A Pedagogical Guide to Radio Phenomenon in Clusters

Christoph Pfrommer¹

in collaboration with

Nick Battaglia, Dick Bond, Torsten Enßlin, Francesco Miniati, Anders Pinzke, John Sievers, Kandaswamy Subramanian

> ¹Heidelberg Institute for Theoretical Studies, Germany Kavli Institute for Theoretical Physics, Santa Barbara

Apr 21, 2011 / KITP program

Outline

Radio phenomenology

- Overview
- Observations
- Radio gischt emission

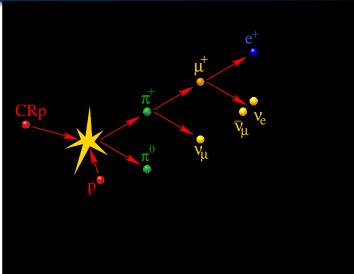
2 Cosmic ray transport

- Observations and models
- CR pumping, streaming, and diffusion
- Radio and gamma-ray bimodality

3

Radio gischt emission

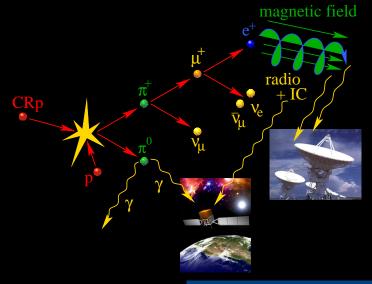
Outline


Radio phenomenology

- Overview
- Observations
- Radio gischt emission

Overview Observations Radio gischt emission

Hadronic cosmic ray proton interaction

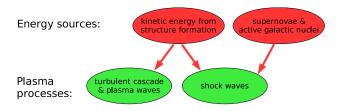


Christoph Pfrommer

Radio Phenomenon in Clusters

Overview Observations Radio gischt emission

Hadronic cosmic ray proton interaction

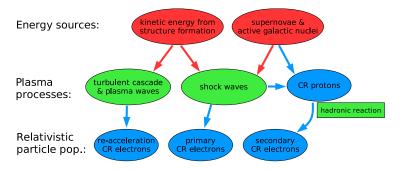

Christoph Pfrommer

Radio Phenomenon in Clusters

Overview Observations Radio gischt emission

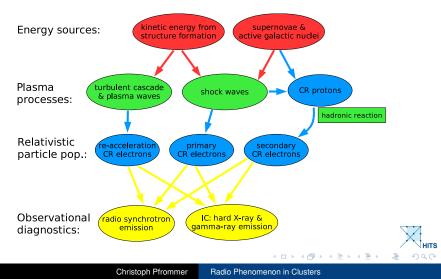
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:



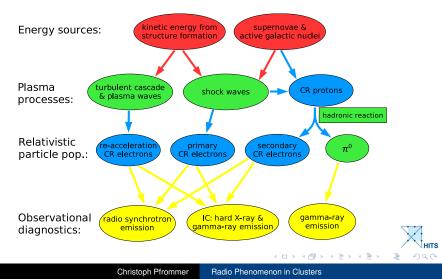
Overview Observations Radio gischt emission

Multi messenger approach for non-thermal processes


Relativistic populations and radiative processes in clusters:

Overview Observations Radio gischt emission

Multi messenger approach for non-thermal processes


Relativistic populations and radiative processes in clusters:

Overview Observations Radio gischt emission

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Overview Observations Radio gischt emission

What we hope to learn from non-thermal emission

• plasma astrophysics:

- shock and particle acceleration
- large-scale magnetic fields
- turbulence
- dynamical state → cosmology?
 - non-thermal pressure support: hydrostatics + SZE
 - history of individual clusters: cluster archeology
 - illuminating the process of structure formation
- consistent picture of non-thermal processes: radio, soft/hard X-rays, γ-rays

