Cosmological Information from Non-linear Weak Lensing

Zoltán Haiman

Xiuyuan Yang (Columbia) Jan Kratochvil (Miami)

Other collaborators: Morgan May (Brookhaven) Eugene Lim (Cambridge) Sheng Wang (Goldman Sachs) Kevin Huffenberger (Miami)

KITP workshop on galaxy clusters

UCSB

21 Apr 2011

Outline

- Motivation: is there significant information in the non-linear regime in WL beyond "usual" LSS statistics ?
 - 1. Statistical power of *dN/dz* (cluster counts)
 - 2. Complementarity of dN/dz and P_1 (power spectrum)
- Non-linear statistics robust to selection effects:
 - 1. One-point function of convergence (analytic)
 - 2. Peak counts (including non-cluster peaks)
 - 3. Minkowski Functionals (V_0, V_1, V_2)

Motivation: Clusters

• Exquisite statistical error forecast

from large SZ, XR, WL surveys – but have to know cluster mass M

"Phenomenological" self-calibration

e.g. $M=M_0(M/M_0)^{\alpha}(1+z)^{\beta}$ or more complicated forms use combination of mass-dependent observables dN/dz + P(k)(e.g. Majumdar & Mohr 2004; Wang et al. 2004)

"Physical" self-calibration

use parameterized cluster structure model to relate

SZ, XR and WL observables (e.g. Shang, Haiman & Verde 2009; Younger et al. 2006)

WL surveys

200,000 (?!) clusters in 20,000 sq.deg. – problem: projections/selection

Motivation: WL surveys

- Several large (≳1,000 sq. deg) WL surveys forthcoming: (e.g. Pan-STARRS, KIDS, DES, LSST, Euclid)
- Shear power spectrum and related large-scale statistics

 (e.g. Kaiser 1992; Jain & Seljak 1997; Hu 1999, 2002;
 Huterer 2002; Refregier et al. 2004; Abazajian & Dodelson 2003;
 Takada & Jain 2004; Song & Knox 2004;)
 E.g. σ(w₀)=0.06; σ(w_a)=0.1 from 11-paramater fit to tomographic shear power spectrum (LSST) + *Planck*
- Comparable statistical errors from cluster number counts

 (e.g. Wang et al. 2004, 2005; Fang & Haiman 2007;
 Takada & Bridle 2007; Marian & Bernstein 2006, 2008)
 E.g. σ(w₀)=0.04; σ(w_a)=0.09 from 7-paramater fit to

 ~200,000 shear-selected cluster counts (LSST) + Planck

Motivation: Clusters vs Peaks

- Cluster counts and shear power spectrum can be considered independent observables – high synergy Covariance changes parameter-estimates by < few % (Fang & Haiman 2007; Takada & Bridle 2007)
- However, selection effects are (probably) a showstopper in a WL survey alone, due to projection effects
 Filter-dependent trade-off between *completeness* and *purity*: "best compromise" values are ~70% for both
 (e.g. White et al. 2002; Hamana et al. 2005; Hennawi & Spergel 2005)
- Why not define observable immune to projection effects? historical reason: cosmology-dependence of halo mass function calculable from "Press-Schechter"

Peak counts

 A simple statistic: # of shear peaks, regardless of whether or not they correspond to true bound objects as a function of height, redshift and angular size Kratochvil, Haiman, Hui & May (2010)

Fundamental questions about "false" (non-cluster) peaks:
 1. How does N(peak) depend on cosmology ?
 2. What is the field-to-field variance ΔN(peak) ?

Requires simulations

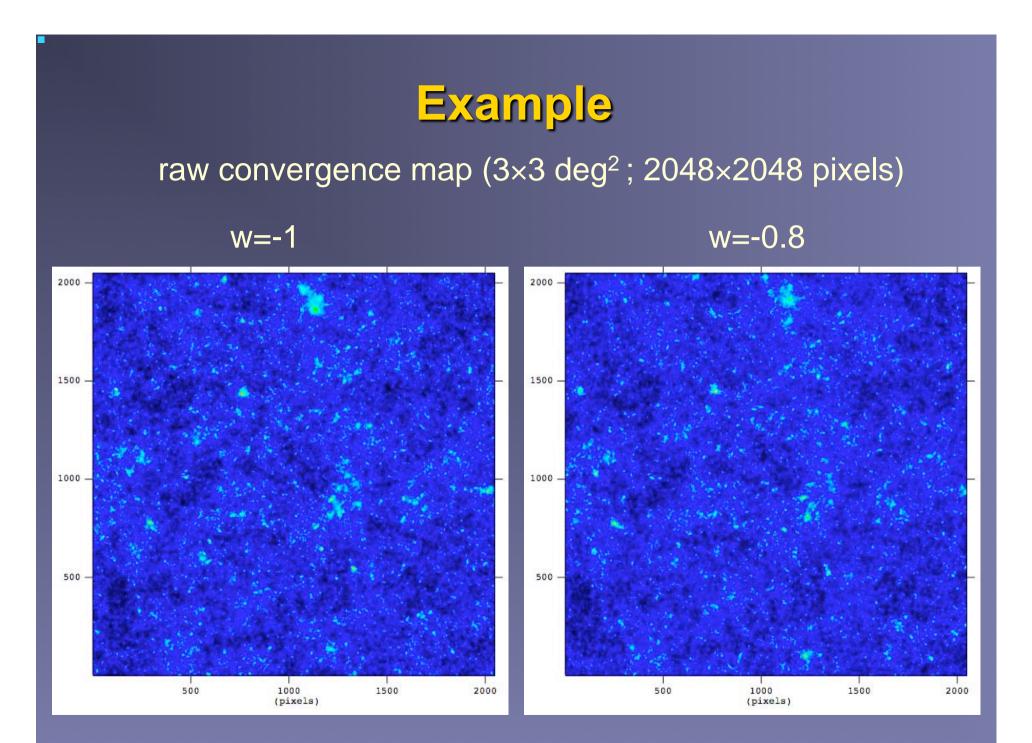
N-body Simulation Details

Kratochvil, Haiman, Hui & May (2010)

