Shocking Astrophysics in Galaxy Clusters

Christoph Pfrommer¹

in collaboration with

Nick Battaglia, Dick Bond, Torsten Enßlin, Tom Jones, Francesco Miniati, Anders Pinzke, John Sievers, Volker Springel, Kandaswamy Subramanian

> ¹Heidelberg Institute for Theoretical Studies, Germany Kavli Institute for Theoretical Physics, Santa Barbara

Mar 14, 2010 / KITP Conference

< 🗇 >

> < ≣

Outline

Non-thermal emission

- Introduction
- Physical processes
- Radio halos and relics
- 2 Cosmic ray transport
 - Observations and models
 - CR pumping, streaming, and diffusion
 - Radio and gamma-ray bimodality

Probes of accretion shocks

- A puzzling radio galaxy
- Radio galaxy-bubble system
- Radio gischt emission

Introduction Physical processes Radio halos and relics

Outline

Non-thermal emission

- Introduction
- Physical processes
- Radio halos and relics
- 2 Cosmic ray transport
 - Observations and models
 - CR pumping, streaming, and diffusion
 - Radio and gamma-ray bimodality
- 3 Probes of accretion shocks
 - A puzzling radio galaxy
 - Radio galaxy-bubble system
 - Radio gischt emission

< 🗇

Introduction Physical processes Radio halos and relics

Shocks in galaxy clusters

1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

- 신문 () 신문

< 🗇 🕨

Christoph Pfrommer

Shocking Astrophysics

Introduction Physical processes Radio halos and relics

Giant radio halo in the Coma cluster

thermal X-ray emission

(Snowden/MPE/ROSAT)

radio synchrotron emission

<ロ> (日) (日) (日) (日) (日)

(Deiss/Effelsberg)

Introduction Physical processes Radio halos and relics

What can we learn from non-thermal emission?

• plasma astrophysics:

- shock and particle acceleration
- large-scale magnetic fields
- turbulence
- dynamical state → cosmology?
 - non-thermal pressure support: hydrostatics + SZE
 - history of individual clusters: cluster archeology
 - illuminating the process of structure formation
- consistent picture of non-thermal processes: radio, soft/hard X-rays, γ-rays

Introduction Physical processes Radio halos and relics

Hadronic cosmic ray proton interaction

Christoph Pfrommer

Shocking Astrophysics

Introduction Physical processes Radio halos and relics

Hadronic cosmic ray proton interaction

Introduction Physical processes Radio halos and relics

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Introduction Physical processes Radio halos and relics

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

イロト イポト イヨト イヨト

Introduction Physical processes Radio halos and relics

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Introduction Physical processes Radio halos and relics

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Introduction Physical processes Radio halos and relics

Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

< 回 > < 三 > < 三

Christoph Pfrommer

Shocking Astrophysics

Introduction Physical processes Radio halos and relics

Observation – simulation of A2256

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Christoph Pfrommer

Shocking Astrophysics

ヘロト ヘアト ヘビト ヘビ

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

< 🗇

Outline

- Non-thermal emission
 - Introduction
 - Physical processes
 - Radio halos and relics
- Cosmic ray transport
 - Observations and models
 - CR pumping, streaming, and diffusion
 - Radio and gamma-ray bimodality
- 3 Probes of accretion shocks
 - A puzzling radio galaxy
 - Radio galaxy-bubble system
 - Radio gischt emission

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio halo theory – (i) hadronic model

$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm}$$

> < ≣

strength:

- all required ingredients available: shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and morphologies as observed without tuning
- power-law spectra as observed

weakness:

- all clusters should have radio halos
- does not explain all reported spectral features

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio halo theory – (i) hadronic model

$$p_{\rm CR} + p
ightarrow \pi^{\pm}
ightarrow e^{\pm}$$

프 🖌 🖌 프

strength:

- all required ingredients available: shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and morphologies as observed without tuning
- power-law spectra as observed

weakness:

- all clusters should have radio halos
- does not explain all reported spectral features

