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  Motivation: is there significant information in the      

   non-linear regime in WL beyond “usual” LSS statistics ? 

        1.  Statistical power of dN/dz (cluster counts) 

        2.  Complementarity of dN/dz and Pl (power spectrum) 

   Non-linear statistics robust to selection effects:                     

        1.  One-point function of convergence (analytic) 

        2.  Peak counts (including non-cluster peaks) 

        3.  Minkowski Functionals (V0, V1, V2)  



    Exquisite statistical error forecast  

      from large SZ, XR, WL surveys – but have to know cluster mass M 

   “Phenomenological” self-calibration                  

      e.g. M=M0(M/M0)α(1+z)β or more complicated forms 

      use combination of mass-dependent observables dN/dz + P(k) 

                                                   (e.g. Majumdar & Mohr 2004; Wang et al. 2004) 

  “Physical” self-calibration                  

      use parameterized cluster structure model to relate 

      SZ, XR and WL observables (e.g. Shang, Haiman & Verde 2009; Younger et al. 2006) 

   WL surveys 

      200,000 (?!) clusters in 20,000 sq.deg. – problem: projections/selection 



  Several large (≳1,000 sq. deg) WL surveys forthcoming: 
     (e.g. Pan-STARRS, KIDS, DES, LSST, Euclid) 

  Shear power spectrum and related large-scale statistics 
     (e.g. Kaiser 1992; Jain & Seljak 1997; Hu 1999, 2002;    
       Huterer 2002; Refregier et al. 2004; Abazajian & Dodelson 2003;         
      Takada & Jain 2004; Song & Knox 2004; ….)       
     E.g. σ(w0)=0.06; σ(wa)=0.1 from 11-paramater fit to     
     tomographic shear power spectrum (LSST) + Planck 

  Comparable statistical errors from cluster number counts  
     (e.g. Wang et al. 2004, 2005; Fang & Haiman 2007;  
      Takada & Bridle 2007; Marian & Bernstein 2006, 2008)       
     E.g. σ(w0)=0.04; σ(wa)=0.09 from 7-paramater fit to     
     ~200,000 shear-selected cluster counts (LSST) + Planck 



  Cluster counts and shear power spectrum can be 
    considered independent observables – high synergy 
     Covariance changes parameter-estimates by < few % 
     (Fang & Haiman 2007; Takada & Bridle 2007) 

  However, selection effects are (probably) a showstopper 
   in a WL survey alone, due to projection effects 
     Filter-dependent trade-off between completeness and 
     purity:  “best compromise” values are ~70% for both 
    (e.g. White et al. 2002; Hamana et al. 2005; Hennawi & Spergel 2005) 

  Why not define observable immune to projection effects?  
     historical reason: cosmology-dependence of halo 
     mass function calculable from “Press-Schechter” 



  A simple statistic: # of shear peaks, regardless of  
   whether or not they correspond to true bound objects 
       as a function of height, redshift and angular size 
       Kratochvil, Haiman, Hui & May (2010)  

  Fundamental questions about “false” (non-cluster) peaks: 
   1. How does N(peak) depend on cosmology ? 
   2. What is the field-to-field variance ΔN(peak) ? 

  Requires simulations 



     - pure DM (no baryons, neutrinos, or radiation) 
     - public code GADGET-2, modified to handle w0 ≠ -1 
     - fiducial ΛCDM cosmology from WMAP: 
       (w0, ΩΛ, Ωm, H0, σ8, n) = (-1.0, 0.74, 0.26, 0.72, 0.79, 1.0) 
     - fix primordial amplitude Δ2

R = 2.41×10-9 at  k = 0.002 Mpc-1 

           (σ8=0.79  vs. 0.75) 
     - two alternative cosmologies, differ only in w0= -0.8 (or -1.2) 
     - 5123 box, size 200h-1 Mpc, zin=60, MDM=4.3×109 M⨀ 

       - gravitational softening length εPl =  7.5h-1 kpc 
     - output particle positions every 70h-1 comoving Mpc 
     - runs at NSF TeraGrid and IBM Blue Gene / Brookhaven 



  Ray-tracing 
     - compute 2D potential (2048×2048) in each lens plane 
     - implement algorithm to follow rays (Hamana & Mellier 2001) 
     - compute shear (γ), convergence (κ) and reduced shear (µ) 

  Mock “observational” parameters 
     - gaussian 1-component shear noise from intrinsic ellipticity:  
               σγ=0.15+0.035z (Song & Knox 2004) 
     - ngal=15 arcmin-2 background galaxies, at zs = 1, 1.5, and 2 
     - smooth κ-map with 2D finite Gaussian 0.25 - 30 arcmin 
     - use 3×3 deg2 smoothed convergence maps 

  Identifying peaks 
    - find all local maxima, record their height κpeak 



raw convergence map (3×3 deg2 ; 2048×2048 pixels) 

w=-1 w=-0.8 



convergence map with noise and 1-arcmin gaussian smoothing 

w=-1 w=-0.8 



  - 3×3 deg2 field, smoothing with 1-arcmin,  galaxies at zs=2 

  - Expectations based on clusters with κG≥4.5σκ  
    (Fang & Haiman 2007)    
         N(clusters) = 150 ± 25       for w=-1 
         N(clusters) = 103 ± 21       for w=-0.8 
  S/N≈2σ mostly coming from change in σ8   

  - Total peak counts above same threshold [w/no noise]  
         N(peaks) =  576 ± 86    [230 ± 42]  for w=-1 
         N(peaks) =  547 ± 85    [186 ± 37]  for w=-0.8 
      S/N≈0.3σ : (i) smaller difference, (ii) larger variance  

-   Total peak counts (all peaks): 
         N(peaks) =  11,622 ± 62     for w=-1 
         N(peaks) =  11,562 ± 62     for w=-0.8 



  Covariance matrix for number of binned, tomographic peaks: 

   - R=500 realizations in cosmology m (rotate/shift/slice box) 
   - i = 15 (height) x 3 (source redshift) = 45 bins 

  Compute “χ2 “ between test (m) and fiducial (n) cosmology:  

  Compute likelihood at which cosmology m can be 
    distinguished from cosmology n: 
   - given by overlap between two distributions χ2;m,n and χ2;n,n 
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3 redshift bins, 15 peak height bins, 0.5 arcmin smoothing 

w = -1  versus  w = -1 
〈χ2〉=44.89 

w=-0.8  versus  w=-1 
〈χ2〉=55.51 

→ Δ 〈χ2〉 ≈ 10 
     or 85% confidence 



  - smoothing with 0.5 arcmin,  galaxies at zs=2 
  - w=-1 more peaks at high+low ends (DE dominates later) 
  - w=-0.8  peaks are more sharply peaked 
  - medium height (κ≈0.04, or 2σ) peaks dominate the total χ2 

Total # of peaks 
Difference in Npeak 

Contribution to χ2 



  - w=-0.8 distinguishable at 85% confidence from w=-1.0 
       70% chance for 68% CL 
       26% chance for 95% CL   

  - covariance has small effect overall (cuts high-χ2 tail) 

  - co-adding several smoothing scales gives only 
    modest (~10%) improvement over single best 
    scale (~0.5 arcmin – smaller than best cluster case) 

  - scaling from 3×3 = 9 deg2 to 20,000  deg2 : 
       rough guess:   
       significance √(20,000/9)=50 times better 
       1.5σ sensitivity to w0 is Δw0 =0.2/50=0.004 



  - what causes the medium-height peaks? 
         (i)  one ore more individual collapsed halos 
          (ii)  mildly over-dense large-scale filaments 
         (iii)  unvirialized ‘half-collapsed’ halos 
         (iv)  galaxy shape noise 

  - is the information in the medium-height peaks  
    still complementary to the power spectrum? 
        linear fluctuations in potential, or galaxy shape noise 
         would both produce gaussian random fields  

  - parameter degeneracies? 
         well known in the case of cluster counts; 
          similar  Ωm-σ8 degeneracy found for peaks  
                                       (Dietrich & Hartlap 2010)   



3

σ8 w Ωm # of sims
Fiducial 0.798 -1.0 0.26 5
Control 0.798 -1.0 0.26 45
High-σ8 0.850 -1.0 0.26 5
Low-σ8 0.750 -1.0 0.26 5
High-w 0.798 -0.8 0.26 5
Low-w 0.798 -1.2 0.26 5
High-Ωm 0.798 -1.0 0.29 5
Low-Ωm 0.798 -1.0 0.23 5

TABLE I: Cosmological parameters varied in each model. The
universe is always assumed to be spatially flat (ΩΛ+Ωm = 1).

For simplicity, in our analysis we assume that the source
galaxies are located on a source plane at a fixed redshift,
with ngal = 15 arcmin−2. We apply a θG = 1 arcmin
Gaussian smoothing to the maps. The noise σ2

noise in the
convergence after the Gaussian smoothing then becomes

σ2
noise =

〈σ2
λ〉

2πθ2
Gngal

. (2)

For reference, we note that at redshift zs = 2, the above
gives σnoise = 0.023, very close to the r.m.s. of the con-
vergence σκ = 0.022 in the noise-free maps. The r.m.s.
of the total convergence field, with noise included, is
σκ = 0.031.

B. Suite of Simulated Maps

In addition to the fiducial cosmology, we have run N-
body simulations in six other models. Each of these dif-
fers from the fiducial model in a single parameter: we
vary σ8, w, Ωm in both directions, with values σ8 = 0.750
and 0.850; w = -0.8 and -1.2; and Ωm = 0.23 and 0.29.
We assume the universe always stays spatially flat (i.e.
ΩΛ +Ωm = 1). The seven different cosmologies will here-
after be referred to as the fiducial, high-σ8, low-σ8, high-
w, low-w, high-Ωm, and low-Ωm models, respectively, as
summarized in Table I. In each of these N-body runs,
we create 1000 different WL maps with source galaxies at
zs = 1, and another 1000 maps with galaxies at zs = 2.
Each map covers a solid angle of 3.46× 3.46 degrees. All
maps were created by mixing potential planes randomly
among five different N-body runs, with independent real-
izations of the initial conditions, in the given cosmology.
Finally, we created an additional 1000 control maps, us-
ing the planes from 45 additional independent N-body
runs in the fiducial model. Having 9 times more strictly
independent realizations allows us to compute the covari-
ance matrix more accurately (needed for computing ∆χ2;
see below), and to check the robustness of our results to
different realizations of the fiducial model.