프 🖌 🖌 프

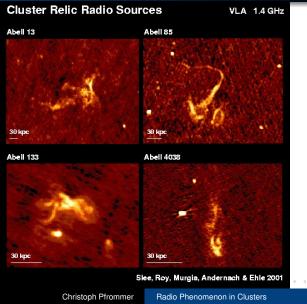
Overview of diffuse radio phenomenon

- radio relics: $\alpha_{\nu} \sim$ 1 2.5, where $j_{\nu} \propto \nu^{-\alpha_{\nu}}$
 - radio relic bubble: aged radio cocoon, steep spectrum
 - radio phoenix: shock-revived bubble that has already faded out of the radio window → adiabatic compression?
 - radio gischt: irregular morphology, at cluster periphery (< Mpc), in some cases coincident with weak X-ray shock, polarized → diffusive shock acceleration (Fermi I)?
- radio halos: centrally located, regular morphology, $\alpha_{\nu} \sim 1 1.5$, unpolarized \rightarrow volume filling radio emission
 - giant radio halos: occur in merging clusters, > 1 Mpc-sized, morphology similar to X-rays
 - radio mini halos: occur in cool core clusters, few times 100 kpc in size, emission extends over cool core

ヘロト ヘアト ヘビト ヘビ

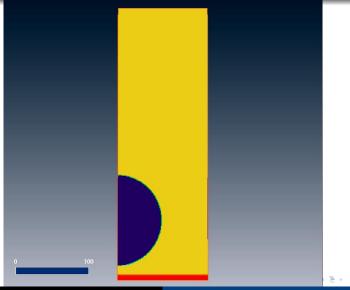
Overview of diffuse radio phenomenon

- radio relics: $\alpha_{\nu} \sim$ 1 2.5, where $j_{\nu} \propto \nu^{-\alpha_{\nu}}$
 - radio relic bubble: aged radio cocoon, steep spectrum
 - radio phoenix: shock-revived bubble that has already faded out of the radio window → adiabatic compression?
 - radio gischt: irregular morphology, at cluster periphery (< Mpc), in some cases coincident with weak X-ray shock, polarized → diffusive shock acceleration (Fermi I)?
- radio halos: centrally located, regular morphology, *α_ν* ~ 1 − 1.5, unpolarized → volume filling radio emission
 - giant radio halos: occur in merging clusters, > 1 Mpc-sized, morphology similar to X-rays
 - radio mini halos: occur in cool core clusters, few times 100 kpc in size, emission extends over cool core



イロン イボン イヨン イヨ

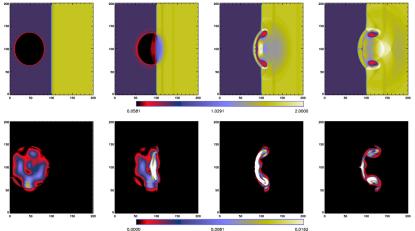
Overview Observations Radio gischt emission


90

Radio phoenix

Overview Observations Radio gischt emission

Shock overruns an aged radio bubble (C.P. & Jones 2011)

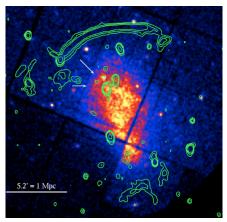


Christoph Pfrommer

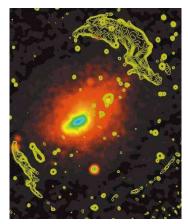
Radio Phenomenon in Clusters

Overview Observations Radio gischt emission

Bubble transformation to vortex ring



Enßlin & Brüggen (2002): gas density (top) and magnetic energy density (bottom)


Overview Observations Radio gischt emission

Radio gischt: double relic sources

CIZA J2242.8+5301 ("sausage relic")

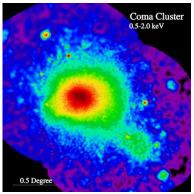
(X-ray: XMM; radio: WSRT; Ogrean+ in prep.)

Abell 3667

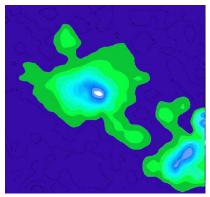
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