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - central entropy

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - central entropy

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - central entropy

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - central entropy

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Proton cooling times

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Proton cooling times

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

프 🖌 🖌 프

Radio halo theory – (ii) re-acceleration model

strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...
- reported complex radio spectra emerge naturally
- clusters without halos ← less turbulent

weakness:

- Fermi II acceleration is inefficient CRe cool rapidly
- observed power-law spectra require fine tuning

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

프 🖌 🖌 프

Radio halo theory – (ii) re-acceleration model

strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...
- reported complex radio spectra emerge naturally
- clusters without halos ← less turbulent

weakness:

- Fermi II acceleration is inefficient CRe cool rapidly
- observed power-law spectra require fine tuning

• . . .

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Electron cooling times

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Electron cooling times

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Electron cooling times

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Cosmic ray transport – magnetic flux tube with CRs

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Cosmic ray advection

Christoph Pfrommer

Shocking Astrophysics

90

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Adiabatic expansion and compression

Christoph Pfrommer

Shocking Astrophysics

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Cosmic ray streaming

Shocking Astrophysics

90

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Expanded CRs

HITS E Dac

Christoph Pfrommer

Shocking Astrophysics
Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Turbulent pumping

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Turbulent pumping

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

ヘロン 人間 とくほとく ほとう

Turbulent-to-streaming ratio

$$\gamma_{\rm tu} = \frac{\upsilon_{\rm tu}}{\upsilon_{\rm st}}$$

Christoph Pfrommer Shocking Astrophysics

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Are CRs confined to magnetic flux tubes?

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Escape via diffusion: energy dependence

HITS

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

> < ≣

CR transport theory

CR continuity equation in the absence of sources and sinks:

$$\begin{aligned} \frac{\partial \varrho}{\partial t} + \vec{\nabla} \cdot (\upsilon \ \varrho) &= \mathbf{0} \qquad \qquad \upsilon = \upsilon_{\mathrm{ad}} + \upsilon_{\mathrm{di}} + \upsilon_{\mathrm{st}} \\ \upsilon_{\mathrm{st}} &= -\upsilon_{\mathrm{st}} \frac{\vec{\nabla} \varrho}{|\vec{\nabla} \ \varrho|} \\ \upsilon_{\mathrm{di}} &= -\kappa_{\mathrm{di}} \frac{1}{\varrho} \vec{\nabla} \varrho \\ \upsilon_{\mathrm{ad}} &= -\kappa_{\mathrm{tu}} \frac{\eta}{\varrho} \vec{\nabla} \frac{\varphi}{\eta} \qquad \qquad \qquad \kappa_{\mathrm{tu}} = \frac{\mathcal{L}_{\mathrm{tu}} \upsilon_{\mathrm{tu}}}{\mathbf{3}} \end{aligned}$$

Enßlin, C.P., Miniati, Subramanian, 2011, A&A, 527, 99

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

ヘロア 人間 アメヨア 人口 ア

CR profile due to advection

Christoph Pfrommer Shocking Astrophysics

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

CR density profile

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

CR density at fixed particle energy

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Gamma-ray emission profile

$$p_{CR} + p \rightarrow \pi^0 \rightarrow 2\gamma$$

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Gamma-ray luminosity

$$p_{\rm CR} + p \rightarrow \pi^0 \rightarrow 2\gamma$$

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

γ -ray limits and hadronic predictions (Ackermann et al. 2010)

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio emission profile

$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm} \rightarrow radio$$

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity

$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm} \rightarrow radio$$

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

A B > A B >

Conclusions on cosmic ray transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of v^{macro}_{st} → CR & radio spectral variations
 → outstreaming CR: dying halo ← decaying turbulence
- \rightarrow bimodality of cluster radio halos & gamma-ray emission!

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusions on cosmic ray transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of v_{st}^{macro} → CR & radio spectral variations
 → outstreaming CR: dying halo ← decaying turbulence
- ightarrow bimodality of cluster radio halos & gamma-ray emission!

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

< 🗇 >

Conclusions on cosmic ray transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of v^{macro}_{st} → CR & radio spectral variations
 → outstreaming CR: dying halo ← decaying turbulence
- \rightarrow bimodality of cluster radio halos & gamma-ray emission!