- pure DM (no baryons, neutrinos, or radiation)
- public code GADGET-2, modified to handle $w_0 \neq -1$
- fiducial Λ CDM cosmology from *WMAP*: (w₀, Ω_{Λ} , Ω_{m} , H₀, σ_{8} , n) = (-1.0, 0.74, 0.26, 0.72, 0.79, 1.0)
- fix *primordial* amplitude $\Delta^2_R = 2.41 \times 10^{-9}$ at k = 0.002 Mpc⁻¹ ($\sigma_8 = 0.79$ vs. 0.75)
- two alternative cosmologies, differ only in $w_0 = -0.8$ (or -1.2)
- 512³ box, size 200 h^{-1} Mpc, z_{in} =60, M_{DM}=4.3×10⁹ M_☉
- gravitational softening length $\varepsilon_{Pl} = 7.5h^{-1}$ kpc
- output particle positions every 70*h*⁻¹ comoving Mpc
- runs at NSF TeraGrid and IBM Blue Gene / Brookhaven

Simulating Weak Lensing Maps

Ray-tracing

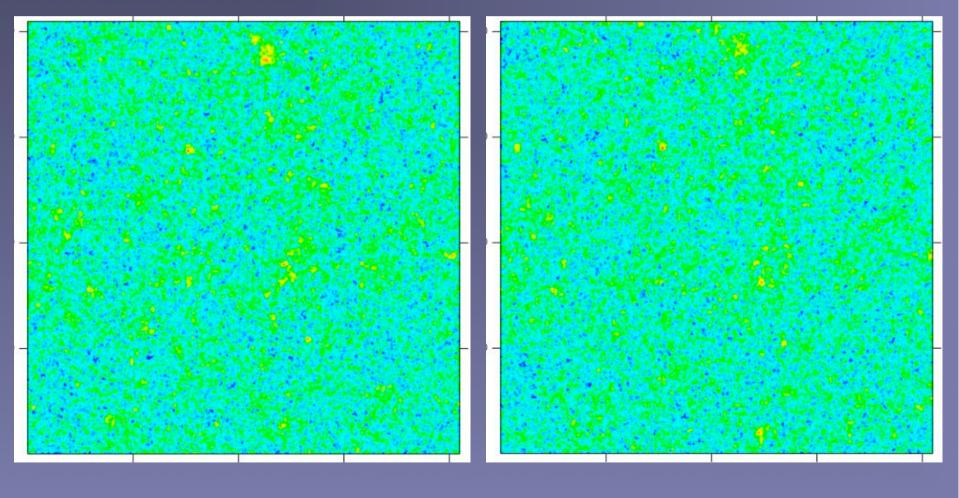

- compute 2D potential (2048×2048) in each lens plane
- implement algorithm to follow rays (Hamana & Mellier 2001)
- compute shear (γ), convergence (κ) and reduced shear (μ)

Mock "observational" parameters

- gaussian 1-component shear noise from intrinsic ellipticity: σ_{v} =0.15+0.035*z* (Song & Knox 2004)
- n_{gal} =15 arcmin⁻² background galaxies, at z_s = 1, 1.5, and 2
- smooth κ -map with 2D finite Gaussian 0.25 30 arcmin
- use 3×3 deg² smoothed convergence maps

Identifying peaks

- find all local maxima, record their height κ_{peak}



convergence map with noise and 1-arcmin gaussian smoothing

w=-0.8

w=-1

Basic Results

- 3×3 deg² field, smoothing with 1-arcmin, galaxies at $z_s=2$

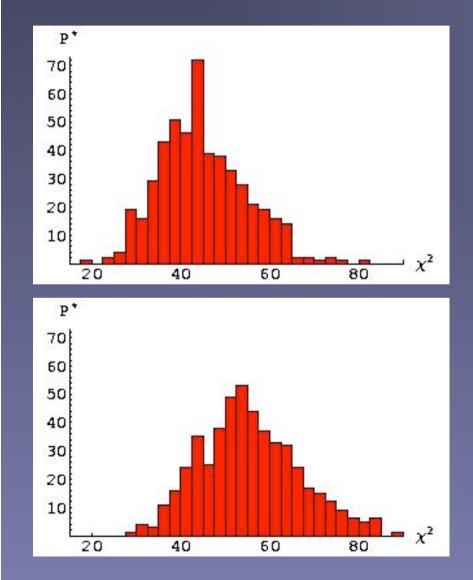
- Expectations based on clusters with $\kappa_G \ge 4.5\sigma_\kappa$ (Fang & Haiman 2007) N(clusters) = 150 ± 25 for *w*=-1 N(clusters) = 103 ± 21 for *w*=-0.8 \Rightarrow S/N≈2 σ mostly coming from change in σ_8

Total peak counts above same threshold [w/no noise] N(peaks) = 576 ± 86 [230 ± 42] for w=-1 N(peaks) = 547 ± 85 [186 ± 37] for w=-0.8
→S/N≈0.3σ: (i) smaller difference, (ii) larger variance

- Total peak counts (all peaks): $N(peaks) = 11,622 \pm 62$ for w=-1 $N(peaks) = 11,562 \pm 62$ for w=-0.8

Statistical Methodology

Covariance matrix for number of binned, tomographic peaks:

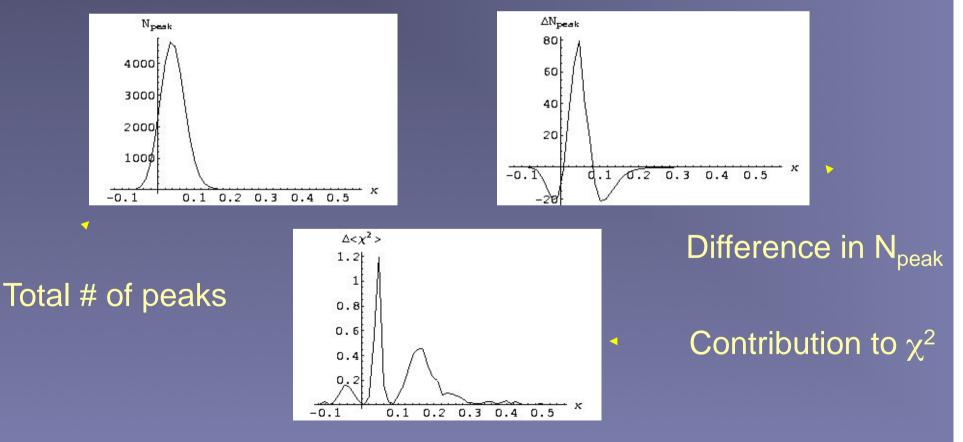

$$\boldsymbol{C}_{i,j}^{m} = \frac{1}{R-1} \sum_{r=1}^{R} \left[\boldsymbol{N}_{i}^{m}(r) - \overline{\boldsymbol{N}}_{i}^{m} \right] \left[\boldsymbol{N}_{j}^{m}(r) - \overline{\boldsymbol{N}}_{j}^{m} \right]$$

- R=500 realizations in cosmology *m* (rotate/shift/slice box)
- *i* = 15 (height) x 3 (source redshift) = 45 bins

• Compute " χ^2 " between test (*m*) and fiducial (*n*) cosmology: $\chi^{2;m,n}(r) \equiv \sum_{i,j=1}^{45} \left[N_i^m(r) - \overline{N}_i^n \right] \left[C_{i,j}^n \right]^{-1} \left[N_j^m(r) - \overline{N}_j^n \right]$

Compute likelihood at which cosmology *m* can be distinguished from cosmology *n*:
 given by overlap between two distributions χ^{2;m,n} and χ^{2;n,n}

Chi Square Distributions 3 redshift bins, 15 peak height bins, 0.5 arcmin smoothing


w = -1 versus w = -1 $\langle \chi^2 \rangle$ =44.89

w=-0.8 versus w=-1 $\langle \chi^2 \rangle$ =55.51

→ $\Delta \langle \chi^2 \rangle \approx 10$ or 85% confidence

Which peaks dominate constraints?

- smoothing with 0.5 arcmin, galaxies at $z_s=2$
- w=-1 more peaks at high+low ends (DE dominates later)
- w=-0.8 peaks are more sharply peaked
- medium height ($\kappa \approx 0.04$, or 2σ) peaks dominate the total χ^2

Results: statistical significance

- w=-0.8 distinguishable at 85% confidence from w=-1.0
 70% chance for 68% CL
 26% chance for 95% CL
- covariance has small effect overall (cuts high- χ^2 tail)
- co-adding several smoothing scales gives only modest (~10%) improvement over single best scale (~0.5 arcmin – smaller than best cluster case)
- scaling from $3 \times 3 = 9 \text{ deg}^2$ to 20,000 deg^2 : rough guess: significance $\sqrt{(20,000/9)}=50$ times better 1.5σ sensitivity to w₀ is $\Delta w_0 = 0.2/50 = 0.004$

Questions:

- what causes the medium-height peaks?
 - *(i)* one ore more individual collapsed halos
 - (ii) mildly over-dense large-scale filaments
 - (iii) unvirialized 'half-collapsed' halos
 - (iv) galaxy shape noise

- is the information in the medium-height peaks still complementary to the power spectrum? *linear fluctuations in potential, or galaxy shape noise would both produce gaussian random fields*

- parameter degeneracies?

well known in the case of cluster counts; similar $\Omega_{\rm m}$ - σ_8 degeneracy found for peaks (Dietrich & Hartlap 2010)

Suite of N-body Simulations

(Yang, Kratochvil, Wang, Lim, Haiman & May 2011, PRD, submitted)

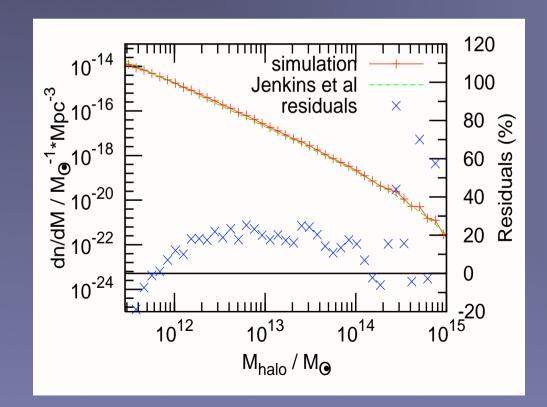
- 80 new N-body runs; vary w, Ω_m , σ_8
- Higher resolution (4,096 x 4,096) density/potential planes
- 15 gals/amin² at z_s =1 and z_s =2

	σ_8	w	Ω_m	# of sims
Fiducial	0.798	-1.0	0.26	5
Control	0.798	-1.0	0.26	45
High- σ_8	0.850	-1.0	0.26	5
Low- σ_8	0.750	-1.0	0.26	5
High-w	0.798	-0.8	0.26	5
Low-w	0.798	-1.2	0.26	5
High- Ω_m	0.798	-1.0	0.29	5
Low- Ω_m	0.798	-1.0	0.23	5

TABLE I: Cosmological parameters varied in each model. The universe is always assumed to be spatially flat $(\Omega_{\Lambda} + \Omega_m = 1)$.