・ 同 ト ・ ヨ ト ・ ヨ ト

Overview of diffuse radio phenomenon


- radio relics: $\alpha_{\nu} \sim$ 1 2.5, where $j_{\nu} \propto \nu^{-\alpha_{\nu}}$
 - radio relic bubble: aged radio cocoon, steep spectrum
 - radio phoenix: shock-revived bubble that has already faded out of the radio window → adiabatic compression?
 - radio gischt: irregular morphology, at cluster periphery (< Mpc), in some cases coincident with weak X-ray shock, polarized → diffusive shock acceleration (Fermi I)?
- radio halos: centrally located, regular morphology, $\alpha_{\nu} \sim 1 - 1.5$, unpolarized \rightarrow volume filling radio emission
 - giant radio halos: occur in merging clusters, > 1 Mpc-sized, morphology similar to X-rays
 - radio mini halos: occur in cool core clusters, few times 100 kpc in size, emission extends over cool core

イロン イボン イヨン イヨ

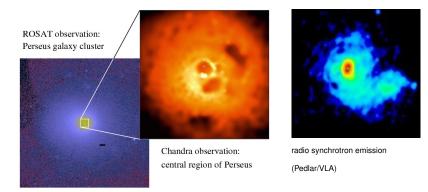

Overview Observations Radio gischt emission

Giant radio halo in the Coma cluster

thermal X-ray emission

(Snowden/MPE/ROSAT)

radio synchrotron emission


(Deiss/Effelsberg)

▶ < Ξ

Overview Observations Radio gischt emission

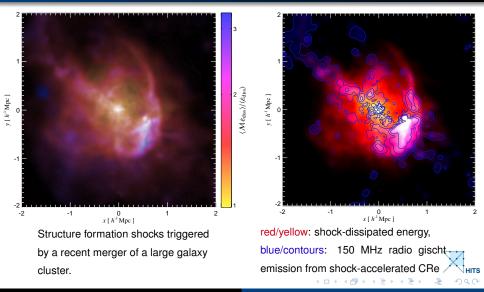
Radio mini halo in the Perseus cluster

thermal X-ray emission

(ROSAT; NASA/IoA/A.Fabian et al.)

★ Ξ > ★ Ξ >

Overview of diffuse radio phenomenon


- radio relics: $\alpha_{\nu} \sim$ 1 2.5, where $j_{\nu} \propto \nu^{-\alpha_{\nu}}$
 - radio relic bubble: aged radio cocoon, steep spectrum
 - radio phoenix: shock-revived bubble that has already faded out of the radio window → adiabatic compression?
 - radio gischt: irregular morphology, at cluster periphery (< Mpc), in some cases coincident with weak X-ray shock, polarized → *diffusive shock acceleration (Fermi I)*?
- radio halos: centrally located, regular morphology, $\alpha_{\nu} \sim 1 - 1.5$, unpolarized \rightarrow volume filling radio emission
 - giant radio halos: occur in merging clusters, > 1 Mpc-sized, morphology similar to X-rays
 - radio mini halos: occur in cool core clusters, few times 100 kpc in size, emission extends over cool core

イロン イボン イヨン イヨ

Overview Observations Radio gischt emission

Radio gischt illuminates cluster shocks

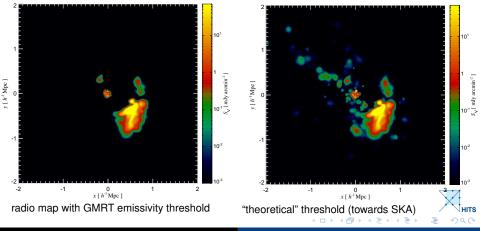
Overview Observations Radio gischt emission

Diffuse cluster radio emission – an inverse problem Exploring the magnetized cosmic web

Battaglia, C.P., Sievers, Bond, Enßlin (2009):

Combining the low-frequency radio observables of relics, we can probe

- strength and coherence scale of cluster magnetic fields
- diffusive shock acceleration of electrons

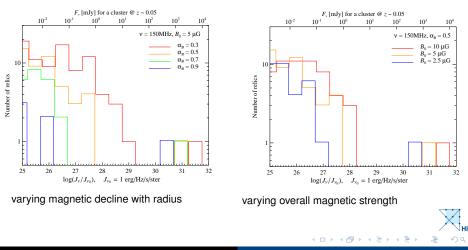

Christoph Pfrommer

- existence and properties of the WHIM
- dynamical state of the cluster

Overview Observations Radio gischt emission

Population of faint radio relics in merging clusters Probing the large scale magnetic fields