C. Halo Finding

We use the publicly available AMIGA halo finder ([14];
hereafter AHF) to identify collapsed halos in our N-body
runs. AMIGA finds halos based on an iterative density
refinement scheme. Its output consists of the 3D posi-
tions of the halos, and, importantly for us, the tagged
set of particles belonging to each halo. The virial radius
of a halo is such that when a sphere is placed at the halo’s
location, with a radius rvir, the overdensity ρ̄(rvir) is

ρ̄(rvir) = ∆virρb, (3)

where ρb is the background baryon density, and where
∆vir = 180 is adopted in this study. The mass of the
halo is then simply given by

Mvir = 4πρb∆virr
3
vir/3. (4)

As a simple test of both our N-body simulations and
our implementation of the halo finder, we reproduce the
fitting formula (their equation B3.) for the halo mass
function reported by Jenkins et al. [15]. An example of
this comparison is shown, in our fiducial model at z = 0,
in Fig. 2. Overall, we find excellent agreement, with an
accuracy of 10-20% (depending on mass and redshift).
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FIG. 2: Halo mass function, produced with the AMIGA halo
finder [14], in our N-body simulation of the fiducial model at
z = 0, compared to the fitting formula from Jenkins et al.
[15].

One of the goals in this study is to identify halos con-
tributing to each individual convergence peak. To do
this, starting from each peak, we follow the light ray,
and record the information (masses and location) of the
halos found within a light cone centered on the peak,
with a radius of 3 arcmin. This radius is chosen to be
three times the smoothing scale. We have verified that
doubling the radius of the light cone does not change our
halo matching results below – in the sense that no addi-
tional halos are identified that contribute significantly to
the total convergence of a peak (see detailed discussion



   What causes peaks? 

     - identify halos, match them to peaks [use fiducial cosmology] 

   What drives the cosmology-dependence of peak counts? 

     - compare two different cosmologies (e.g. vary σ8) with  

       identical noise realization and (quasi) identical initial condition 



   AMIGA halo finder (Knollmann & Knebe 2009) 

   [interesting cropped halos at box edges - make no difference] 

   20% agreement in range  2×1011 M⨀ <M< 3×1014 M⨀ 
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   Assume spherical NFW halo with measured Mvir 

   Compute κNFW(Φ,Mvir) as a function of impact parameter Φ 

   Compare to Δκ when ray-tracing is repeated with halo removed 
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- identify halos, match them to peaks [use fiducial cosmology] 

- use 50 noisy maps, 1 arcmin smoothing, 1.8 arcmin cone, zs=2 

- Peaks:  2,802 high (κ>4.8σnoise)  27,556  medium (1.1σnoise<κ<1.6σnoise) 

- Halos:     758                               22,352  8

class matching result number of matches
(high peaks) (medium peaks)

i halo ⇔ peak 526 (0.93) 2653 (4.7)
ii halo with no paired peak 230 (0.41) 19609 (35)
iii peak with no paired halo 2264 (4.0) 24709 (44)
iv halo ⇒ peak 2 (0.0035) 90 (0.16)
v halo ⇐ peak 12 (0.021) 194 (0.34)

TABLE II: Matching of halos and peaks similar to Hamana
et al. [25], but shown separately for high and medium peaks.
In the second column, “⇔” indicates a primary match in both
directions, whereas ⇒ and ⇐ indicate a primary match in
the direction of the arrow only. In total, our 50 realizations
of 3.36× 3.36deg2 maps contain 2,802 high peaks and 27,556
medium peaks, whereas the three–dimensional N-body outputs
contain 758 massive halos and 22,352 medium halos with cor-
responding masses. The numbers in () show the number per
deg2 averaged over 50 realizations, to be compared with the
results of Hamana et al. [25] (see text for discussion).

matched halo, but it is not the primary matched peak
of that halo. Table II shows the number of matches,
separately for high and medium peaks, falling into each
category.

Bearing in mind differences in redshift, noise, and peak
height thresholds, our results are in reasonable agreement
with [25]. Overall, we have found, on average, 5.0 deg−2

high peaks and 1.3 deg−2 massive halos. The majority
(70%) of the massive halos produce a one-to-one match-
ing peak, although these account only for ≈ 20% of the
total population of high peaks. More specifically, [25]
finds 23 deg−2 high peaks and 8.1 deg−2 massive halos.
Their matches per deg2 in categories i, ii, and iii are
5.9, 2.1, 15 accordingly. In general, we have found fewer
peaks and halos than [25], which can be attributed to our
lower σ8 and Ωm values. Our threshold of high peaks is
also not identical to theirs. However, we have checked
that the number of halos above a threshold is in good
agreement with their equation 15 [25], when our cosmo-
logical parameters are used. We have found a slightly
lower completeness of the halos (less fraction of halos in
category i and more fraction in category ii), and also a
∼ 50% lower purity (more fraction of peaks in category
iii). We have chosen a higher source redshift, zs = 2
([25] used zs = 1), this makes projection effects more im-
portant, and may explain why our completeness is lower.
Our noise is slightly larger, and our simulations and final
maps have higher resolution, compared to [25] – these
effects tend to increase the number of peaks relative to
number of halos, and to reduce the purity of identifying
halos.

The most important result in Table II is that, in differ-
ence from massive halos, only a small fraction (12%) of
the 22,352 medium-sized halos produce a medium peak
with a one-to-one pair, accounting for less than 10% of
all medium peaks. We conclude that the close agreement
in the number of medium peaks and halos (27,556 vs.
22,352) is a coincidence - and noise and projection ef-
fects are much more important for medium peaks than

for high peaks.
We next extend the above analysis, by identifying all

halos, down to low masses, by using a larger, 3 arcmin
cone around the LOS toward each peak, and by comput-
ing the expected contribution of each halo κi to the total
convergence at the position of the peak (based on the
NFW approximation). We then rank the halos accord-
ing to their κi values (starting from highest and going
down to the lowest). We add the noise κnoise at the peak
location to this ranked list, and ask the following ques-
tion: starting from the highest value, how far down this
ranked list do we need to sum the contributions, before
they account for > 50% of the total peak height?

In the upper two panels of Fig. 5, we plot the dis-
tribution of this quantity; a “0” indicates that noise is
the single largest contributor, and already accounts by
itself for most of the peak, “1” indicates that at least 1
halo had to be included, etc. These panels clearly show
that the large majority of high peaks are dominated by
a single halo, which accounts for at least half of the peak
amplitude. Most of these halos fall below the expected
threshold νnfw = 4.8. The high peaks thus have a much
better one-to-one match with halos than Table II implies,
once lower–mass halos are included. On the other hand,
the large majority of medium peaks are dominated by
noise.

Since noise does not contain any cosmological informa-
tion, in the bottom two panels of Fig. 5, we repeat the
same exercise, except that the noise contribution is ex-
cluded, and we show the number of halos required to ac-
count for the total halo contribution. These panels show
that while the high peaks are typically dominated by a
single halo, the contributions from a second (or higher-
rank) halos is often ( >∼50% of cases) as important. In the
case of medium peaks, however, it is very rare (< 5% of
cases) for a single halo to dominate the cumulative halo
contribution. Instead, there is a broad distribution, but
typically (in ∼half the cases) 4− 8 halos are required to
account for >half of this total halo contribution. As a
sanity check, we have computed the analogous distribu-
tion for random directions on our maps (i.e., not toward
peaks). For these random directions, the distribution has
an even broader shape, and is centered at 8, a larger num-
ber of halos. This reassures us that the medium peaks
still do preferentially pick out directions toward conjunc-
tions of ∼ 4− 8 halos. We also note that simply adding
up the expected κ contribution of all halos along the LOS
to a peak always overproduces the κ value of the peak
(not surprising, since this neglects the κ deficit from un-
derdense regions).

We next wish to clarify why there are fewer medium-
height peaks when σ8 is increased (and vice versa). One
can intuitively guess that increasing σ8 simply increases
the ”scatter” due to large scale structures. In the linear
regime, changing σ8 simply changes the local (3d) density
contrast, by the same factor everywhere. Pretending that
this holds in the nonlinear regime, it is easy to see that
the set of peaks would be invariant under changing σ8

 90% of medium peaks/halos have no match    
 10% of medium peaks have one-to-one match 



 and the sum of 4-8 halos along the LOS 
 medium peaks are dominated by noise 
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 - Mock maps = analytic prediction (Bond & Efstathiou 1987) 
 - Can compute covariance matrix numerically in GRF case 
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FIG. 3: Comparison of the convergence κnfw, produced by ha-
los with an NFW profile, and the difference −∆κ in the sim-
ulated convergence map induced by artificially removing the
halo from the 3D simulation box. 81 halos, identified in a
zs = 1 map generated in our fiducial model, were used for
this exercise. No galaxy noise was added to the maps. The
NFW assumption works well, with a fractional bias of only
-6.7 percent, and a scatter of 15 percent, relative to ∆κ.
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FIG. 4: Number of convergence peaks in a Gaussian random
field, as a function of their height measured in units of the
standard deviation of the convergence, σ0. The data points
show the number of peaks in bins of width ∆κ = 0.25σ0, ob-
tained by averaging counts in 200 random Monte Carlo real-
izations of a 2d GRF. The input power spectrum was calcu-
lated from the non-linear matter power spectrum in Smith et
al. [10] in our fiducial cosmology, with source redshift zs = 2,
including galaxy noise and smoothing. The map size, after
excluding 40 pixels along each edge, is 2.88× 2.88 deg2.

As a simple test, we directly compare our simulated
peak counts with those expected in a GRF. Fortunately,
the peak counts in a two–dimensional GRF, and their dis-
tribution in height, are predictable analytically [17]. In
fact, they depend only on the first and second derivatives
of the correlation function on small scales (or, equiva-
lently, the first two moments of the power spectrum).
For completeness, we reproduce the relevant equations
here. The differential number of maxima per unit solid
angle, nmax(ν), with height in the range ν to ν + dν,
where ν is measured in units of the standard deviation
σ0 of the random field, is given by

nmax(ν)dν =
1

2πθ2
∗

exp(−ν2/2)
dν

(2π)1/2
G(γ, γν)(10)

where

G(γ, x∗) = (x2
∗ − γ2)[1− 1

2
erfc{ x∗

[2(1− γ2)]1/2
}]

+x∗(1− γ2)
exp{−x2

∗/[2(1− γ2)]}
[2π(1− γ2)]1/2

+
−x2

∗/(3− 2γ2)
(3− 2γ2)1/2

[1− 1
2
erfc{ x∗

[2(1− γ2)(3− 2γ2)]1/2
}](11)

γ = σ2
1/(σ0σ2) (12)

θ∗ =
√

2σ1/σ2 (13)

σ2
p =

∫ ∞

0

&d&

2π
&2pP!