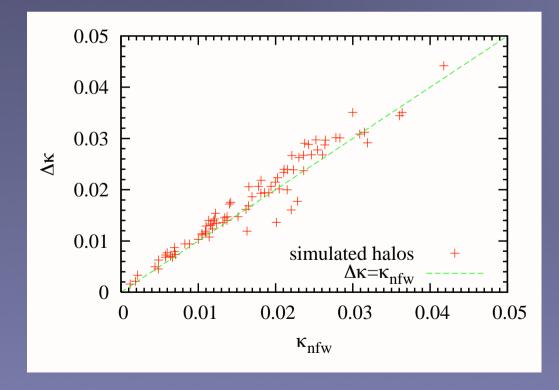
Origin of Peaks

What causes peaks?


- identify halos, match them to peaks [use fiducial cosmology]

What drives the cosmology-dependence of peak counts?

- compare two different cosmologies (e.g. vary σ_8) with identical noise realization and (quasi) identical initial condition


Halo finding

- AMIGA halo finder (Knollmann & Knebe 2009)
- [interesting cropped halos at box edges make no difference]
- 20% agreement in range $2 \times 10^{11} M_{\odot} < M < 3 \times 10^{14} M_{\odot}$

Halo contributions to convergence

- Assume spherical NFW halo with measured M_{vir}
- Compute $\kappa_{NFW}(\Phi, M_{vir})$ as a function of impact parameter Φ
- Compare to Δκ when ray-tracing is repeated with halo removed (fractional bias of -0.06; r.m.s. scatter of 0.15)

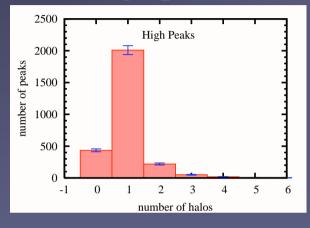
What causes peaks?

- identify halos, match them to peaks [use fiducial cosmology]

- use 50 noisy maps, 1 arcmin smoothing, 1.8 arcmin cone, $z_s=2$
- Peaks: 2,802 high (κ >4.8 σ_{noise}) 27,556 medium (1.1 σ_{noise} < κ <1.6 σ_{noise})

- Halos: 758

22,352


class	matching result	number	of matches
	C C	(high peaks)	(medium peaks)
i	$halo \Leftrightarrow peak$	526(0.93)	2653(4.7)
ii	halo with no paired peak	230(0.41)	19609 (35)
iii	peak with no paired halo	2264(4.0)	24709 (44)
iv	$halo \Rightarrow peak$	2 (0.0035)	90(0.16)
v	$halo \Leftarrow peak$	12(0.021)	194(0.34)

10% of medium peaks have one-to-one match 90% of medium peaks/halos have no match

What causes peaks?

high peaks

medium peaks

High Peaks

5 6 7 8 9 10

number of halos

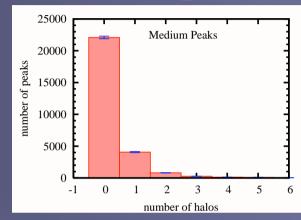
2 3 4

1400

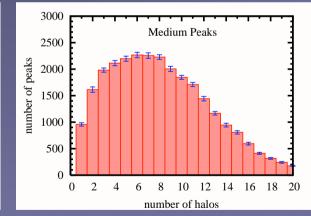
1200

1000

800

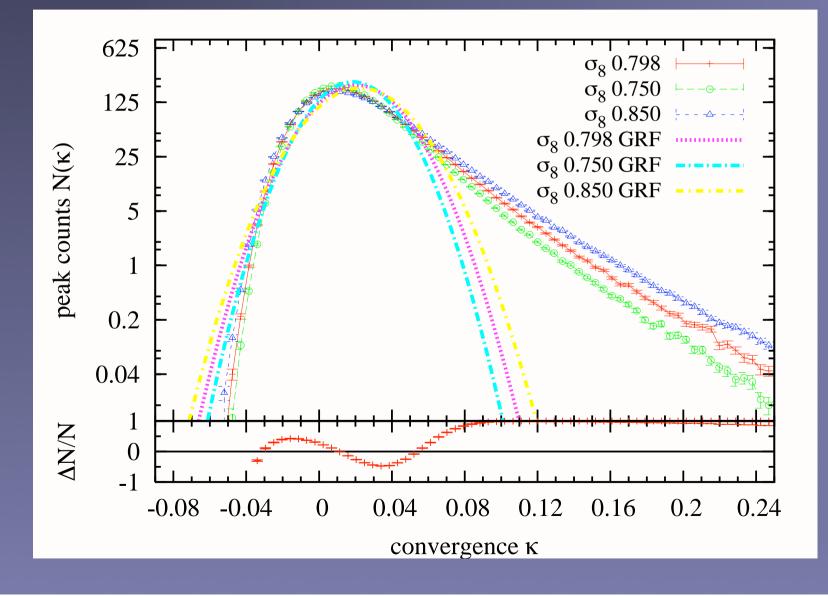

600

400


200 0

0 1

number of peaks


←noise or halo contributions

Halo only contributions

medium peaks are dominated by *noise* and the <u>sum of 4-8 *halos* along the LOS</u>

What drives cosmology-dependence?