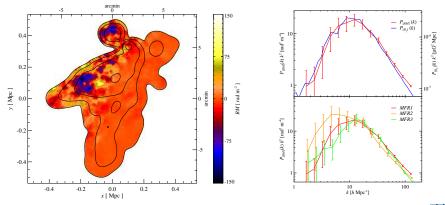
Finding radio relics with an FOF-finder that links radio emission instead of $\text{DM} \rightarrow \text{relic}$ luminosity function:


Christoph Pfrommer

Radio Phenomenon in Clusters

Overview Observations Radio gischt emission

Relic luminosity function – theory


Relic luminosity function \rightarrow magnetic field behaviour and dynamical state:

Overview Observations Radio gischt emission

Rotation measure (RM)

RM maps and power spectra have the potential to infer the magnetic pressure support and discriminate the nature of MHD turbulence in clusters:

Left: RM map of the largest relic, right: Magnetic and RM power spectrum comparing

НІТЯ

ъ

Kolmogorow and Burgers turbulence models. Christoph Pfrommer

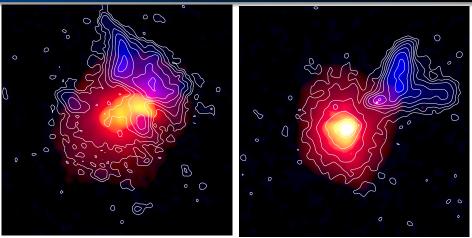
Radio Phenomenon in Clusters

Dbservations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Outline

- Radio phenomenology
 - Overview
 - Observations
 - Radio gischt emission

2 Cosmic ray transport


- Observations and models
- CR pumping, streaming, and diffusion
- Radio and gamma-ray bimodality

> < ≣

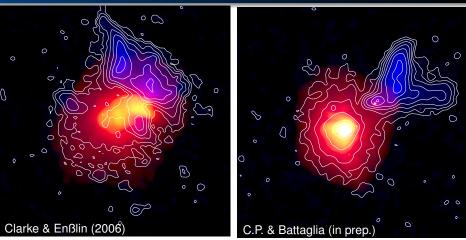
< 🗇

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

→ Ξ → → Ξ


< 🗇 🕨

Christoph Pfrommer

Radio Phenomenon in Clusters

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Observation – simulation of A2256

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Christoph Pfrommer

Radio Phenomenon in Clusters

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio halo theory – (i) hadronic model

$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm}$$

∃ → < ∃ →</p>

strength:

- all required ingredients available: shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and morphologies as observed without tuning
- power-law spectra as observed

weakness:

- all clusters should have radio halos
- does not explain all reported spectral features

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio halo theory – (i) hadronic model

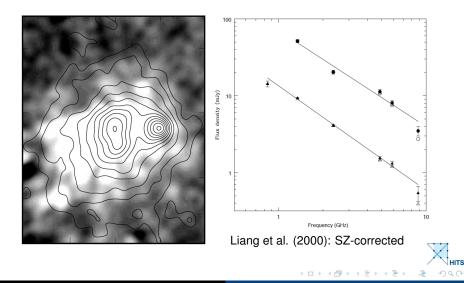
$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm}$$

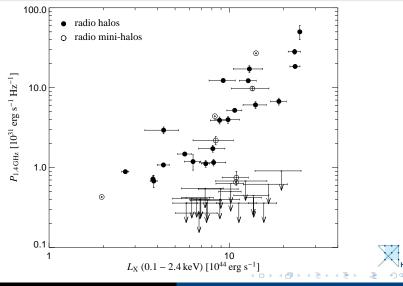
★ E → < E →</p>

strength:

- all required ingredients available: shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and morphologies as observed without tuning
- power-law spectra as observed

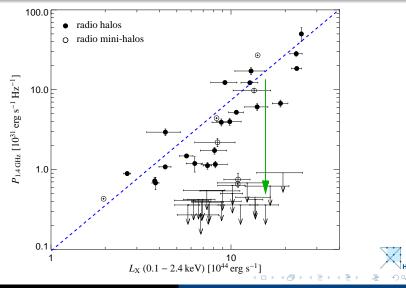
weakness:


- all clusters should have radio halos
- does not explain all reported spectral features