= p!22p(−1)p dpξ

d(θ2)p
(0), (14)

and where P! is the continuous 2d power spectrum of
the convergence field, and ξ(θ) is its two-point correla-
tion function. Integrating Eq. (10) over ν gives the total
number of peaks npk regardless of their height,

npk = (4π
√

3)−1θ∗
−2. (15)

To verify the accuracy of these analytic formulae, we
produced 200 numerical maps of GRFs, by generating
200 independent random realizations of the theoretical
2d weak lensing power spectrum (in our fiducial model,
assuming a source redshift zs = 2). We first generate a 2d
complex random field in & space, with the real and imag-
inary parts of Fourier modes distributed independently,
following Gaussians with a standard deviation of

√
P!/2.

Here P! is the power spectrum [18]. We then perform a
discrete Fourier transform to produce maps in real space.
The GRF maps have a size of 2048 × 2048, to mimic
the actual WL maps. Noise is then added according to
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FIG. 3: Comparison of the convergence κnfw, produced by ha-
los with an NFW profile, and the difference −∆κ in the sim-
ulated convergence map induced by artificially removing the
halo from the 3D simulation box. 81 halos, identified in a
zs = 1 map generated in our fiducial model, were used for
this exercise. No galaxy noise was added to the maps. The
NFW assumption works well, with a fractional bias of only
-6.7 percent, and a scatter of 15 percent, relative to ∆κ.
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FIG. 4: Number of convergence peaks in a Gaussian random
field, as a function of their height measured in units of the
standard deviation of the convergence, σ0. The data points
show the number of peaks in bins of width ∆κ = 0.25σ0, ob-
tained by averaging counts in 200 random Monte Carlo real-
izations of a 2d GRF. The input power spectrum was calcu-
lated from the non-linear matter power spectrum in Smith et
al. [10] in our fiducial cosmology, with source redshift zs = 2,
including galaxy noise and smoothing. The map size, after
excluding 40 pixels along each edge, is 2.88× 2.88 deg2.

As a simple test, we directly compare our simulated
peak counts with those expected in a GRF. Fortunately,
the peak counts in a two–dimensional GRF, and their dis-
tribution in height, are predictable analytically [17]. In
fact, they depend only on the first and second derivatives
of the correlation function on small scales (or, equiva-
lently, the first two moments of the power spectrum).
For completeness, we reproduce the relevant equations
here. The differential number of maxima per unit solid
angle, nmax(ν), with height in the range ν to ν + dν,
where ν is measured in units of the standard deviation
σ0 of the random field, is given by

nmax(ν)dν =
1

2πθ2
∗

exp(−ν2/2)
dν

(2π)1/2
G(γ, γν)(10)

where

G(γ, x∗) = (x2
∗ − γ2)[1− 1

2
erfc{ x∗

[2(1− γ2)]1/2
}]

+x∗(1− γ2)
exp{−x2

∗/[2(1− γ2)]}
[2π(1− γ2)]1/2

+
−x2

∗/(3− 2γ2)
(3− 2γ2)1/2

[1− 1
2
erfc{ x∗

[2(1− γ2)(3− 2γ2)]1/2
}](11)

γ = σ2
1/(σ0σ2) (12)

θ∗ =
√

2σ1/σ2 (13)

σ2
p =

∫ ∞

0

&d&

2π
&2pP!

= p!22p(−1)p dpξ

d(θ2)p
(0), (14)

and where P! is the continuous 2d power spectrum of
the convergence field, and ξ(θ) is its two-point correla-
tion function. Integrating Eq. (10) over ν gives the total
number of peaks npk regardless of their height,

npk = (4π
√

3)−1θ∗
−2. (15)

To verify the accuracy of these analytic formulae, we
produced 200 numerical maps of GRFs, by generating
200 independent random realizations of the theoretical
2d weak lensing power spectrum (in our fiducial model,
assuming a source redshift zs = 2). We first generate a 2d
complex random field in & space, with the real and imag-
inary parts of Fourier modes distributed independently,
following Gaussians with a standard deviation of

√
P!/2.

Here P! is the power spectrum [18]. We then perform a
discrete Fourier transform to produce maps in real space.
The GRF maps have a size of 2048 × 2048, to mimic
the actual WL maps. Noise is then added according to



- Why does number of medium peaks scale inversely with σ8 ? 

        σ8=0.80:       2,802 high        27,556  medium 

        σ8=0.75:       1,987 high        29,097 medium 

- Match individual peaks in the two cosmologies  (via halos) 

       80-90% of high peaks have 1-1 correspondance (small κ bias)  

       55% of medium peaks  “fragile”: sensitive to halo masses/locations 

- Change in κ of individual peaks: 
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class low-σ8 → fiducial fiducial → low-σ8

exit to low κ 3303 3420
stay in bin 7683 7515

exit to high κ 5373 4408
total matched 16359 15343

lost (unmatched) 12738 12213

TABLE III: We sort medium peaks into different categories,
based on the outcome of our attempt to find a match for each
peak in another cosmology. The total number of medium peaks
in the low-σ8 model and the fiducial model are 29,097 and
27,556 respectively. While going from one cosmology to the
other, peaks can be “lost”, they can stay within the same κ
bin, or they can move out of the bin to higher or lower κ
values. Additionally, new medium peaks appear.

the fattening of halos. To be specific, we find a frac-
tional bias 〈(κ2 − κ1)/κ1〉 = 0.034 and an r.m.s. scatter
〈(κ2 − κ1)2/κ2

1〉1/2 = 0.19. when high peaks in lower σ8

model are matched to high peaks in fiducial model. In
the reverse direction, the bias and scatter are -0.088 and
0.17. These results agree with the upper two panels in
Fig. 6, showing a positive bias when σ8 is increasing, and
a negative bias when σ8 is decreasing. The bias for the
medium peaks is less clear than for the high peaks. In
fact, the bias is positive in both matching directions, with
the number for increasing σ8 (0.068) more positive than
the number for decreasing σ8 (0.032). This is because
the medium peaks are dominated by noise, rather than
halos, and the peaks which increase in height because of
the positive noise have a larger chance to survive as a
peak than those that are hurt by the noise. The scatter
for medium peaks is ≈ 0.32, about twice the scatter for
high peaks.

Finally, we examine the “movement” of the peaks in
height κ as σ8 is varied, in order to test our hypothe-
sis, stated above, that an increase in σ8 tends to evac-
uate peaks from near the κ ∼ 0 (or near the maximum
of the peak-height distribution). For example, we divide
the 29,097 medium-height peaks in the low-σ8 model into
several cases. Approximately half (12,738) of these peaks
are unmatched: they “disappear” when σ8 is increased
(equivalently, these are peaks that “appear” when one
starts from the fiducial model, and decreases σ8). The
remaining 16,359 matched peaks are further divided into
middle, lower and high cases, based on whether they re-
main in the original medium-κ bin (7,683), exit this bin
toward higher κ (5,373) or to lower κ (3,303), in the other
cosmology. These results, as well as the corresponding re-
sults in the reverse matching direction, are summarized
in Table III.

By examining the table, we conclude there is indeed
a preferentially larger scatter in the direction out of
the “medium” bin, when going from the lower σ8 to
the fiducial model, compared to the reverse direction:
(3, 303+5, 373) > (3, 420+4, 408). This table further re-
veals that there are two distinct reasons for the decrease
in medium-height peaks. Approximately 2/3rd of the to-
tal decrease (of 29,097-27,556 = 1,541 ≈ 1500 peaks),

or ≈ 900 peaks, can be attributed to the above men-
tioned ”scatter” due to the increased density contrast –
i.e. more peaks moving out of the bin than into the bin.
The remaining ∼1/3rd of the decrease is due to losing
peaks, i.e. ≈ 500 more peaks are destroyed than created,
as σ8 is increased. Based on the preceding discussion, we
speculate that this latter affect is caused by the projec-
tions of multiple halos, which can create and destroy the
relatively low amplitude peaks.

In summary, the results in this section suggest that
medium-height peaks are almost always dominated by
pure galaxy shape noise, but they receive a significant
contribution from collapsed halos, with typically 4-8 ha-
los in projection along the LOS. The halos drive the cos-
mological sensitivity of these peaks in two ways: by (i)
changing the amplitudes of the noise peaks, and by (ii)
destroying and creating new peaks. Between these last
two effects, in the case of σ8, we found that the first is
∼twice as important as the second.

B. Comparison to Gaussian Predictions

Our next task is to examine whether (i) the statistics
of the peaks, and (ii) their cosmology-sensitivity differs
significantly from predictions in a Gaussian random field.
The degree of any departure from a GRF is especially
important to quantify for the medium peaks, since the
results of the last section suggest that these are heavily
dominated by pure Gaussian noise.

Our main results are shown in Fig. 7, which directly
compare the peak counts in our simulated maps with
those in a GRF. The GRF predictions are computed from
the theoretical formula as discussed above, but using the
(moments of) the power spectrum σ0, σ1, σ2 that were
measured from the corresponding simulated maps. In
each panel, we also compare the high-σ8, fiducial, and
low-σ8 models. In the bottom of each panel, we also
show the fractional difference between the GRF and the
fiducial model. The source galaxies are assumed to be
at zs = 2, and all results shown in the figure include 1
arcmin smoothing. We plot the mean number of peaks
in convergence bins of width ∆κ = 1

4σnoise = 0.0045, av-
eraged over 1000 realizations. In the top two panels, we
exclude noise from the maps; in the bottom two panels,
noise is included. Finally, in the right two panels, we have
scaled the convergence field κ by its r.m.s. value σκ (these
histograms use a bin width of ∆(κ/σκ) = 0.25). This re-
moves information that arises from σκ alone. If the sole
effect of changing σ8 was to change the heights of individ-
ual peaks by a constant factor, then this would result in
a re-scaling of the peak-height probability distribution;
the re-scaling by σκ clarifies the relative importance of
this effect.

