log(M_*/M_{\odot}) \gtrsim 11.3$

◆ CMASS ≠ Constant Mass!! redshift-dependent M* completeness

1 (Gpc/h)³ Multidark *N*-body (MDR1)

1 (Gpc/h)³ Multidark N-body (MDR1)

Determine Mass Function and abundance match (V_{peak}) <u>Step I:</u>

halo

gal

1 (Gpc/h)³ Multidark N-body (MDR1)

Determine Mass Function and abundance match (V_{peak}) <u>Step I:</u>

halo

gal

1 (Gpc/h)³ Multidark N-body (MDR1)

Determine Mass Function and abundance match (V_{peak}) <u>Step I:</u>

halo

gal

Step 2: Redshift dependence of stellar-mass completeness

Results

SS, Leauthaud, Hearin+ (2016)

♦ surprisingly **SMALL** scatter: $\sigma(\log M * | V_{\text{peak}}) = 0.105^{+0.024}_{-0.032}$

Redshift Evolution of HOD

 \blacklozenge excellent agreement with the HOD model at z ~ 0.55

at high redshift, z > 0.6, very distinct HODs random down-sample HOD model vs luminosity cut 12 SS, Leauthaud, Hearin+ (2016) 11 5 Shun Saito (MPA)

But...Failure of 3D Clustering Evolution

SS, Leauthaud, Hearin+(2016)

✦ The measurements show NO redshift evolution within

♦ Our SHAM model predicts a strong evolution:

x3.5 increase in mean M_{halo} <-- x1.8 increase in mean M*

Failure of galaxy-galaxy lensing

♦ CMASS galaxy-galaxy lensing over 250 deg² Leauthaud, SS+ (2017)

♦ NONE of the CMASS mocks explain our lensing signal.

Shun Saito (MPA)

7-[0 51 0 50]

Possible Reasons

✦ Galaxy-Halo connection?

See more details in Leauthaud, SS+ (2017)

- assembly bias & color selection
- baryonic effect: AGN feedback
- mass-dependent scatter
- Cosmology?
 - Ω_m , σ_8
 - neutrino mass
 - modified gravity
- ♦ Observational systematics?
 - Song's HSC results on missing light at outer radii

Possible Reasons: assembly bias?

necessary condition for assembly bias

- need to make $\Delta \Sigma_{1hc}$ lower by ~25% (c.f. 35% lower M_{halo})

tricky to perform age-matching at high-mass end

SS, Leauthaud, Hearin+(2016)

Possible Reasons: *Baryonic Effect?*

← sample with $n_g=4x10^{-4}$ [(h/Mpc)³] in *Illustris (not TNG)*

- the impact of baryonic effect is important with a caveat of the aggressive AGN feedback in Illustris

 Do we even understand the galaxy-halo connection for massive galaxies *at the statistical level of BOSS*?
→ highly relevant to both cosmology & galaxy evolution

Stellar Mass, M* is probably the most relevant quantity
→ let's look at M* & its completeness for CMASS

- Do we even understand the galaxy-halo connection for massive galaxies at the statistical level of BOSS?
 - → highly relevant to both cosmology & galaxy evolution

Not yet!

• Stellar Mass, M* is probably the most relevant quantity \rightarrow let's look at M* & its completeness for CMASS

 Do we even understand the galaxy-halo connection for massive galaxies *at the statistical level of BOSS*?
→ highly relevant to both cosmology & galaxy evolution

Not yet!

• Stellar Mass, M* is probably the most relevant quantity

→ let's look at *M** & *its completeness* for CMASS

CMASS is NOT M*-complete!

Summary & Discussion

- ✦ We revisit the M* completeness for the BOSS CMASS sample
 - CMASS is NOT M*-complete NOR Constant MASS!
 - a simple SHAM model
 - explains 'entire' SMF & wp
 - fails to reproduce evolution of ξ_l and $\Delta\Sigma$

- BOSS offer challenges for a simple galaxy-halo modeling unlike e.g., SDSS Main sample.
 - very precise statistics
 - selection effect: can be f(M*, SFR/color,)

Future Prospects

✦ Selection effect is a huge issue for spectroscopic galaxy surveys!

- Emission Line Galaxies selected by color cut
- example in Subaru Prime Focus Spectrograph (PFS, 2020-2025)