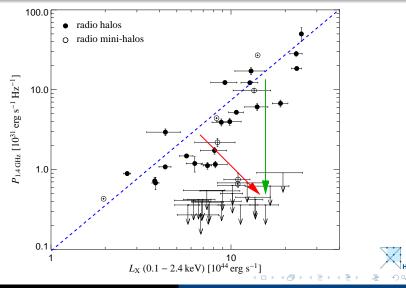

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio halo and spectrum in the Bullet cluster

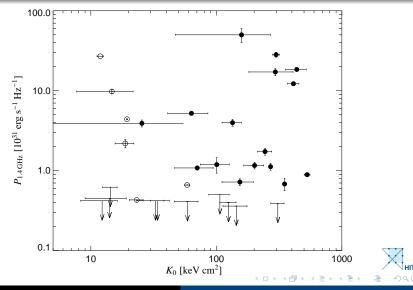
Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality


Radio luminosity - X-ray luminosity

Christoph Pfrommer Radio Phenomenon in Clusters

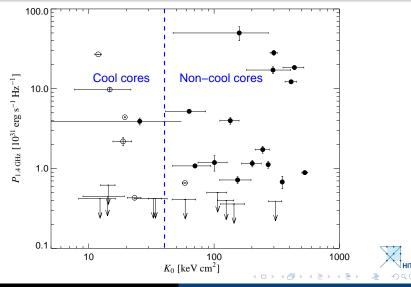

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity

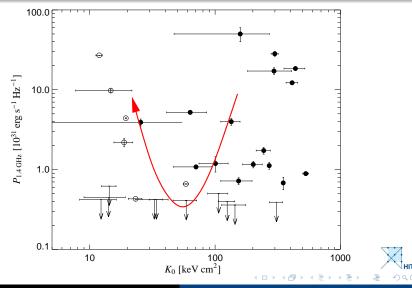

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity

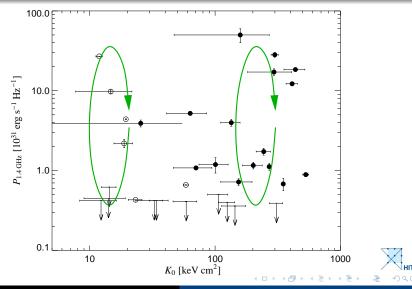
Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality


Radio luminosity - central entropy

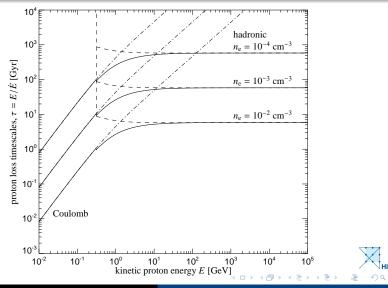
Christoph Pfrommer Radio Phenomenon in Clusters


Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

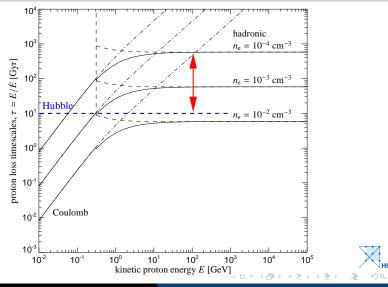
Radio luminosity - central entropy


Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - central entropy


Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - central entropy


Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Proton cooling times

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Proton cooling times

Radio halo theory - (ii) re-acceleration model

strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...
- reported complex radio spectra emerge naturally
- clusters without halos ← less turbulent

weakness:

- Fermi II acceleration is inefficient CRe cool rapidly
- observed power-law spectra require fine tuning

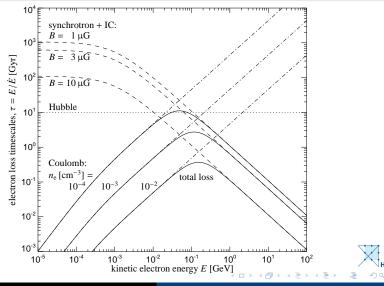
★ 문 ► ★ 문 ►

Radio halo theory – (ii) re-acceleration model

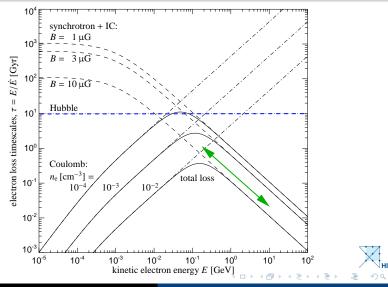
strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...
- reported complex radio spectra emerge naturally
- clusters without halos ← less turbulent