As these figures show, in the noiseless case, the peak
height distributions are very different from the Gaussian
predictions and are reminiscent of the skewed one-point
function of κ, which has a sharp drop at low demagnifi-
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map cosmology boundary
type pair locations

noisy us F and High-σ8 -0.0028 0.0217 0.0407 0.0695
noisy sc F and High-σ8 0.2650 0.6682 1.3550 3.3013
noisy us F and High-Ωm -0.0050 0.0200 0.0383 0.0627
noisy sc F and High-Ωm 0.4618 0.9950 1.5750 3.0556
noisy us F and High-w -0.0019 0.0190 0.0347 0.0551
noisy sc F and High-w 0.2565 1.1450 2.4939 3.0368

TABLE IV: Examples of bin boundaries used for the con-
vergence peak counts. The boundaries are listed for unscaled
(“us”) and scaled (“sc”) noisy maps, used to compute ∆χ2 be-
tween the fiducial model and the high-σ8, high-Ωm, and high-w
models, respectively. In the unscaled case, the boundary loca-
tions are in units of the dimensionless convergence κ; in the
scaled case, they are in units of ν = κ/σκ.

map cosmology noiseless ∆χ2 noisy ∆χ2

type pair unscaled scaled unscaled scaled
Sim F and High-σ8 5.16 0.46 5.89 4.29
GRF F and High-σ8 10.65 0.23 5.87 3.16
Sim F and Low-σ8 5.01 0.34 5.09 3.67
GRF F and Low-σ8 9.93 0.16 4.98 2.58
Sim F and High-Ωm 3.61 0.033 4.02 2.46
GRF F and High-Ωm 7.68 0.014 3.77 2.01
Sim F and Low-Ωm 4.39 0.053 4.44 2.56
GRF F and Low-Ωm 8.79 0.043 4.08 2.11
Sim F and High-w 0.98 0.47 0.65 0.27
GRF F and High-w 0.93 0.017 0.46 0.14
Sim F and Low-w 0.44 0.27 0.36 0.16
GRF F and Low-w 0.54 0.004 0.26 0.08

TABLE V: ∆χ2 values from our simulated maps and from
predictions in a GRF, based on the difference in the peak
height distributions between the fiducial model and six other
models, varying σ8, w, and Ωm. Results are shown for both
the unscaled (N(κ)) and the scaled (N(ν)) peak distributions.
Source galaxies are assumed to be at zs = 2, and a set of
2 × 1000 maps are used in comparing each pair of cosmolo-
gies.

cation, and a long tail to high magnification (e.g. ref. [6]
and references therein). This correspondence of the high-
tails is not entirely surprising; indeed, a pixel with a very
high κ value is likely to mark a peak.

When noise is added, the distributions near their peaks
look much more similar to the Gaussian predictions.
However, there is still a large non-Gaussian deficit of
the lowest peaks (with the most negative κpeak) and a
clear excess of the highest (κ >∼3σκ) peaks. Importantly,
however, there also remains a clear difference in the peak-
height distributions even for the medium-height (κ ∼ σκ)
peaks. This last point is encouraging, and suggests that
the medium peaks do contain non-Gaussian information.

IV. DISCUSSION

A. Sensitivity to Cosmological Parameters

The number counts have been found (Paper I) to de-
pend sensitively on a combination of (σ8,w). Here we
vary σ8 and w separately, in order to clarify the sensi-
tivity to each of these parameters; we also consider vari-
ations in Ωm. We use ∆χ2, defined in Eq. (19) above,
to measure the significance of the difference in the peak
counts N(κ), caused by the changes in these parameters.
We used fiducial and other cosmological maps to calcu-
late the change in N(κ), but we used the control maps
to compute the covariance matrix. Having 9 times more
strictly independent realizations (45 control maps vs 5
realizations in the fiducial model) allows us to compute
the covariance matrix more accurately. To isolate the
sensitivity from beyond a change in the r.m.s. σκ, we
also compute the ∆χ2’s between the scaled peak height
distributions N(ν). In these analyses, we use five conver-
gence bins whose locations are chosen by visual inspec-
tion, as explained above. Examples of bin boundaries we
used are listed in Table IV.

Our main results are shown in Table V, and can be
enumerated as follows.

Raw cosmology sensitivity. The simulated noisy ∆χ2

values in the unscaled maps are significant (∆χ2 ∼ 4−6),
and suggest that the cosmological sensitivity of the peak
counts is competitive with other methods (after scal-
ing to the full size of an all-sky survey, such as LSST;
this extrapolation is discussed further below). The sen-
sitivity for w is about an order of magnitude weaker
(∆χ2 ∼ 0.3 − 0.6) than for the other parameters. How-
ever, this is the case for other observables, such as the
power spectrum, as well. As shown below (see Table XIII
and related discussion) the peak counts and the power
spectrum individually have similar sensitivities to all
three parameters; they can furthermore be combined to
improve the marginalized errors by a factor of ≈two on
all three parameters.

Can we “scale out” the cosmological information? By
comparing the scaled and unscaled cases in the noisy
maps, we see that scaling the maps by the variance σκ re-
duces the ∆χ2 values only by a modest amount. In these
maps, only a small fraction of the parameter-sensitivity
arises through changes in σκ. Interestingly, the situation
is different in the raw, noiseless maps. Nearly all of the
sensitivity in these maps are attributable σκ: the ∆χ2

values diminish significantly after the scaling. This re-
sult is somewhat counter-intuitive, and implies that there
is a “non-linear” interaction between noise and physical
structures. More precisely, the result can be re-stated
as follows: before adding noise, the cosmology-induced
changes are very similar to a uniform ’stretching’ of the
peak height distribution along the x-axis. However, once
the noise is added, the cosmology-induced changes are no
longer described by such stretching. In hindsight, this is
not entirely surprising: given that noise has almost no
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map cosmology boundary
type pair locations

noisy us F and High-σ8 -0.0028 0.0217 0.0407 0.0695
noisy sc F and High-σ8 0.2650 0.6682 1.3550 3.3013
noisy us F and High-Ωm -0.0050 0.0200 0.0383 0.0627
noisy sc F and High-Ωm 0.4618 0.9950 1.5750 3.0556
noisy us F and High-w -0.0019 0.0190 0.0347 0.0551
noisy sc F and High-w 0.2565 1.1450 2.4939 3.0368

TABLE IV: Examples of bin boundaries used for the con-
vergence peak counts. The boundaries are listed for unscaled
(“us”) and scaled (“sc”) noisy maps, used to compute ∆χ2 be-
tween the fiducial model and the high-σ8, high-Ωm, and high-w
models, respectively. In the unscaled case, the boundary loca-
tions are in units of the dimensionless convergence κ; in the
scaled case, they are in units of ν = κ/σκ.

map cosmology noiseless ∆χ2 noisy ∆χ2

type pair unscaled scaled unscaled scaled
Sim F and High-σ8 5.16 0.46 5.89 4.29
GRF F and High-σ8 10.65 0.23 5.87 3.16
Sim F and Low-σ8 5.01 0.34 5.09 3.67
GRF F and Low-σ8 9.93 0.16 4.98 2.58
Sim F and High-Ωm 3.61 0.033 4.02 2.46
GRF F and High-Ωm 7.68 0.014 3.77 2.01
Sim F and Low-Ωm 4.39 0.053 4.44 2.56
GRF F and Low-Ωm 8.79 0.043 4.08 2.11
Sim F and High-w 0.98 0.47 0.65 0.27
GRF F and High-w 0.93 0.017 0.46 0.14
Sim F and Low-w 0.44 0.27 0.36 0.16
GRF F and Low-w 0.54 0.004 0.26 0.08

TABLE V: ∆χ2 values from our simulated maps and from
predictions in a GRF, based on the difference in the peak
height distributions between the fiducial model and six other
models, varying σ8, w, and Ωm. Results are shown for both
the unscaled (N(κ)) and the scaled (N(ν)) peak distributions.
Source galaxies are assumed to be at zs = 2, and a set of
2 × 1000 maps are used in comparing each pair of cosmolo-
gies.

cation, and a long tail to high magnification (e.g. ref. [6]
and references therein). This correspondence of the high-
tails is not entirely surprising; indeed, a pixel with a very
high κ value is likely to mark a peak.

When noise is added, the distributions near their peaks
look much more similar to the Gaussian predictions.
However, there is still a large non-Gaussian deficit of
the lowest peaks (with the most negative κpeak) and a
clear excess of the highest (κ >∼3σκ) peaks. Importantly,
however, there also remains a clear difference in the peak-
height distributions even for the medium-height (κ ∼ σκ)
peaks. This last point is encouraging, and suggests that
the medium peaks do contain non-Gaussian information.

IV. DISCUSSION

A. Sensitivity to Cosmological Parameters

The number counts have been found (Paper I) to de-
pend sensitively on a combination of (σ8,w). Here we
vary σ8 and w separately, in order to clarify the sensi-
tivity to each of these parameters; we also consider vari-
ations in Ωm. We use ∆χ2, defined in Eq. (19) above,
to measure the significance of the difference in the peak
counts N(κ), caused by the changes in these parameters.
We used fiducial and other cosmological maps to calcu-
late the change in N(κ), but we used the control maps
to compute the covariance matrix. Having 9 times more
strictly independent realizations (45 control maps vs 5
realizations in the fiducial model) allows us to compute
the covariance matrix more accurately. To isolate the
sensitivity from beyond a change in the r.m.s. σκ, we
also compute the ∆χ2’s between the scaled peak height
distributions N(ν). In these analyses, we use five conver-
gence bins whose locations are chosen by visual inspec-
tion, as explained above. Examples of bin boundaries we
used are listed in Table IV.

Our main results are shown in Table V, and can be
enumerated as follows.

Raw cosmology sensitivity. The simulated noisy ∆χ2

values in the unscaled maps are significant (∆χ2 ∼ 4−6),
and suggest that the cosmological sensitivity of the peak
counts is competitive with other methods (after scal-
ing to the full size of an all-sky survey, such as LSST;
this extrapolation is discussed further below). The sen-
sitivity for w is about an order of magnitude weaker
(∆χ2 ∼ 0.3 − 0.6) than for the other parameters. How-
ever, this is the case for other observables, such as the
power spectrum, as well. As shown below (see Table XIII
and related discussion) the peak counts and the power
spectrum individually have similar sensitivities to all
three parameters; they can furthermore be combined to
improve the marginalized errors by a factor of ≈two on
all three parameters.