Mock maps = analytic prediction (Bond & Efstathiou 1987)
Can compute covariance matrix numerically in GRF case

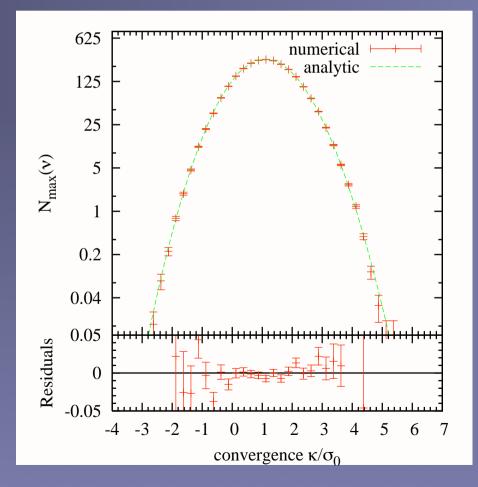
$$n_{\max}(\nu)d\nu = \frac{1}{2\pi\theta_*^2}\exp(-\nu^2/2)\frac{d\nu}{(2\pi)^{1/2}}G(\gamma,\gamma\nu)(10)$$

where

0.0

5

5 6


$$G(\gamma, x_*) = (x_*^2 - \gamma^2) \left[1 - \frac{1}{2} \operatorname{erfc} \left\{ \frac{x_*}{[2(1 - \gamma^2)]^{1/2}} \right\} \right] \\ + x_* (1 - \gamma^2) \frac{\exp\{-x_*^2/[2(1 - \gamma^2)]\}}{[2\pi(1 - \gamma^2)]^{1/2}} \\ + \frac{-x_*^2/(3 - 2\gamma^2)}{(3 - 2\gamma^2)^{1/2}} \\ \left[1 - \frac{1}{2} \operatorname{erfc} \left\{ \frac{x_*}{[2(1 - \gamma^2)(3 - 2\gamma^2)]^{1/2}} \right\} \right] (11)$$

$$\gamma = \sigma_1^2 / (\sigma_0 \sigma_2) \tag{12}$$

$$\theta_* = \sqrt{2}\sigma_1/\sigma_2 \tag{13}$$

$$\sigma_{p}^{2} = \int_{0}^{\infty} \frac{\ell d\ell}{2\pi} \ell^{2p} P_{\ell}$$

= $p! 2^{2p} (-1)^{p} \frac{d^{p} \xi}{d(\theta^{2})^{p}} (0),$ (14)

$$n_{\rm pk} = (4\pi\sqrt{3})^{-1}\theta_*^{-2}.$$
 (15)

What drives cosmology-dependence?

- Why does number of medium peaks scale inversely with σ_8 ?

σ ₈ =0.80:	2,802 high	27,556 medium
σ ₈ =0.75:	1,987 high	29,097 medium

- Match individual peaks in the two cosmologies (via halos) 80-90% of high peaks have 1-1 correspondance (small κ bias) 55% of medium peaks \rightarrow "fragile": sensitive to halo masses/locations

- Change in κ of individual peaks:

class	low- $\sigma_8 \rightarrow$ fiducial	fiducial \rightarrow low- σ_8
exit to low κ	3303	3420
stay in bin	7683	7515
exit to high κ	5373	4408
total matched	16359	15343
lost (unmatched)	12738	12213

2/3rd of sensitivity due to "scatter" (net ~1000 peaks)

1/3rd to "destruction" (net ~500 peaks)

"NEVER show a Table in a talk slide!" - David Spergel, Princeton, NJ, cca. 2002

"NEVER show a Table in a talk slide!" - David Spergel, Princeton, NJ, cca. 2002

	1	• 1	<u> </u>	•	<u>A</u> 2
map	cosmology	noiseless	, .	e	, e
type	pair	unscaled	scaled	unscaled	scaled
Sim	F and High- σ_8	5.16	0.46	5.89	4.29
GRF	F and High- σ_8	10.65	0.23	5.87	3.16
Sim	F and Low- σ_8	5.01	0.34	5.09	3.67
GRF	F and Low- σ_8	9.93	0.16	4.98	2.58
Sim	F and High- Ω_m	3.61	0.033	4.02	2.46
GRF	F and High- Ω_m	7.68	0.014	3.77	2.01
Sim	F and Low- Ω_m	4.39	0.053	4.44	2.56
GRF	F and Low- Ω_m	8.79	0.043	4.08	2.11
Sim	F and High- w	0.98	0.47	0.65	0.27
GRF	F and High- w	0.93	0.017	0.46	0.14
Sim	F and Low- w	0.44	0.27	0.36	0.16
GRF	F and Low- w	0.54	0.004	0.26	0.08

 $\Delta \chi^2$

<

from peak-counts between pairs of models

"NEVER show a Table in a talk slide!" - David Spergel, Princeton, NJ, cca. 2002

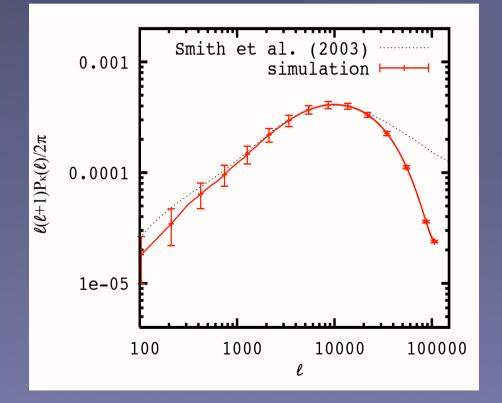
map	cosmology	noiseless	s $\Delta\chi^2$	noisy .	$\Delta \chi^2$
type	pair			unscaled	scaled
Sim	F and High- σ_8	5.16	0.46	5.89	4.29
GRF	F and High- σ_8	10.65	0.23	5.87	3.16
Sim	F and Low- σ_8	5.01	0.34	5.09	3.67
GRF	F and Low- σ_8	9.93	0.16	4.98	2.58
Sim	F and High- Ω_m	3.61	0.033	4.02	2.46
GRF	F and High- Ω_m	7.68	0.014	3.77	2.01
Sim	F and Low- Ω_m	4.39	0.053	4.44	2.56
GRF	F and Low- Ω_m	8.79	0.043	4.08	2.11
Sim	F and High- w	0.98	0.47	0.65	0.27
GRF	F and High- w	0.93	0.017	0.46	0.14
Sim	F and Low- w	0.44	0.27	0.36	0.16
GRF	F and Low- w	0.54	0.004	0.26	0.08