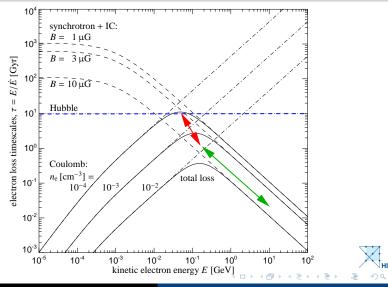
weakness:


- Fermi II acceleration is inefficient CRe cool rapidly
- observed power-law spectra require fine tuning

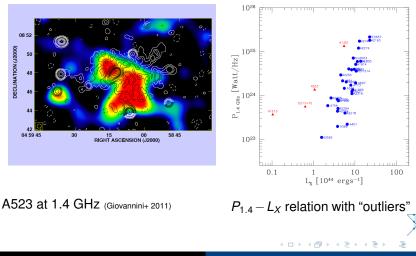
★ E → ★ E →


Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Electron cooling times

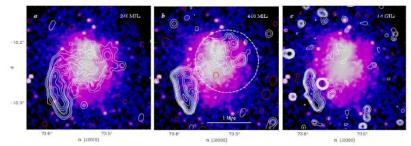

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Electron cooling times


Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Electron cooling times

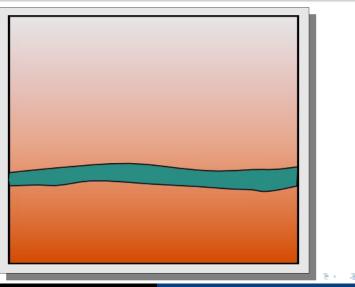
Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality


Radio halos in low-luminosity clusters A challenge to the re-acceleration scenario or incomplete point source subtraction?

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

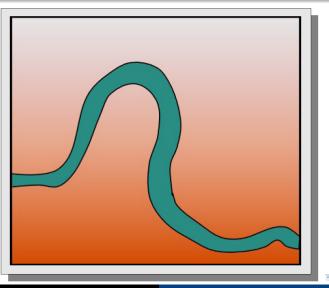
Particle acceleration by turbulence or shocks?

Diffuse low-frequency radio emission in Abell 521 (Brunetti et al. 2008)



colors: thermal X-ray emission; contours: diffuse radio emission.

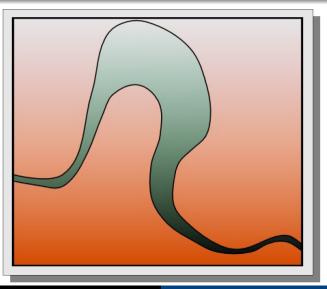
- "radio relic" interpretations with aged population of shock-accelerated electrons or shock-compressed radio ghosts (aged radio lobes),
- "radio halo" interpretation with re-acceleration of relativistic electrons through interactions with MHD turbulence.
- \rightarrow synchrotron polarization is key to differentiate!


Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Cosmic ray transport – magnetic flux tube with CRs

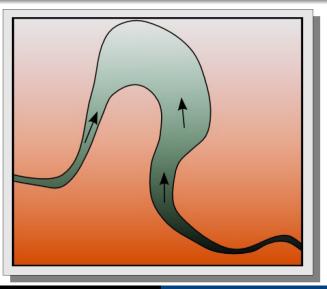
Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Cosmic ray advection

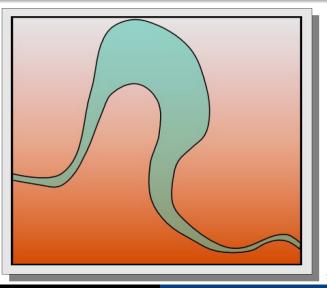


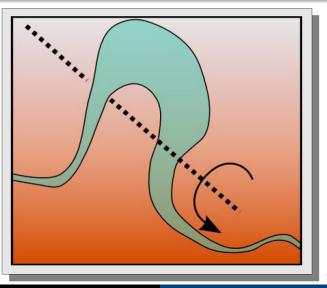
90

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality


Adiabatic expansion and compression

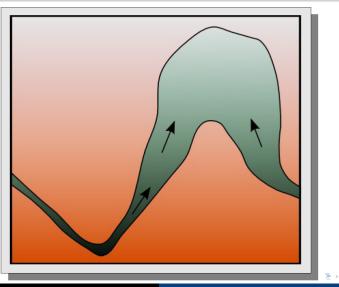
Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality


Cosmic ray streaming


Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

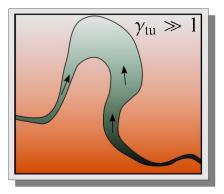
Expanded CRs

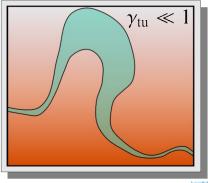
Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality


Turbulent pumping

90

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

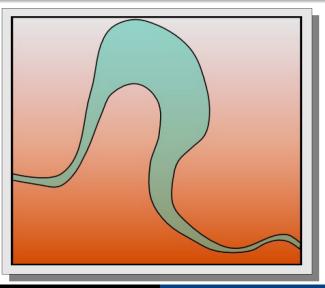

Turbulent pumping



Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

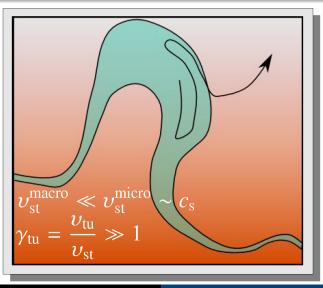
Turbulent-to-streaming ratio

$$\gamma_{\rm tu} = \frac{\upsilon_{\rm tu}}{\upsilon_{\rm st}}$$



<ロ> <同> <同> < 同> < 同> 、

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality


Are CRs confined to magnetic flux tubes?

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Escape via diffusion: energy dependence

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

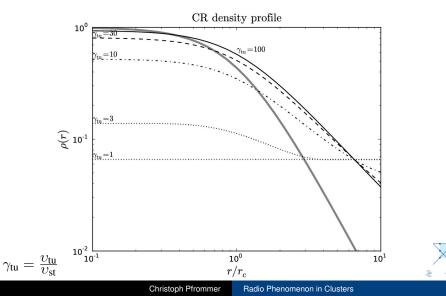
CR transport theory

CR continuity equation in the absence of sources and sinks:

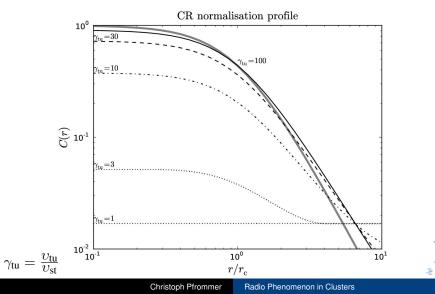
$$\begin{aligned} \frac{\partial \varrho}{\partial t} + \vec{\nabla} \cdot (\boldsymbol{v} \ \varrho) &= \mathbf{0} \qquad \qquad \boldsymbol{v} = \boldsymbol{v}_{ad} + \boldsymbol{v}_{di} + \boldsymbol{v}_{st} \\ \boldsymbol{v}_{st} &= -\boldsymbol{v}_{st} \frac{\vec{\nabla} \varrho}{|\vec{\nabla} \varrho|} \\ \boldsymbol{v}_{di} &= -\kappa_{di} \frac{1}{\varrho} \vec{\nabla} \varrho \\ \boldsymbol{v}_{ad} &= -\kappa_{tu} \frac{\eta}{\varrho} \vec{\nabla} \frac{\varrho}{\eta} \qquad \qquad \kappa_{tu} = \frac{\mathcal{L}_{tu} \ v_{tu}}{\mathbf{3}} \end{aligned}$$