Can we “scale out” the cosmological information? By
comparing the scaled and unscaled cases in the noisy
maps, we see that scaling the maps by the variance σκ re-
duces the ∆χ2 values only by a modest amount. In these
maps, only a small fraction of the parameter-sensitivity
arises through changes in σκ. Interestingly, the situation
is different in the raw, noiseless maps. Nearly all of the
sensitivity in these maps are attributable σκ: the ∆χ2

values diminish significantly after the scaling. This re-
sult is somewhat counter-intuitive, and implies that there
is a “non-linear” interaction between noise and physical
structures. More precisely, the result can be re-stated
as follows: before adding noise, the cosmology-induced
changes are very similar to a uniform ’stretching’ of the
peak height distribution along the x-axis. However, once
the noise is added, the cosmology-induced changes are no
longer described by such stretching. In hindsight, this is
not entirely surprising: given that noise has almost no
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map cosmology boundary
type pair locations

noisy us F and High-σ8 -0.0028 0.0217 0.0407 0.0695
noisy sc F and High-σ8 0.2650 0.6682 1.3550 3.3013
noisy us F and High-Ωm -0.0050 0.0200 0.0383 0.0627
noisy sc F and High-Ωm 0.4618 0.9950 1.5750 3.0556
noisy us F and High-w -0.0019 0.0190 0.0347 0.0551
noisy sc F and High-w 0.2565 1.1450 2.4939 3.0368

TABLE IV: Examples of bin boundaries used for the con-
vergence peak counts. The boundaries are listed for unscaled
(“us”) and scaled (“sc”) noisy maps, used to compute ∆χ2 be-
tween the fiducial model and the high-σ8, high-Ωm, and high-w
models, respectively. In the unscaled case, the boundary loca-
tions are in units of the dimensionless convergence κ; in the
scaled case, they are in units of ν = κ/σκ.

map cosmology noiseless ∆χ2 noisy ∆χ2

type pair unscaled scaled unscaled scaled
Sim F and High-σ8 5.16 0.46 5.89 4.29
GRF F and High-σ8 10.65 0.23 5.87 3.16
Sim F and Low-σ8 5.01 0.34 5.09 3.67
GRF F and Low-σ8 9.93 0.16 4.98 2.58
Sim F and High-Ωm 3.61 0.033 4.02 2.46
GRF F and High-Ωm 7.68 0.014 3.77 2.01
Sim F and Low-Ωm 4.39 0.053 4.44 2.56
GRF F and Low-Ωm 8.79 0.043 4.08 2.11
Sim F and High-w 0.98 0.47 0.65 0.27
GRF F and High-w 0.93 0.017 0.46 0.14
Sim F and Low-w 0.44 0.27 0.36 0.16
GRF F and Low-w 0.54 0.004 0.26 0.08

TABLE V: ∆χ2 values from our simulated maps and from
predictions in a GRF, based on the difference in the peak
height distributions between the fiducial model and six other
models, varying σ8, w, and Ωm. Results are shown for both
the unscaled (N(κ)) and the scaled (N(ν)) peak distributions.
Source galaxies are assumed to be at zs = 2, and a set of
2 × 1000 maps are used in comparing each pair of cosmolo-
gies.

cation, and a long tail to high magnification (e.g. ref. [6]
and references therein). This correspondence of the high-
tails is not entirely surprising; indeed, a pixel with a very
high κ value is likely to mark a peak.

When noise is added, the distributions near their peaks
look much more similar to the Gaussian predictions.
However, there is still a large non-Gaussian deficit of
the lowest peaks (with the most negative κpeak) and a
clear excess of the highest (κ >∼3σκ) peaks. Importantly,
however, there also remains a clear difference in the peak-
height distributions even for the medium-height (κ ∼ σκ)
peaks. This last point is encouraging, and suggests that
the medium peaks do contain non-Gaussian information.

IV. DISCUSSION

A. Sensitivity to Cosmological Parameters

The number counts have been found (Paper I) to de-
pend sensitively on a combination of (σ8,w). Here we
vary σ8 and w separately, in order to clarify the sensi-
tivity to each of these parameters; we also consider vari-
ations in Ωm. We use ∆χ2, defined in Eq. (19) above,
to measure the significance of the difference in the peak
counts N(κ), caused by the changes in these parameters.
We used fiducial and other cosmological maps to calcu-
late the change in N(κ), but we used the control maps
to compute the covariance matrix. Having 9 times more
strictly independent realizations (45 control maps vs 5
realizations in the fiducial model) allows us to compute
the covariance matrix more accurately. To isolate the
sensitivity from beyond a change in the r.m.s. σκ, we
also compute the ∆χ2’s between the scaled peak height
distributions N(ν). In these analyses, we use five conver-
gence bins whose locations are chosen by visual inspec-
tion, as explained above. Examples of bin boundaries we
used are listed in Table IV.

Our main results are shown in Table V, and can be
enumerated as follows.

Raw cosmology sensitivity. The simulated noisy ∆χ2

values in the unscaled maps are significant (∆χ2 ∼ 4−6),
and suggest that the cosmological sensitivity of the peak
counts is competitive with other methods (after scal-
ing to the full size of an all-sky survey, such as LSST;
this extrapolation is discussed further below). The sen-
sitivity for w is about an order of magnitude weaker
(∆χ2 ∼ 0.3 − 0.6) than for the other parameters. How-
ever, this is the case for other observables, such as the
power spectrum, as well. As shown below (see Table XIII
and related discussion) the peak counts and the power
spectrum individually have similar sensitivities to all
three parameters; they can furthermore be combined to
improve the marginalized errors by a factor of ≈two on
all three parameters.

Can we “scale out” the cosmological information? By
comparing the scaled and unscaled cases in the noisy
maps, we see that scaling the maps by the variance σκ re-
duces the ∆χ2 values only by a modest amount. In these
maps, only a small fraction of the parameter-sensitivity
arises through changes in σκ. Interestingly, the situation
is different in the raw, noiseless maps. Nearly all of the
sensitivity in these maps are attributable σκ: the ∆χ2

values diminish significantly after the scaling. This re-
sult is somewhat counter-intuitive, and implies that there
is a “non-linear” interaction between noise and physical
structures. More precisely, the result can be re-stated
as follows: before adding noise, the cosmology-induced
changes are very similar to a uniform ’stretching’ of the
peak height distribution along the x-axis. However, once
the noise is added, the cosmology-induced changes are no
longer described by such stretching. In hindsight, this is
not entirely surprising: given that noise has almost no
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observable type cosmology noiseless ∆χ2 noisy ∆χ2

Peak Counts (∆χ2
N ) Fiducial 5.16 5.89

Power Spectrum (∆χ2
P ) and 17.06 8.12

Combination (∆χ2
NP ) High-σ8 37.07 16.36

∆χ2
NP /(∆χ2

N + ∆χ2
P ) 1.67 1.17

Peak Counts (∆χ2
N ) Fiducial 5.01 5.09

Power Spectrum (∆χ2
P ) and 13.03 5.76

Combination (∆χ2
NP ) Low-σ8 26.79 11.87

∆χ2
NP /(∆χ2

N + ∆χ2
P ) 1.49 1.09

Peak Counts (∆χ2
N ) Fiducial 3.61 4.02

Power Spectrum (∆χ2
P ) and 17.69 6.15

Combination (∆χ2
NP ) High-Ωm 32.42 11.65

∆χ2
NP /(∆χ2

N + ∆χ2
P ) 1.52 1.15

Peak Counts (∆χ2
N ) Fiducial 4.39 4.44

Power Spectrum (∆χ2
P ) and 16.49 5.61

Combination (∆χ2
NP ) Low-Ωm 29.47 10.94

∆χ2
NP /(∆χ2

N + ∆χ2
P ) 1.41 1.09

Peak Counts (∆χ2
N ) Fiducial 0.98 0.65

Power Spectrum (∆χ2
P ) and 0.92 0.29

Combination (∆χ2
NP ) High-w 2.79 0.84

∆χ2
NP /(∆χ2

N + ∆χ2
P ) 1.46 0.90

Peak Counts (∆χ2
N ) Fiducial 0.44 0.36

Power Spectrum (∆χ2
P ) and 0.64 0.19

Combination (∆χ2
NP ) Low-w 1.69 0.51

∆χ2
NP /(∆χ2

N + ∆χ2
P ) 1.57 0.92

TABLE X: ∆χ2 from peak counts, power spectra, and their
combination, computed between the fiducial model and six
other models varying σ8, w, and Ωm independently. ∆χ2

NP

denotes the ∆χ2 from the combination of peak counts and
power spectrum, including their correlations; ∆χ2

N and ∆χ2
P

denote the individual ∆χ2’s. 1,000 noise–free or noisy maps
are used for each of the model. Source galaxies are at zs = 2.

for σ8 and Ωm. This shows, interestingly, that the power
spectrum sensitivity is much more degraded by noise than
the peak counts. This is not surprising, given that the
constraints from the power spectrum are dominated by
linear fluctuations on relatively large scales [27, 28], with
noise adding linearly to the large-scale structure signal.
In other words, unlike for peak counts, adding noise does
not change the signal (i.e., the difference ∆Pi between
two cosmologies), as long as the galaxy noise is inde-
pendent of cosmology, whereas the noise increases the
variances 〈(Pi − Pi)(Pj − Pj)〉.