Raw sensitivity:

- direct sensitivity comparable to P₁
- sensitivity to w is ~10× weaker
 (NB no tomography)

"NEVER show a Table in a talk slide!" - David Spergel, Princeton, NJ, cca. 2002

map	cosmology	noiseless	s $\Delta \chi^2$	noisy 4	$\Delta \chi^2$
type	pair	unscaled	scaled	unscaled	scaled
Sim	F and High- σ_8	5.16	0.46	5.89	4.29
GRF	F and High- σ_8	10.65	0.23	5.87	3.16
Sim	F and Low- σ_8	5.01	0.34	5.09	3.67
GRF	F and Low- σ_8	9.93	0.16	4.98	2.58
Sim	F and High- Ω_m	3.61	0.033	4.02	2.46
GRF	F and High- Ω_m	7.68	0.014	3.77	2.01
Sim	F and Low- Ω_m	4.39	0.053	4.44	2.56
GRF	F and Low- Ω_m	8.79	0.043	4.08	2.11
Sim	F and High- w	0.98	0.47	0.65	0.27
GRF	F and High- w	0.93	0.017	0.46	0.14
Sim	F and Low- w	0.44	0.27	0.36	0.16
GRF	F and Low- w	0.54	0.004	0.26	0.08


How much of the Information is in σ_{κ} ?:

- not most of it!
- note: almost all of the info in the *noiseless* maps is in $\underline{\sigma}_{\underline{\kappa}} \rightarrow$ "non-linear interaction" between signal and noise

Convergence power spectrum

- Noise-free, unsmoothed maps, using z_s=2
- Theoretical prediction based on NL matter power spectrum

(Nicaea; Kilbinger et al. 2009)

Agreement in the range
 400 < *I* < 30,000

Is there info beyond power spectrum?

Treat $P_i = I(I+1)P(I)$ in 5 bins 100 < I < 20,000 as 5 additional observables, compute $C_{ij} = \langle (P_i - \langle P_i \rangle) (P_j - \langle P_j \rangle) \rangle$ and cross-terms $C_{ii} = \langle (P_i - \langle P_i \rangle) (N_i - \langle N_i \rangle) \rangle$

1 1		
cosmology	noiseless $\Delta \chi^2$	noisy $\Delta \chi^2$
Fiducial	5.16	5.89
and	17.06	8.12
High- σ_8	37.07	16.36
	1.67	1.17
Fiducial	5.01	5.09
and	13.03	5.76
Low- σ_8	26.79	11.87
	1.49	1.09
Fiducial	3.61	4.02
and	17.69	6.15
High- Ω_m	32.42	11.65
-	1.52	1.15
Fiducial	4.39	4.44
and	16.49	5.61
Low- Ω_m	29.47	10.94
	1.41	1.09
Fiducial	0.98	0.65
and	0.92	0.29
High-w	2.79	0.84
-	1.46	0.90
Fiducial	0.44	0.36
and	0.64	0.19
Low-w	1.69	0.51
	1.57	0.92
	and High- σ_8 Fiducial and Low- σ_8 Fiducial and High- Ω_m Fiducial and Low- Ω_m Fiducial and High- w Fiducial and	and 17.06 High- σ_8 37.07 1.67 1.67 Fiducial 5.01 and 13.03 Low- σ_8 26.79 1.49 1.49 Fiducial 3.61 and 17.69 High- Ω_m 32.42 1.52 1.52 Fiducial 4.39 and 16.49 Low- Ω_m 29.47 1.41 1.41 Fiducial 0.98 and 0.92 High- w 2.79 1.46 1.46 Fiducial 0.44 and 0.64 Low- w 1.69

- Raw sensitivities of N and P are comparable
- P(l) degraded more by noise noise adds no signal δP

• Synergy from combination: cosmology-induced $changes (\delta N, \delta P) do not$ obey correlations $<\Delta N \Delta P > \neq 0$

Marginalized Errors

• Fisher matrix – use backward/forward finite difference

- Use 15 κ-bins; scale errors by angle sqrt(20,000/12)~50
- **Tomography improves marginalized errors by factor of ~two** *redshift-dependent parameter-sensitivities are non-degenerate*
- Factor of ~2 from adding peak counts to power spectrum counts contain information beyond P(l)

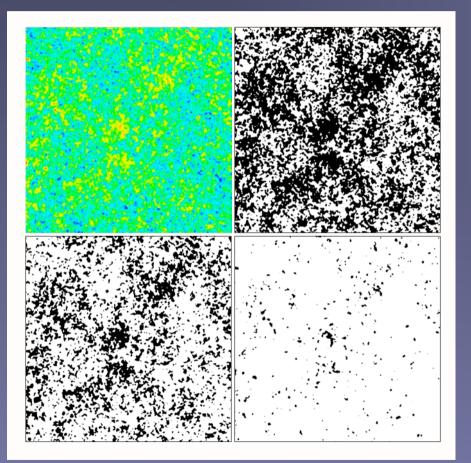
0.8

0.7

06

marginalized error	σ_8	w	Ω_m
z2	0.0065	0.030	0.0057
z1	0.0078	0.036	0.0057
z2+z1	0.0024	0.018	0.0022
Power Spectrum $(z_s = 2)$	0.0047	0.026	0.0028
z2+Power Spectrum	0.0026	0.012	0.0019
z1+Power Spectrum	0.0037	0.020	0.0026
tomography combined	0.0012	0.0096	0.0010
combined/(z2+Power Spectrum)	0.47	0.79	0.52