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Outline

- Non-thermal emission
 - Introduction
 - Physical processes
 - Radio halos and relics
- 2 Cosmic ray transport
 - Observations and models
 - CR pumping, streaming, and diffusion
 - Radio and gamma-ray bimodality

Probes of accretion shocks

- A puzzling radio galaxy
- Radio galaxy-bubble system
- Radio gischt emission

< 🗇

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Wish list for shocks

What we would like to measure and hope to infer:

- jump conditions: shock strength
- upstream properties: infalling WHIM
- post- and pre-shock conditions: geometry, obliquity
- shock curvature: vorticity and *B* field generation
- post-shock turbulence: power spectrum, non-thermal pressure support
- . . .

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Total synchrotron intensity of NGC 1265

O'Dea & Owen (1986): 4.9 GHz (left) and 1.4 GHz (right)

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Bipolar AGN jets in an ICM wind: magnetic field

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Bipolar AGN jets in an ICM wind: synthetic radio

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Radio properties of NGC 1265

Sijbring & de Bruyn (1998), *left:* radio intensity $I_{600 \text{ MHz}}$; *right:* variations of $I_{600 \text{ MHz}}$ (*triangles*), $I_{150 \text{ MHz}}$ (*squares*) and spectral index (*bottom*) along the tail

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Requirements for any model of NGC 1265

- bright narrow angle tail radio jet: synchrotron cooling
- transition region: change of winding direction and sharp drop in S_ν and α
- coherent properties along the dim radio ring, confined morphology
- \rightarrow we are looking at 2 electron populations in projection possibly suggesting 2 different epochs of feedback:

 \rightarrow active jet + detached radio bubble that recently got energized coherently across 300 kpc \rightarrow shock?

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Shock overruns an aged radio bubble (C.P. & Jones 2011)

Christoph Pfrommer

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Bubble transformation to vortex ring

Enßlin & Brüggen (2002): gas density (top) and magnetic energy density (bottom)

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Synthetic radio emission of shock-transformed bubble

Enßlin & Brüggen (2002): total 100 MHz intensity and polarization E-vectors, strong shock/weak *B (left)* and strong shock/strong *B* model (*right*)

Christoph Pfrommer Shocking Astrophysics

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Cartoon of the time evolution of NGC 1265

C.P. & Jones (2011):

> < ≣

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

NGC 1265 as a perfect probe of a shock

• idea:

- galaxy velocity not affected by shock
 → pre-shock conditions
- tail & torus as tracers of the post-shock flow
- assumptions:
 - shock surface || gravitational equipotential surface of Perseus
 - recent jet launched shortly after shock crossing

method:

- extrapolating position and velocity back in time
- employing conservation laws at oblique shock
- iterate until convergence

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Derived geometry for NGC 1265

Christoph Pfrommer Shocking Astrophysics

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Shock strength and jump conditions

- shock compresses relativistic bubble adiabatically: $P_2/P_1 = C^{4/3}$
- bubble compression factor:

$$C = \frac{V_{\text{bubble}}}{V_{\text{torus}}} = \frac{\frac{4}{3}\pi R^3}{2\pi^2 R r_{\text{min}}^2} = \frac{2}{3\pi} \left(\frac{R}{r_{\text{min}}}\right)^2 \simeq 10$$

● assuming pressure equilibrium → shock jumps:

$$rac{P_2}{P_1} \simeq 21.5, \quad rac{
ho_2}{
ho_1} \simeq 3.4, \quad rac{T_2}{T_1} \simeq 6.3, \quad ext{and} \ \mathcal{M} \simeq 4.2$$

C.P. & Jones (2011)

< 🗇 🕨

- ∃ → - < = →

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Perseus accretion shock and WHIM properties