Inspecting next the combined ∆χ2’s (shown in the
third row in each section of Table X), we find that these
are comparable to adding the two individual ∆χ2 val-
ues. This would be expected if there were no cross–
correlations between power spectra and peak counts. In-
deed, this result appears consistent with the negligible
correlation between the 3d space density of clusters and
the 2d convergence power spectrum [27, 29]. Interest-
ingly, however, in the noiseless maps, the N(κ) + P ($)
combination yields a better sensitivity than adding two
observables independently (by ∼ 50%; see each 4th row
in the Table). This “sum greater than its parts” ef-
fect can arise whenever N(κ) and P ($) have a nonzero
correlation 〈∆N∆P 〉 %= 0, and the cosmology-induced

source cosmology noiseless ∆χ2 noisy ∆χ2

unscaled scaled unscaled scaled
z2 Fiducial 5.16 0.46 5.89 4.29
z1 and 3.36 0.66 2.67 2.56
z12 High-σ8 5.99 0.91 6.16 4.84

z12/(z2+z1) 0.70 0.81 0.72 0.71
z2 Fiducial 5.01 0.34 5.09 3.67
z1 and 3.27 0.73 2.23 2.23
z12 Low-σ8 5.90 0.94 5.29 4.05

z12/(z2+z1) 0.71 0.88 0.72 0.69
z2 Fiducial 3.61 0.033 4.02 2.46
z1 and 4.47 0.044 2.97 2.15
z12 High-Ωm 5.41 0.067 4.51 3.12

z12/(z2+z1) 0.67 0.87 0.65 0.68
z2 Fiducial 4.39 0.053 4.44 2.56
z1 and 5.30 0.051 2.86 2.23
z12 Low-Ωm 6.51 0.082 4.76 3.15

z12/(z2+z1) 0.67 0.79 0.65 0.66
z2 Fiducial 0.98 0.47 0.65 0.27
z1 and 1.24 0.58 0.40 0.20
z12 High-w 1.57 0.83 0.70 0.37

z12/(z2+z1) 0.71 0.80 0.67 0.79
z2 Fiducial 0.44 0.27 0.36 0.16
z1 and 0.94 0.39 0.37 0.19
z12 Low-w 1.12 0.56 0.48 0.28

z12/(z2+z1) 0.81 0.85 0.66 0.80

TABLE XI: This table examines a simple case of tomography
with two redshifts. ∆χ2 values are shown between the fiducial
model and six other models varying σ8, w, and Ωm, for both
unscaled and scaled peak height distributions, obtained using
1,000 noise–free or noisy maps. Source galaxies are located at
zs = 1, at zs = 2, or at both redshifts (denoted by z1, z2, and
z12). The rows labeled by “z12/(z2+z1)” show the combined
∆χ2 divided by the sum of the individual ∆χ2 of z1 and z2.

changes δN and δP do not obey the same correlation.
It can be verified, after some algebra, that in the case
of two observables N and P , individually yielding ∆χ2

N
and ∆χ2

P , the condition for ∆χ2
NP > ∆χ2

N + ∆χ2
P is

(δNδP )/〈∆N∆P 〉 < (∆χ2
N + ∆χ2

P )/2. By inspecting
the cross-terms in our 10×10 covariance matrix, we have
verified that this condition is satisfied for each Ni and Pj

pair whose combination enhances their ∆χ2. For exam-
ple, when σ8 is decreased, the peak counts in the lowest
bin (N1) decrease, as do the power spectra – however, the
covariance matrix predicts an anti-correlation between
N1 and all five Pj ’s.

D. Redshift Tomography

Our analysis above relied on a single source galaxy
redshift at zs = 2. In a realistic survey, there will of
course be a distribution of galaxy redshifts. Using galax-
ies at different redshifts (“tomography”) could, in princi-
ple, strengthen cosmological constraints significantly, de-
spite the strong correlations in the signal measured at
different source galaxy planes [28, 30].

Here we evaluate the benefits of tomography in the
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spectrum. The details of computing the marginalized er-
ror is explained in the next section. The figure shows
that the five bins are not sufficient in this case; however,
the marginalized error converges to within < 10% once
the number of bins is >∼15.
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FIG. 10: The marginalized errors of the three cosmological pa-
rameters σ8, Ωm, w from the combination of the peak counts
and power spectrum, as a function of the number of conver-
gence bins. The fiducial model was compared to the high/low-
σ8, high/low-Ωm, and high/low-w models, using noisy un-
scaled maps with zs = 2. Bin boundaries were chosen such
that each bin contains equal counts for peak counts and equally
spaced with the cut at " = 20, 000 for the power spectrum. The
y-axis labels on the left refer to the σ8 and Ωm cases; the labels
on the right to the w case.

H. Forecasting Marginalized Errors

In all previous calculations, we have varied a single pa-
rameter, holding all the other parameters fixed. While
this clarifies the raw cosmological sensitivity of the peak
counts, justified if CMB (or other) observations can be
used to determine the parameters with negligibly small
errors, one has to simultaneously vary all uncertain pa-
rameter, and consider their degeneracies, to obtain re-
alistic error forecasts (even in the limiting case of no
systematic errors). While numerical limitations preclude
us from exploring the full cosmological parameter space,
we here use a Fisher matrix to obtain marginalized er-
rors when the three parameters σ8, w, and Ωm are var-
ied simultaneously. Degeneracies between these param-
eters are among the most important for both cluster
counts (e.g. ref. [31]) and for shear power spectra (e.g.
ref. [13]). We compute the marginalized errors from
Eq. (22). We use the finite difference between the fiducial
model and the low(high)-σ8, low(high)-w and low(high)-
Ωm models to estimate the backward(forward) deriva-
tives with respect to these parameters. The average of
backward and forward derivatives is used to calculate the
Fisher matrix.

As mentioned above, we use 15 bins for the peak

marginalized error σ8 w Ωm

z2 0.0065 0.030 0.0057
z1 0.0078 0.036 0.0057

z2+z1 0.0024 0.018 0.0022
Power Spectrum (zs = 2) 0.0047 0.026 0.0028

z2+Power Spectrum 0.0026 0.012 0.0019
z1+Power Spectrum 0.0037 0.020 0.0026

tomography combined 0.0012 0.0096 0.0010
combined/( z2+Power Spectrum) 0.47 0.79 0.52

TABLE XIII: Marginalized 68% errors, in our noisy maps,
on the cosmological parameters σ8, w, and Ωm. In the top
half of the table, peak counts and power spectra are considered
separately. From top to bottom: (i) counts alone at zs = 2;
(ii) counts alone at zs = 1; (iii) counts alone with both zs = 1
and zs = 2; (iv) power spectrum alone at zs = 2. In the bot-
tom half of the table, counts and the power spectrum are com-
bined. From top to bottom: (v) combining counts and power
spectrum at zs = 2; (vi) combining counts and power spec-
trum at zs = 1; (vii) combining the above two cases to use all
4 observables – peak counts and power spectrum at zs = 2 and
zs = 1; and finally (viii) the last combined results (row vii)
divided by the “z2+Power Spectrum” results (row v). Each
error quoted is marginalized over the other two parameters,
and are scaled to a 20,000 deg2 survey, such as LSST.

counts. The simple intuitive ad-hoc optimization of the
bin boundaries, based on avoiding crossings in a single
pair of cosmologies, which was used in the case of a sin-
gle parameter, cannot be generalized in a straightforward
way to the multi-parameter case. Indeed, we have found
that when we use five bins, the results become sensitive
to the choice of the cosmology pair over which the bin
boundaries are optimized. Therefore we use the simpler
(and unambiguous) scheme of equal-count bins; as shown
in the previous section, the accuracy in this case conver-
gences for >∼15 bins. We emphasize that whenever there
are significant degeneracies between parameters, the nu-
merical accuracy requirements on the individual elements
of the Fisher matrix become more stringent. on the in-
dividual elements of the Fisher matrix To validate our
results, we have checked that our marginalized errors do
converge when we use >∼15 bins (see Fig. 10 above).

We found that, in addition to the binning, the
marginalized errors for the peak counts, with a single
source galaxy redshift, are sensitive to the direction of
taking the finite-difference derivative (backward or for-
ward). If we take any one of backward, forward and av-
eraged derivatives for any of the parameters: σ8, w, Ωm,
among the marginalized errors of these 27 combinations,
the marginalized errors for the three parameters vary by
about 20%−25%. On the other hand, the results become
more stable when we combine the peak counts with the
power spectrum (reducing the variations to 10%− 15%)
This behavior is consistent with the presence of strong de-
generacies between parameters, which are broken when
Fisher matrices corresponding to two or more observables
are added (as shown for the combination of cluster counts
and power spectra [27, 32]).

•  Tomography improves marginalized errors by factor of ~two 
      redshift-dependent parameter-sensitivities are non-degenerate 

•  Factor of ~2 from adding peak counts to power spectrum 
      counts contain information beyond P(l) 

•  Fisher matrix – use backward/forward finite difference  

•  Use 15 κ-bins; scale errors by angle sqrt(20,000/12)~50 



  One of several general topological measures of isodensity 
   surfaces (in 3D) or contours (2D) 
      - an alternative probe of non-Gaussianity 
        Gott et al. (1982)  

  Examples of previous applications 
     - genus in 3-D galaxy distribution in SDSS 
     - 2D Minkowski Functionals in CMB: search for 
       primordial non-Gaussianity (fNLlimits similar to bispectrum)        
     - fractional-area P(>κth) in WL – a.k.a. V0, one of 3 MFs 
         Wang et al. (2009)  
      - genus in WL maps: V2 (OCDM vs SCDM; Matsubara & Jain 2001)  

  Robustly measurable in data and in our set of simulations 
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FIG. 3: A 12-square-degree convergence map from the fiducial cosmology as created by our simulations in the top left panel, with
intrinsic ellipticity noise from source galaxies and 1 arcmin Gaussian smoothing. The other three panels show the excursion
sets above different convergence thresholds κ, i.e. all pixels with values larger or equal to κ are black and the others white.
The threshold values are: κ = 0.0 (top right), κ = 0.02 (bottom left), and κ = 0.07 (bottom right). The Minkowski functionals
V0, V1, and V2 measure the area, boundary length, and Euler characteristic, respectively, of the black regions as a function of
threshold. *** PLOT NEEDS COLOR BAR ON BOTTOM. ***

mological parameters can be constrained best due to this
additional nonlinear information.

IV. STATISTICAL METHODS OF ANALYSIS

A. Notation

This subsection introduces notation. We evaluate de-
scriptors (MFs V0, V1, V2, and the power spectrum),
denoted by N on 12-square-degree convergence maps,
counted by r, from cosmological models with cosmologi-
cal parameters p = {Ωm, w,σ8} (p denotes only the in-

contours as a function of 
the threshold κth  

•  V0: area above κth  
•  V1: contour boundary length 
•  V2: Euler characteristic 
    #connected regions 
    above minus #below κth 

Any functional that is additive, 
translation-invariant, and  
continuous, is a linear  
combination of V1, V2, and V3. 



Depend on threshold, and on 1st and 2nd derivatives of κ(x,y)  

4

We discuss the accuracy of our simulations in Sec-
tion III B, when we discuss the convergence power spec-
trum.

III. MINKOWSKI FUNCTIONALS AND
POWER SPECTRA

A. Minkowski Functionals

Minkowski Functionals are morphological statistics of
thresholded smoothed fields. They are complementary
statistics to the more familiar hierarchy of correlation
functions. If the fields are completely Gaussian, then
there exist a one to one map between the power spectrum
(i.e. 2-pt correlation function) and Minkowski Function-
als. In the weakly non-Gaussian case, one can also find an
approximate map between the two statistics [Cite Hikage
et al]. In general however, MF encode correlation func-
tions of arbitrary order, hence they are extremely useful
probes of non-Gaussian fields. Since weak lensing con-
vergence maps are expected to contain small scale non-
Gaussian information, they are particularly suited to this
application.