 One of several general topological measures of isodensity surfaces (in 3D) or contours (2D)


- an alternative probe of non-Gaussianity
 - Gott et al. (1982)

Examples of previous applications

- genus in 3-D galaxy distribution in SDSS
- 2D Minkowski Functionals in CMB: search for primordial non-Gaussianity (f_{NL}limits similar to bispectrum)
- fractional-area P(>κ_{th}) in WL a.k.a. V₀, one of 3 MFs Wang et al. (2009)
- genus in WL maps: V₂ (OCDM vs SCDM; Matsubara & Jain 2001)

Robustly measurable in data and in our set of simulations

(Kratochvil, Lim, Wang, Haiman, May & Huffenberger 2011, in prep)

contours as a function of the threshold κ_{th}

- V_0 : *area* above κ_{th}
- V₁: contour *boundary length*
- V₂: Euler characteristic #connected regions above minus #below κ_{th}

Any functional that is additive, translation-invariant, and continuous, is a linear combination of V_1 , V_2 , and V_3 .

Depend on threshold, and on 1^{st} and 2^{nd} derivatives of $\kappa(x,y)$

$$V_0(\nu) = \int_{\mathbf{R}^2} \Theta(\kappa - \nu) \, da \qquad V_1(\nu) = \frac{1}{4} \int_{\mathbf{R}^2} |\nabla \kappa| \delta(\kappa - \nu) \, da \qquad V_1(\nu) = \frac{1}{2\pi} \int_{\mathbf{R}^2} |\nabla \kappa| \delta(\kappa - \nu) K \, da$$

Measure in simulations using finite difference

 \mathbf{V}

$V_0(\nu) = \int_{\mathbf{R}^2} \Theta(\kappa(\mathbf{x}) - \nu) \, da \tag{8}$

$$V_1(\nu) = \int_{\mathbf{R}^2} \delta(\kappa(\mathbf{x}) - \nu) \sqrt{\kappa_x^2 + \kappa_y^2} \, da \qquad (9)$$

$$V_2(\nu) = \int_{\mathbf{R}^2} \delta(\kappa(\mathbf{x}) - \nu) \frac{2\kappa_x \kappa_y \kappa_{xy} - \kappa_x^2 \kappa_{yy} - \kappa_y^2 \kappa_{xx}}{\kappa_x^2 + \kappa_y^2} da$$

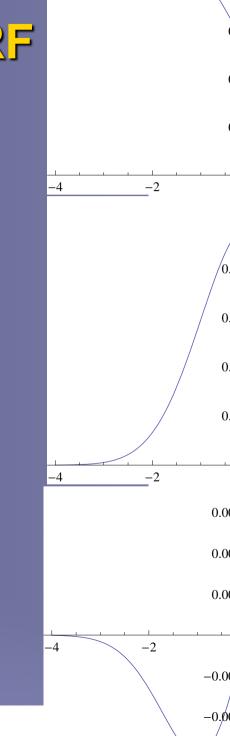
Minkowski Functionals in a GRF

Calculable analytically

$$V_0^{\rm GRF}(\nu) = \frac{1}{2} \left[1 - \operatorname{Erf}\left(\frac{\nu - \mu}{\sqrt{2}\sigma_0}\right) \right]$$

$$V_1^{\text{GRF}}(\nu) = \frac{1}{8\sqrt{2}} \frac{\sigma_1}{\sigma_0} \exp\left(-\frac{(\nu - \mu)^2}{2\sigma_0^2}\right)$$

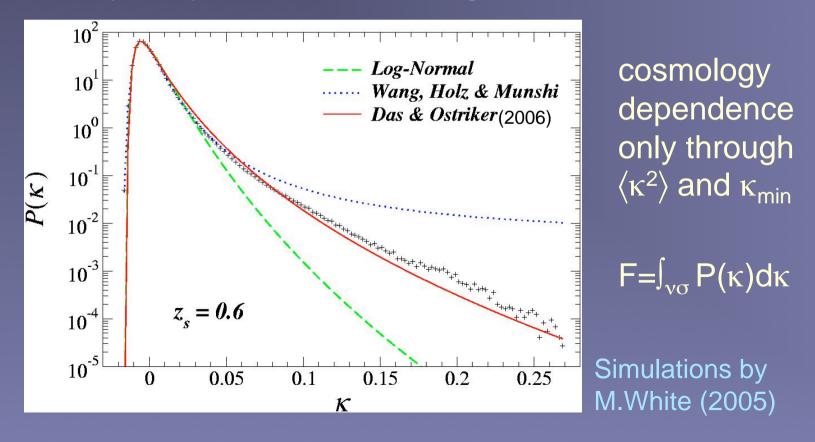
$$V_2^{\rm GRF}(\nu) = \frac{\nu - \mu}{4\sqrt{2}} \frac{\sigma_1^2}{\sigma_0^3} \exp\left(-\frac{(\nu - \mu)^2}{2\sigma_0^2}\right)$$