- jet has low Faraday RM → NGC 1265 on near side of Perseus NGC 1265 redshifted w/r to Perseus → infalling system
 → shock likely the accretion shock
- extrapolating X-ray *n* and *T*-profiles to R_{200} & shock jumps: \rightarrow upper limits on infalling warm-hot intergalactic medium

$$kT_1 \lesssim 0.4 \text{ keV}$$

 $n_1 \lesssim 5 \times 10^{-5} \text{ cm}^{-3}$
 $P_1 \lesssim 3.6 \times 10^{-14} \text{ erg cm}^{-3}$

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Shear flows and shock curvature

- ellipticity of radio torus (magnitude and orientation) & bending direction of tail
 - \rightarrow excludes projection effects
 - \rightarrow evidence for post-shock shear flow
- shock curvature injects vorticity that shears the gas westwards:

$$rac{arepsilon_{
m shear}}{arepsilon_{
m th,2}} = rac{\mu m_{
m p} v_{\perp}^2}{3kT_2} \simeq 0.14,$$

with $kT_2 \simeq 2.4 \,\text{keV}$ and $v_\perp \simeq 400 \,\text{km/s}$.

42° 0 41°30 3^h16^m0^{*} R.A. (1950)

Sijbring & de Bruyn (1998)

C.P. & Jones (2011)

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Radio gischt illuminates cluster shocks

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Diffuse cluster radio emission – an inverse problem Exploring the magnetized cosmic web

Battaglia, C.P., Sievers, Bond, Enßlin (2009):

Combining the low-frequency radio observables of relics, we can probe

- strength and coherence scale of cluster magnetic fields
- diffusive shock acceleration of electrons
- existence and properties of the WHIM
- dynamical state of the cluster

A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Population of faint radio relics in merging clusters Probing the large scale magnetic fields

Finding radio relics with an FOF-finder that links radio emission instead of $\text{DM} \rightarrow \text{relic luminosity function:}$

Christoph Pfrommer
Non-thermal emission Cosmic ray transport Probes of accretion shocks A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Relic luminosity function – theory

Relic luminosity function \rightarrow magnetic field behaviour and dynamical state:

Cosmic ray transport Probes of accretion shocks Radio galaxy-bubble system Radio gischt emission

Rotation measure (RM)

RM maps and power spectra have the potential to infer the magnetic pressure support and discriminate the nature of MHD turbulence in clusters:

Left: RM map of the largest relic, right: Magnetic and RM power spectrum comparing Kolmogorow and Burgers turbulence models.

ъ

< 🗇 ▶

Christoph Pfrommer

Shocking Astrophysics

Non-thermal emission Cosmic ray transport Probes of accretion shocks A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Conclusions on probes of accretion shocks

radio galaxies are perfect probes of pre- and post-shock flows:

- hydrodynamic jumps and Mach numbers
- statistical properties of the infalling WHIM (+ X-rays)
- estimating the curvature radius of shocks and induced shear flows

• radio gischt emission in cluster outskirts probes

- strength and coherence scale of magnetic fields
- diffusive shock acceleration of electrons
- nature of magnetic and hydrodynamic turbulence
- dynamical cluster state

< 17 ▶

Non-thermal emission Cosmic ray transport Probes of accretion shocks A puzzling radio galaxy Radio galaxy-bubble system Radio gischt emission

Literature for the talk

- Pfrommer & Jones, 2011, ApJ, 730, 22, Radio Galaxy NGC 1265 unveils the Accretion Shock onto the Perseus Galaxy Cluster
- Enßlin, Pfrommer, Miniati, Subramanian, 2011, A&A, 527, 99, Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating
- Pinzke & Pfrommer, 2010, MNRAS, 409, 449, Simulating the gamma-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution
- Battaglia, Pfrommer, Sievers, Bond, Enßlin, 2009, MNRAS, 393, 1073, Exploring the magnetized cosmic web through low frequency radio emission
- Pfrommer, 2008, MNRAS, 385, 1242, Simulating cosmic rays in clusters of galaxies – III. Non-thermal scaling relations and comparison to observations
- Pfrommer, Enßlin, Springel, 2008, MNRAS, 385, 1211, Simulating cosmic rays in clusters of galaxies – II. A unified scheme for radio halos and relics with predictions of the γ-ray emission

< 🗇 ▶