Some attempts have been made to use morphological
statistics to analyze weak lensing maps. Two early efforts
used MFs to discern between SCDM and ΛCDM mod-
els. [14, 15] More recently, [16] used the fractional area
of “hot spots” of a thresholded map as a statistic, while
[25, 28] used counts of peaks (local maxima) in conver-
gence maps and found that most discerning power comes
from medium-height peaks rather than the high ones, as
previously believed. Finally, [29] constructed what they
call “number counts” – a statistics which turns out to be
the genus of a thresholded smoothed field, as we will see
is nothing but one of the three Minkowski Functionals we
consider in this paper.

MFs exhibit some useful properties. They are addi-
tive, F(A ∪ B) = F(A) + F(B) − F(A ∩ B), motion-
invatiant, F(gA) = F(A) ∀g ∈ G (G being the group of
all translations and rotations), and continuous, An → A
for n → ∞ implying F(An) → F(A). Hadwiger’s theo-
rem [30] proves the completeness of the Minkowski fun-
tionals: every functional F(A) which is additive, motion-
invariant, and continuous, can be written as a linear com-
bination of Minkowski functionals.

These are important properties of the MFs and guar-
antee that small changes in a map, like a different value
of a pixel, will cause only small changes in the result.
This is in particular desirable when physical structures
are digitally imaged and thereby pixelated, introducing
small local errors. On the other hand, these properties
also are quite restrictive: because of completeness of the
Minkowsi functionals, no functional with these proper-
ties can probe an individual structure like a peak beyond
its area and circumference, which are clearly insufficient
to describe the complete shape of a local object. It is
for these reasons why MFs are primarily used to study

the morphology of maps as a whole, not small details of
individual localized structures.

In general, for a given D-dimensional smoothed field,
one can construct D+1 morphological descriptors. These
are the Minkowski Functionals Vj . Since we shall analyze
2D weak lensing maps in this paper, we restrict ourselves
to reviewing MFs in two dimensions, and refer the inter-
ested reader to [9, 30, 31]. The three MFs in 2D, V0, V1,
and V2, measure the area, boundary, and Euler charac-
teristic, respectively, of the excursion set Aν of an image,
which is the part above a certain threshold ν.

The convergence is a smooth scalar field κ(x) on R2.
For a given threshold ν, there exist an excursion set Aν

defined by

Aν = {x ∈ R2|κ(x) > ν}. (4)

The area statistic, V0(ν), is the integration of a step func-
tion over R2

V0(ν) =
∫

R2
Θ(κ− ν) da (5)

The line statistic, V1(ν), is the integration of the length
of isodensity lines over R2. For future computational
simplicity, we convert it into an area integral by inserting
a delta function and the appropriate Jacobian

V1(ν) =
1
4

∫

R2
|∇κ|δ(κ− ν) da (6)

where ∇κ is the covariant derivative over R2, i.e. sim-
ple partial derivatives. The genus statistic, V2(ν), is the
integration of the principal curvature K along isodensity
lines over R2, which we can similarly convert into an area
integral

V1(ν) =
1
2π

∫

R2
|∇κ|δ(κ− ν)K da (7)

The reason we have reexpressed the MFs as integrals
of invariants over R2 is that the integrands reduce to
depend solely on the threshold ν and the 1st and 2nd
order covariant derivatives of the field κ

V0(ν) =
∫

R2
Θ(κ(x)− ν) da (8)

V1(ν) =
∫

R2
δ(κ(x)− ν)

√
κ2

x + κ2
y da (9)

V2(ν) =
∫

R2
δ(κ(x)− ν)

2κxκyκxy − κ2
xκyy − κ2

yκxx

κ2
x + κ2

y

da

(10)
where κx means partial derivative with respect to x etc.

In this form, numerical calculation of Minkowski Func-
tionals Vj(ν) of a pixelated map becomes simple : we
calculate the derivatives in coordinate space via finite
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calculate the derivatives in coordinate space via finite
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We discuss the accuracy of our simulations in Sec-
tion III B, when we discuss the convergence power spec-
trum.

III. MINKOWSKI FUNCTIONALS AND
POWER SPECTRA

A. Minkowski Functionals

Minkowski Functionals are morphological statistics of
thresholded smoothed fields. They are complementary
statistics to the more familiar hierarchy of correlation
functions. If the fields are completely Gaussian, then
there exist a one to one map between the power spectrum
(i.e. 2-pt correlation function) and Minkowski Function-
als. In the weakly non-Gaussian case, one can also find an
approximate map between the two statistics [Cite Hikage
et al]. In general however, MF encode correlation func-
tions of arbitrary order, hence they are extremely useful
probes of non-Gaussian fields. Since weak lensing con-
vergence maps are expected to contain small scale non-
Gaussian information, they are particularly suited to this
application.

Some attempts have been made to use morphological
statistics to analyze weak lensing maps. Two early efforts
used MFs to discern between SCDM and ΛCDM mod-
els. [14, 15] More recently, [16] used the fractional area
of “hot spots” of a thresholded map as a statistic, while
[25, 28] used counts of peaks (local maxima) in conver-
gence maps and found that most discerning power comes
from medium-height peaks rather than the high ones, as
previously believed. Finally, [29] constructed what they
call “number counts” – a statistics which turns out to be
the genus of a thresholded smoothed field, as we will see
is nothing but one of the three Minkowski Functionals we
consider in this paper.
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ties can probe an individual structure like a peak beyond
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the morphology of maps as a whole, not small details of
individual localized structures.
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R2
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1
4
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2π
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R2
|∇κ|δ(κ− ν)K da (7)

The reason we have reexpressed the MFs as integrals
of invariants over R2 is that the integrands reduce to
depend solely on the threshold ν and the 1st and 2nd
order covariant derivatives of the field κ
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∫
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∫
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(10)
where κx means partial derivative with respect to x etc.

In this form, numerical calculation of Minkowski Func-
tionals Vj(ν) of a pixelated map becomes simple : we
calculate the derivatives in coordinate space via finite
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difference and then sum them over the entire space with
its corresponding threshold value ν.

Since MF are statistics on smoothed fields, while our
convergence map is pixelated, one might worry that a
discretized implementation of Eqs. (8) to (10) can lead to
spurious “residuals”. To check for this, we generated 170
2048 × 2048 pixelated maps of Gaussian random fields
(GRF), and calculated the MF for each of them. For
such maps, the expectation values for the MF can be
calculated [CITE]

V GRF
0 (ν) =

1
2

[
1− Erf

(
ν − µ√

2σ0

)]
(11)

V GRF
1 (ν) =

1
8
√

2
σ1

σ0
exp

(
− (ν − µ)2

2σ2
0

)
(12)

V GRF
2 (ν) =

ν − µ

4
√

2
σ2

1

σ3
0

exp
(
− (ν − µ)2

2σ2
0

)
(13)

where µ is the mean, and

σ0 =
√
〈κ2〉 − µ2 (14)

is the standard deviation while

σ1 =
√
〈κ2

x + κ2
y〉 (15)

is its first moment.
We average over the MF 〈Vj〉 of these 170 GR maps,

and then compare it to the analytic expressions given by
Eqns. (11), (12) and (13) calculated using the averaged
mean 〈µ〉, the standard deviation 〈σ0〉 and the first mo-
ment 〈σ1〉. As can be seen from Figures (1) and (??),
our code reproduces the GRF MF very well.

B. Power Spectra

The power spectra were precomputed for 200 equally
spaced bins of angular wave vector $% in flat sky approx-
imation, covering the full range from the largest mode
encompassing the whole 12-square-degree 2048 × 2048-
pixel convergence map to the smallest mode given by
the angular resolution of two neighboring pixels. Spatial
isotropy was assumed and modes with same length of the
wave vector $% but different direction, were averaged over,
to make the power spectrum P (%) purely a function of
% = |$%|.

We do a brief exposition of accuracy of our simula-
tions by examining the convergence power spectrum in
our simulated weak lensing maps generated with dif-
ferent technical simulation parameters and compare it
to theoretical semi-analytical predictions from [32] using
the Limber approximation [33] to convert the 3D matter
power spectrum into the 2D power spectrum of conver-
gence.
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FIG. 1: Minkowski Functionals V0 (top), V1 (middle) and V2

(bottom) for a Gaussian Random field with standard devia-
tion σ0 and µ = 0.

For the accuracy verification, we use the convergence
power spectra from raw 12-square-degree WL maps be-
fore addition of ellipticity noise and smoothing. The fidu-
cial model power spectrum, averaged over 1000 maps
with error bars corresponding to the standard devia-
tion of the scatter between individual maps is plotted
in Figure 5. The plot shows three spectra, one each for
zs = 1, 1.5, 2 from bottom to top, and compared to the
theoretical predictions (dashed lines) from [32, 33] com-
puted with the public code Nicaea [34]. We see that we
lose a bit of power in our simulations below % ∼ 400
due to our finite box size. At the high end, we see very
good agreement out to % ∼ 20, 000 for zs = 1 and out to
% ∼ 30, 000 for zs = 1, 5 and 2. This loss of small scale
power is the reason why we do not use smoothing scales
smaller than 1 arcmin for our results when we study the
effect of different smoothing scales.

Compared to Figure 3 in [25], we notice that the drop-
off in power happens at higher % due to the higher res-



  A simple statistic: one-point function of convergence 
     i.e. fraction of sky above a fixed threshold κ>κT =νσN 
     “analytically” calculable, analogous to mass function: 

Wang, Haiman & May (2009) 
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difference and then sum them over the entire space with
its corresponding threshold value ν.

Since MF are statistics on smoothed fields, while our
convergence map is pixelated, one might worry that a
discretized implementation of Eqs. (8) to (10) can lead to
spurious “residuals”. To check for this, we generated 170
2048 × 2048 pixelated maps of Gaussian random fields
(GRF), and calculated the MF for each of them. For
such maps, the expectation values for the MF can be
calculated [CITE]
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where µ is the mean, and
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〈κ2〉 − µ2 (14)

is the standard deviation while

σ1 =
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〈κ2
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y〉 (15)

is its first moment.
We average over the MF 〈Vj〉 of these 170 GR maps,

and then compare it to the analytic expressions given by
Eqns. (11), (12) and (13) calculated using the averaged
mean 〈µ〉, the standard deviation 〈σ0〉 and the first mo-
ment 〈σ1〉. As can be seen from Figures (1) and (??),
our code reproduces the GRF MF very well.

