KITP Lunch Talk, Apr 21, 2011

Nature of Overstabilities in Dilute Plasmas

Tamara Bogdanović University of Maryland

Special thanks to KITP!

and collaborators Chris Reynolds and Steven Balbus

Role of thermal conduction in dilute plasmas

 ICM plasma is dilute and weakly magnetized-- charged particles are nearly freely streaming along the lines of magnetic field.

$$\begin{split} r_g &= \frac{3.1 \times 10^8 \,\mathrm{cm}}{Z} \left(\frac{T_g}{10^8 \,\mathrm{K}} \right)^{1/2} \left(\frac{m}{m_e} \right)^{1/2} \left(\frac{B}{1 \,\mu\mathrm{G}} \right)^{-1} \\ \lambda_e &= \lambda_i \approx 23 \,\mathrm{kpc} \left(\frac{T_g}{10^8 \,\mathrm{K}} \right)^2 \left(\frac{\mathrm{n_e}}{10^{-3} \,\mathrm{cm}^{-3}} \right)^{-1} \end{split}$$

• Anisotropic conduction alters classic condition for convection.

(Balbus 00)

Schwarzschild criterion $(\partial S/\partial z > 0)$

• What are the implications for the ICM?

MHD instabilities and overstabilities

(Balbus & Reynolds 10)

MHD equations of magnetized plasma

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0, \qquad \text{mass}$$

$$\rho \frac{D v}{D t} = \frac{(\nabla \times B) \times B}{4\pi} - \nabla P + \rho g, \qquad \text{momentum}$$

$$\frac{\partial B}{\partial t} = \nabla \times (v \times B), \qquad \text{induction}$$

$$\frac{D \ln P \rho^{-\gamma}}{D t} = -\frac{\gamma - 1}{P} [\nabla \cdot Q + \rho \mathcal{L}], \qquad \text{entropy}$$

$$\rho \mathcal{L} \simeq 2 \times 10^{-27} n_e^2 T^{1/2} \operatorname{erg cm}^{-3} \operatorname{s}^{-1},$$

 $\chi \simeq 6 \times 10^{-7} T^{5/2} \,\mathrm{erg} \,\mathrm{cm}^{-1} \,\mathrm{s}^{-1} \,\mathrm{K}^{-1}.$ Spitzer conduction

Local WKB perturbations (Wentzel-Kramers-Brillouin)

"Instability" vs. "overstability"

$\kappa \equiv \chi T/P$ diffusivity (cm²/s) in terms of Spitzer conductivity

Stability criteria

thermal stability (Field criterion):

$$T\Theta_{T|P} + (\boldsymbol{k} \cdot \boldsymbol{b})^2 \kappa > 0,$$

thermal/heat flux driven instabilities:

$$\left(\frac{\gamma-1}{\gamma}\right)\kappa(\boldsymbol{k}\cdot\boldsymbol{b})^2\left(\left(1-2b_z^2\right)k_{\perp}^2+2b_xb_zk_xk_z\right)\cdot\frac{g}{k^2}\frac{d\ln T}{dz}+(\boldsymbol{k}\cdot\boldsymbol{v}_A)^2a_1>0.$$

radiative cooling/heat flux driven overstabilities:

$$T\Theta_{T|P} + \kappa (\mathbf{k} \cdot \mathbf{b})^2 \mathcal{R} > 0,$$

$$\mathcal{R} = f (dInT, dInp) < 1$$
 "reduction factor"

Interplay of thermal stability and overstabilities

$T\Theta_{T P} + (\boldsymbol{k} \cdot \boldsymbol{b})^2 \kappa > 0,$	$T\Theta_{T P} + (\boldsymbol{k} \cdot \boldsymbol{b})^2 \kappa < 0,$
$T\Theta_{T P} + \kappa (\boldsymbol{k} \cdot \boldsymbol{b})^2 \mathcal{R} > 0,$	$T\Theta_{T P} + \kappa (\boldsymbol{k} \cdot \boldsymbol{b})^2 \mathcal{R} > 0.$
$T\Theta_{T P} + (\boldsymbol{k} \cdot \boldsymbol{b})^2 \kappa > 0,$	$T\Theta_{T P} + (\mathbf{k} \cdot \mathbf{b})^2 \kappa < 0,$
$T\Theta_{T P} + \kappa (\boldsymbol{k} \cdot \boldsymbol{b})^2 \mathcal{R} < 0.$	$T\Theta_{T P} + \kappa (\mathbf{k} \cdot \mathbf{b})^2 \mathcal{R} < 0.$

Interplay of thermal stability and overstabilities

$T\Theta_{T P} + (\boldsymbol{k} \cdot \boldsymbol{b})^2 \kappa > 0,$	$T\Theta_{T P} + (\mathbf{k} \cdot \mathbf{b})^2 \kappa < 0,$
$T\Theta_{T P} + \kappa (\boldsymbol{k} \cdot \boldsymbol{b})^2 \mathcal{R} > 0.$	$T\Theta_{T P} + \kappa (\mathbf{k} \cdot \mathbf{b})^2 \mathcal{R} > 0.$
$T\Theta_{T P} + (\mathbf{k} \cdot \mathbf{b})^2 \kappa > 0,$	$T\Theta_{T P} + (\mathbf{k} \cdot \mathbf{b})^2 \kappa < 0,$
$T\Theta_{T P} + \kappa (\mathbf{k} \cdot \mathbf{b})^2 \mathcal{R} < 0.$	$T\Theta_{T P} + \kappa (\mathbf{k} \cdot \mathbf{b})^2 \mathcal{R} < 0.$

Interplay of thermal stability and overstabilities

 $T\Theta_{T|P} + (\boldsymbol{k} \cdot \boldsymbol{b})^2 \kappa > 0,$

 $T\Theta_{T|P} + \kappa (\boldsymbol{k} \cdot \boldsymbol{b})^2 \mathcal{R} < 0$

 $T\Theta_{T|P} + (\boldsymbol{k} \cdot \boldsymbol{b})^2 \kappa < 0,$

 $T\Theta_{T|P} + \kappa (\boldsymbol{k} \cdot \boldsymbol{b})^2 \mathcal{R} < 0$

/

Heat-flux Driven Overstability (HFO)

Thermally stable and overstable to HFO

Thermally unstable and overstable to HFO

~2500 t_{dyn}

~200 t_{dyn}

HFO growth and dispersion relation

Overstability driven by radiative cooling (RCO)

Thermally stable and overstable to RCO

 $\omega_{cool} > \omega_{dyn} \approx \omega_{cond}$

Thermally unstable and overstable to RCO

 $\omega_{\text{cool}} > \omega_{\text{dyn}} > \omega_{\text{cond}}$

~400 t_{dyn}

~100 t_{dyn}

RCO growth and dispersion relation

Conclusions & prospects

- MHD overstabilities related to the well known MHD instabilities.
- Analytic theory: Need for thorough understanding of plasma processes (e.g., anisotropic viscosity).
- Simulations: Understanding the relative importance of individual plasma instabilities/overstabilities and their connection.
- Observations: Spectro-polarimetric measurements, measurements of temperature profiles and metallicity in cluster outskirts, measurements of turbulence, other yet to be realized methods...