THE OVERDENSITY AND MASSES OF THE FRIENDS-OF-FRIENDS HALOS AND UNIVERSALITY OF HALO MASS FUNCTION

Surhud More $^{1,2},$ Andrey V. Kravtsov $^{2,3,4},$ Neal Dalal 5, Stefan Gottlöber 6 $\it Draft version February 28, 2011$

arXiv:1103.0005

The friends-of-friends algorithm:

A percolation theory perspective

Surhud More (KICP)

Andrey Kravtsov (KICP), Neal Dalal (CITA), Stefan Gottloeber (AIP)

Take home message(s)

- The properties of FOF halos can be well understood in terms of continuum percolation theory.
 - Overdensity of FOF halos: NOT equal to 180, but is dependent on linking length and concentration.
 - Resolution dependence of the FOF halo mass.
 - Universality of the FOF halo mass function is perhaps a coincidence.

FOF: A percolation algorithm

- Used to identify structure in galaxy distribution based on physical proximity
 - Huchra and Geller 1982, Press and Davis 1982, Einasto et al. 1984, Eke et al. 2004, Berlind et al. 2006
- Useful to identify structures in numerical simulations too.
 - See Knebe et al. 2011 for a long list of halo finders using FOF

Single free parameter:

Linking length, often quoted in terms of the mean inter-particle separation: b

Surhud More, KICP

Short introduction to percolation

- Web applet from:
 - o R. Gonsalves, University of Buffalo
- Terms from percolation theory
 - Critical threshold for percolation: p_c
 - Infinite cluster
 - Strength of infinite cluster: P_{∞}

o Swiss cheese model

- Spheres of size R, distributed in a Poisson manner
- Probability of a given point to belong to at least one sphere $p(x) = 1 \exp\left[-\frac{4}{3}\pi n(x)R^3\right]$
- Overlapping spheres form a network of friends (cluster)
- Critical density threshold

$$n_{\rm crit} = \frac{n_c}{(2R)^3} = \frac{n_c}{(b\bar{l})^3}$$

 $n_{\rm c} = 0.652960 \pm 0.000005$

Lorenz & Ziff 2001

Surhud More, KICP

Surhud More, KICP

o Swiss cheese model

- Spheres of size R, distributed in a Poisson manner
- Probability of a given point to belong to at least one sphere $p(x) = 1 \exp\left[-\frac{4}{3}\pi n(x)R^3\right]$
- Overlapping spheres form a network of friends (cluster)
- Critical density threshold

$$n_{\rm crit} = \frac{n_c}{(2R)^3} = \frac{n_c}{(b\bar{l})^3}$$

 $n_{\rm c} = 0.652960 \pm 0.000005$

Lorenz & Ziff 2001

Simulated FOF halos

 Monte carlo realizations of spherically symmetric NFW haloes with varying number of particles

$$N_{180} = \frac{4}{3}\pi r_s^3 \left[\log(1 + c_{180}) - \frac{c_{180}}{1 + c_{180}} \right] = \frac{4}{3}\pi \frac{R_{180}^3}{\bar{l}} 180$$

Linking length: $0.2\bar{l}$

Simulated FOF halos

Concentration dependence of overdensity

 Percolation predicted boundary of the FOF halo

$$n(r_{\Delta}) = n_{\text{crit}} = \frac{n_c}{(b\bar{l})^3}$$

o Overdensity:

$$\Delta = \frac{\int_0^{r_\Delta} n(r) 4\pi r^2 dr}{\frac{4}{3}\pi r_\Delta^3} - 1$$

Overdensity of real FOF halos

- Predictions work
 remarkably well for
 different linking lengths.
- Scatter in overdensities
 due to scatter in
 concentration.

Blue: Bolshoi

Magenta: MultiDARK

Red: Predictions

Surhud More, KICP

Overdensity of real FOF halos

Friday, March 11, 2011

Universality of the mass function

o The FOF mass function is universal for different cosmologies at different redshifts if b is adjusted.

Courtin et al. 2010

Blue line: Percolation theory prediction

$$\left(\frac{b}{0.2}\right)^{-3} = \left(\frac{\Delta+1}{244.86}\right) \frac{c_{\Delta}^2}{\mu(c_{\Delta})(1+c_{\Delta})^2}$$

Surhud More, KICP

Resolution dependence of FOF mass

- First observed by Warren et al. (2006) using idealized experiments of isothermal haloes
- Proposed a correction
 based upon the number of
 particles in the FOF halo
- Lukic et al. (2009)

 subsequently carried out

 tests with idealized NFW

 halos with varying

 concentration

 Threshold for percolation changes on finite size lattices

$$\tilde{p_c} - p_c \propto L_{\text{size}}^{-1/\nu}$$
 $L_{\text{size}} = \frac{2R_{\Delta}}{b\bar{l}}$

o Mass selected by FOF changes

$$\Delta M \propto \frac{\partial M}{\partial p} (\tilde{p}_c - p_c) \propto \left| \frac{\partial M}{\partial p} \right| L_{\rm size}^{-1/\nu}$$

Surhud More, KICP

Surhud More, KICP

What about real FOF halos?

- 25 most massive haloes from Bolshoi simulation.
- Run FOF on a fraction of particles.
- Correct the halo mass using the percolation theory prescription.

Triaxiality not a big issue, but substructure is a huge problem!!!

Surhud More, KICP

Take home message(s)

- The properties of FOF halos can be well understood in terms of continuum percolation theory.
 - Overdensity of FOF halos: NOT equal to 180, but is dependent on linking length and concentration.
 - Resolution dependence of the FOF halo mass, difficult to correct because of substructure.
 - Universality of the FOF halo mass function is perhaps a coincidence.