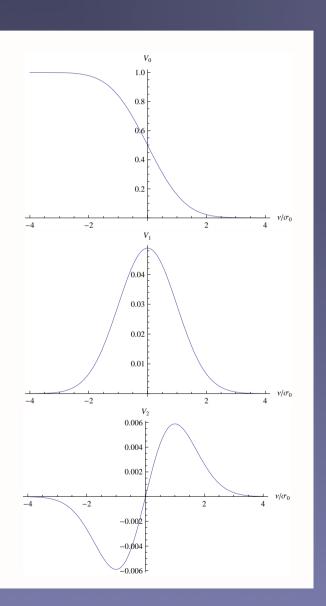

where μ is the mean, and

$$\sigma_0 = \sqrt{\langle \kappa^2 \rangle - \mu^2}$$

is the standard deviation while

$$\sigma_1 = \sqrt{\langle \kappa_x^2 + \kappa_y^2 \rangle}$$

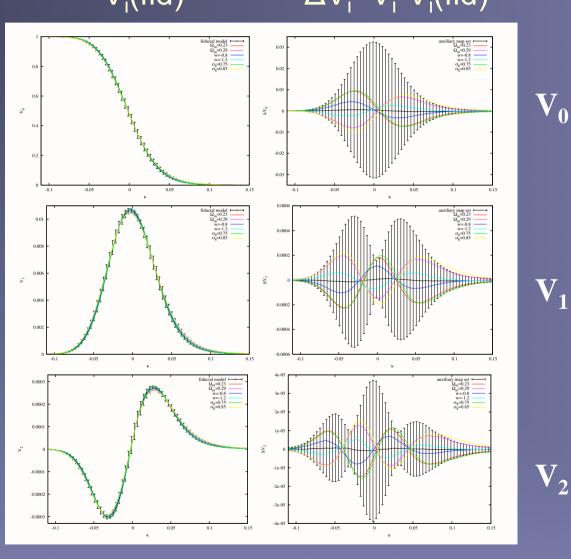

is its first moment.



Fractional Area of "Hot Spots"

Wang, Haiman & May (2009)

• A simple statistic: one-point function of convergence i.e. fraction of sky above a fixed threshold $\kappa > \kappa_T = v\sigma_N$ "analytically" calculable, analogous to mass function:

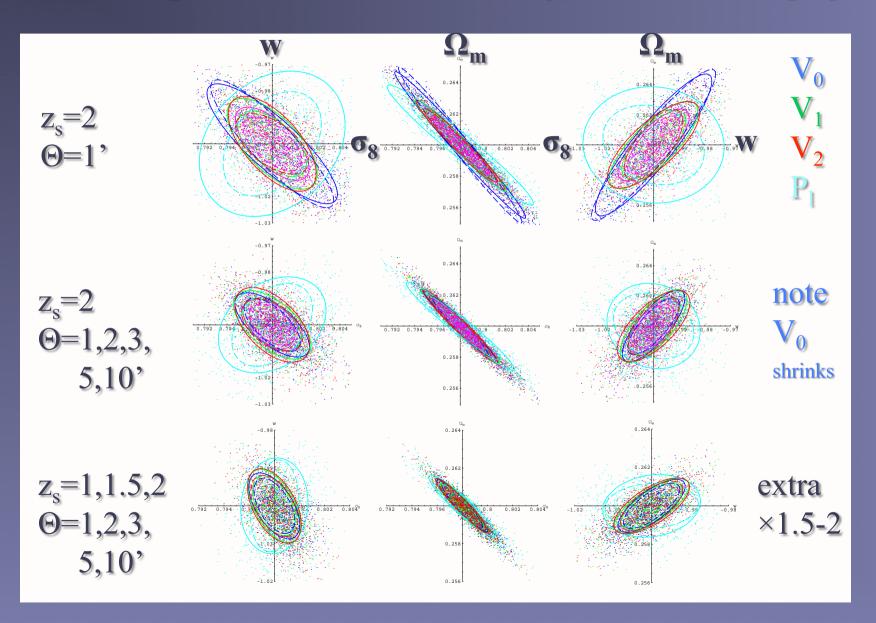

• V_0 : *area* above κ_{th}

• V₁: contour *boundary length*

 • V₂: *Euler characteristic* genus: #connected regions above minus #below κ_{th}

Minkowski Functionals V_i (fid) $\Delta V_i = V_i - V_i$ (fid)

z_s=2 θ=1' n=15/amin² 1,000 maps


Marginalized Errors

- **MFs deliver factor of 1.5-2 tighter errors than power spectrum** (V₁ best individual sensitivity; V₁,V₂ have comparable errors)
- Monte-Carlo errors good agreement with Fisher matrix (slight asymmetry in error bars)
- Backward vs Forward derivatives

(small asymmetry)

	$\Delta\Omega_m$	Δw	$\Delta \sigma_8$
$z_s = 2, \theta_G = 1'$			
V_0	-0.00322 (-0.00317)	-0.0151 (-0.0158)	-0.00391 (-0.00357)
	$0.00319 \ (0.00322)$	$0.0154\ (0.016)$	$0.00395 \ (0.00345)$
V_1	-0.0019 (-0.00141)	-0.0113 (-0.00781)	-0.0026 (-0.002)
	$0.00192 \ (0.00147)$	$0.0108\ (0.00803)$	$0.00265\ (0.00193)$
V_2	-0.00192 (-0.00155)	-0.0123 (-0.00735)	-0.00253 (-0.00206)
	$0.00183\ (0.00151)$	$0.0118 \ (0.00752)$	$0.00257 \ (0.00202)$
PS	-0.00252 (-0.00178)	-0.0183 (-0.0134)	-0.00421 (-0.0029)
	0.00253 (0.00175)	0.0174(0.0134)	0.00427 (0.00294)
MFs	-0.00162 (-0.00129)	-0.00896 (-0.00659)	-0.00225 (-0.00168)
	0.00162 (0.00126)	0.00929 (0.00651)	0.00216 (0.00176)

Marginalized Errors (preliminary!)

Conclusions

- Peak counts and MFs deliver constraints on Ω_m , w, σ_8 comparable or tighter than the power spectrum
- This information is new: from non-linear, non-Gaussian regime, complementary to the power spectrum
 Peaks: most info is in medium peaks, from halo projections
- MFs: V₁ most sensitive, V₂ comparable for marginalized errors; V₀ comparable w/multiple smoothing scales combined