Enßlin, C.P., Miniati, Subramanian, 2011, A&A, 527, 99

∃ ► < ∃ ►</p>

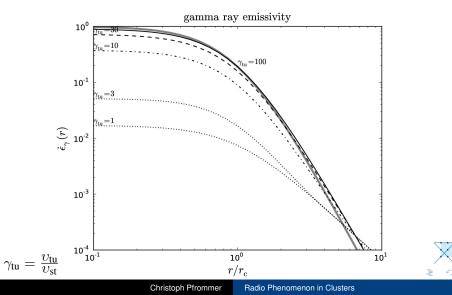

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

CR profile due to advection


Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

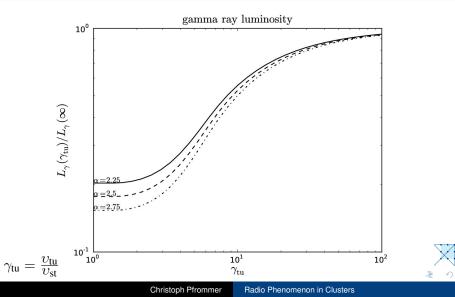
CR density profile

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

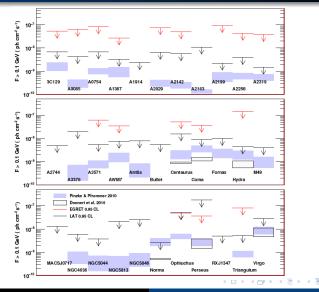

CR density at fixed particle energy

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Gamma-ray emission profile


$$p_{CR} + p \rightarrow \pi^0 \rightarrow 2\gamma$$

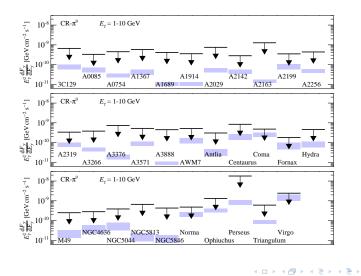
Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality


Gamma-ray luminosity

$$p_{\rm CR} + p \rightarrow \pi^0 \rightarrow 2\gamma$$

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

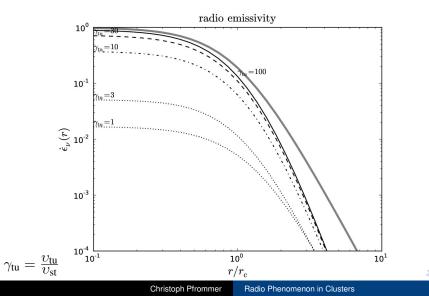
γ -ray limits and hadronic predictions (Ackermann et al. 2010)



Christoph Pfrommer

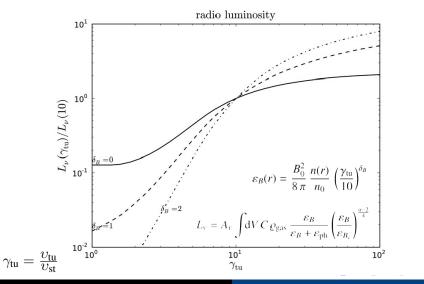
Radio Phenomenon in Clusters

Radio phenomenology Cosmic ray transport Radio and gamma-ray bimodality


γ -ray limits and hadronic predictions (Pinzke et al. 2011)

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio emission profile


$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm} \rightarrow radio$$

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity

$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm} \rightarrow radio$$

Christoph Pfrommer

Conclusions on cosmic ray transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of $v_{st}^{macro} \rightarrow CR$ & radio spectral variations \rightarrow outstreaming CR: dying halo \leftarrow decaying turbulence
- \rightarrow bimodality of cluster radio halos & gamma-ray emission!

イロト イポト イヨト イヨ

Conclusions on cosmic ray transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of v_{st}^{macro} → CR & radio spectral variations
 → outstreaming CR: dying halo ← decaying turbulence
- ightarrow bimodality of cluster radio halos & gamma-ray emission!

イロン イボン イヨン イヨ

Conclusions on cosmic ray transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of v_{st}^{macro} → CR & radio spectral variations
 → outstreaming CR: dying halo ← decaying turbulence
- \rightarrow bimodality of cluster radio halos & gamma-ray emission!

< 🗇 🕨

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Literature for the talk

- Enßlin, Pfrommer, Miniati, Subramanian, 2011, A&A, 527, 99, Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating
- Battaglia, Pfrommer, Sievers, Bond, Enßlin, 2009, MNRAS, 393, 1073, Exploring the magnetized cosmic web through low frequency radio emission