B. Power Spectra

The power spectra were precomputed for 200 equally
spaced bins of angular wave vector $% in flat sky approx-
imation, covering the full range from the largest mode
encompassing the whole 12-square-degree 2048 × 2048-
pixel convergence map to the smallest mode given by
the angular resolution of two neighboring pixels. Spatial
isotropy was assumed and modes with same length of the
wave vector $% but different direction, were averaged over,
to make the power spectrum P (%) purely a function of
% = |$%|.

We do a brief exposition of accuracy of our simula-
tions by examining the convergence power spectrum in
our simulated weak lensing maps generated with dif-
ferent technical simulation parameters and compare it
to theoretical semi-analytical predictions from [32] using
the Limber approximation [33] to convert the 3D matter
power spectrum into the 2D power spectrum of conver-
gence.
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For the accuracy verification, we use the convergence
power spectra from raw 12-square-degree WL maps be-
fore addition of ellipticity noise and smoothing. The fidu-
cial model power spectrum, averaged over 1000 maps
with error bars corresponding to the standard devia-
tion of the scatter between individual maps is plotted
in Figure 5. The plot shows three spectra, one each for
zs = 1, 1.5, 2 from bottom to top, and compared to the
theoretical predictions (dashed lines) from [32, 33] com-
puted with the public code Nicaea [34]. We see that we
lose a bit of power in our simulations below % ∼ 400
due to our finite box size. At the high end, we see very
good agreement out to % ∼ 20, 000 for zs = 1 and out to
% ∼ 30, 000 for zs = 1, 5 and 2. This loss of small scale
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smaller than 1 arcmin for our results when we study the
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FIG. 4: The three Minkowski functionals in two dimensions V0 (area), V1 (boundary length), and V2 (Euler characteristic) as
a function of convergence threshold κ for 12-square-degree convergence maps from different cosmological models. In the left
column are the actual functionals, in the right column their difference to the fiducial model fiducial map set. The error bars
depict the standard deviation of the MFs among the 1000 maps of the fiducial map set, while the lines denote the averages for
each cosmology. A source galaxy density of ngal = 15/arcmin2 at redshift zs = 2 was assumed and θG = 1 arcmin Gaussian
smoothing was applied. Black: auxiliary map set for fiducial model (different realization of initial conditions) with error bars
corresponding to the standard deviation among the 12-square-degree maps, red: Ωm = 0.23, pink: Ωm = 0.29, blue: w = −0.8,
turquoise: w = −1.2, green: σ8 = 0.75, yellow: σ8 = 0.85.

dependently varied parameters, which is a 3D parameter
space in our case). In our case, the descriptors can be
generally represented as a function of one variable, i.e. as
N(x), where x can stand for the convergence threshold
κ for the MFs or the spherical harmonic index " for the
2D convergence power spectrum.

When obtained from the maps, the descriptors are
pre-computed at many discrete values of xj (200 equally
spaced thresholds for the MFs and 1000 equally spaced
values of " for the power spectrum). To make the covari-
ance matrix smaller, when used for statistical evaluation,
the descriptors are further binned into 15 bins per de-

zs=2 

θ=1’  
n=15/amin2 

1,000 maps  
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∆Ωm ∆w ∆σ8

zs = 2, θG = 1′

V0 -0.00322 (-0.00317) -0.0151 (-0.0158) -0.00391 (-0.00357)
0.00319 (0.00322) 0.0154 (0.016) 0.00395 (0.00345)

V1 -0.0019 (-0.00141) -0.0113 (-0.00781) -0.0026 (-0.002)
0.00192 (0.00147) 0.0108 (0.00803) 0.00265 (0.00193)

V2 -0.00192 (-0.00155) -0.0123 (-0.00735) -0.00253 (-0.00206)
0.00183 (0.00151) 0.0118 (0.00752) 0.00257 (0.00202)

PS -0.00252 (-0.00178) -0.0183 (-0.0134) -0.00421 (-0.0029)
0.00253 (0.00175) 0.0174 (0.0134) 0.00427 (0.00294)

MFs -0.00162 (-0.00129) -0.00896 (-0.00659) -0.00225 (-0.00168)
0.00162 (0.00126) 0.00929 (0.00651) 0.00216 (0.00176)

zs = 2, θG = 1′, 2′, 3′, 5′, 10′

V0 -0.00152 (-0.00126) -0.00813 (-0.00654) -0.00223 (-0.0016)
0.00165 (0.00123) 0.00832 (0.00676) 0.00205 (0.00155)

V1 -0.00163 (-0.0012) -0.00852 (-0.00635) -0.00227 (-0.0016)
0.0016 (0.00121) 0.0089 (0.00617) 0.00224 (0.0016)

V2 -0.00154 (-0.00128) -0.00952 (-0.00648) -0.00222 (-0.00179)
0.00153 (0.00127) 0.00954 (0.00631) 0.00218 (0.00177)

PS -0.00184 (-0.00145) -0.0111 (-0.0105) -0.00297 (-0.0024)
0.00178 (0.00143) 0.0118 (0.01) 0.00308 (0.00237)

MFs -0.00117 (-0.000979) -0.00645 (-0.00553) -0.00168 (-0.00127)
0.00117 (0.000908) 0.00649 (0.00501) 0.00166 (0.00133)

zs = 1, 1.5, 2, θG = 1′, 2′, 3′, 5′, 10′

V0 -0.000894 (-0.000788) -0.00572 (-0.00518) -0.00137 (-0.00105)
0.000891 (0.000793) 0.00549 (0.00475) 0.00134 (0.00111)

V1 -0.000933 (-0.000836) -0.00607 (-0.00542) -0.00131 (-0.00118)
0.000914 (0.000778) 0.00623 (0.00529) 0.00133 (0.00118)

V2 -0.000975 (-0.000892) -0.00666 (-0.0054) -0.0014 (-0.00126)
0.00097 (0.000857) 0.00664 (0.00537) 0.00138 (0.00125)

PS -0.0011 (-0.000759) -0.00799 (-0.0081) -0.00174 (-0.00131)
0.00102 (0.000769) 0.00827 (0.00792) 0.00176 (0.00127)

MFs -0.0009 (-0.000747) -0.00559 (-0.0048) -0.00144 (-0.0012)
0.000925 (0.0008) 0.00545 (0.00496) 0.00144 (0.00122)

TABLE II: Marginalized constraints on cosmological parameters from the three Minkowski functionals and from the power
spectrum individually, with and without combining smoothing scales and using tomography, as indicated in the table. For every
case, the top line shows the extent of the lower bound of the 68% error bar marginalized over the other two parameters, the bottom
line the extent of the upper bound on the parameter from its fiducial model value. The first number is using the “theoretical
prediction estimate”(TPE) obtained by averaging over our maps from the backward finite difference between our simulations,
the number in parentheses from the forward finite difference. Intrinsic ellipticity noise from a source galaxy surface density of
ngal = 15/arcmin2 has been included. The numbers were scaled from our 12-square-degree maps to a full-sky LSST-like survey.
*** JMK: I think we should merge the two lines, showing their average, the numbers are very close together and it will make
the table half its current size. ***

∆Ωm ∆w ∆σ8

PS -0.00114 (-0.000759) -0.00791 (-0.00664) -0.00169 (-0.00138)
0.00114 (0.000766) 0.00799 (0.00697) 0.00176 (0.00129)

MFs -0.000935 (-0.000737) -0.00481 (-0.00446) -0.00142 (-0.00117)
0.000877 (0.000718) 0.00477 (0.00436) 0.00148 (0.00123)

MFs+PS -0.00106 (-0.000806) -0.00565 (-0.00538) -0.00169 (-0.00138)
0.00105 (0.000847) 0.00564 (0.00529) 0.00167 (0.00136)

TABLE III: Marginalized constraints on cosmological parameters from the power spectrum, the three Minkowski functionals
(MFs) combined, and from the power spectrum together with the MFs. Redshift tomography with three redshift planes at
zs = 1, 1.5, 2 and a combination of five smoothing scales θG = 1′, 2′, 3′, 5, 10′ were used. Intrinsic ellipticity noise from a
source galaxy surface density of ngal = 15/arcmin2 per redshift plane has been included. In particular w gets constrained by
the MFs much better. The MFs+PS case exhausts the quality limit of our dataset and provides an artificially worse constraint
than the MFs alone, illustrating that our method is conservative with respect to using too large a covariance matrix (too many
combinations/bins). See caption of Table II for further explanation of numbers.

•  MFs deliver factor of 1.5-2 tighter errors than power spectrum 
(V1 best individual sensitivity; V1 ,V2  have comparable errors) 

•  Monte-Carlo errors – good agreement with Fisher matrix 
       (slight asymmetry in error bars) 
•  Backward vs Forward derivatives 
       (small asymmetry) 
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FIG. 7: Comparison of constraints from individual Minkowski functionals and the power spectrum scaled to a full sky survey
with a source galaxy density of ngal = 15/arcmin2 per source plane. The colors denote the different descriptors: blue: V0, green:
V1, red: V2, pink: V0, V1, V2 combined, turquoise: powerspectrum. The solid ellipses are from the finite backward derivative,
the dashed ones from the forward derivative in the calculation of the linear dependence on the model parameters. The middle
row shows the constraints from source redshift zs = 2 and all five smoothing scales combined θG = 1′, 2′, 3′, 5′, 10′. In contrast
to that, the top row shows the contours from only smoothing scale θG = 1 arcmin. Especially V0 benefits from combining
smoothing scales. The bottom row is the same as the middle row but with redshift tomography with three source galaxy planes at
zs = 1, 1.5, 2, and illustrates the importance of tomography. *** JMK: Why the power spectrum doesn’t stay the same between
the top two rows is a mystery. We should either omit it from the plot or pose the question. ***



  Peak counts and MFs deliver constraints on Ωm, w, σ8      

    comparable or tighter than the power spectrum  

  This information is new: from non-linear, non-Gaussian regime,  

   complementary to the power spectrum 

  Peaks: most info is in medium peaks, from halo projections 

  MFs: V1 most sensitive, V2  comparable for marginalized 

   errors; V0 comparable w/multiple smoothing scales combined 


