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Focus on two-phase fluid on coarse mobile bed 

ordinary bedload 

Intense bedload 

debris-flow 
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0.3<Shields<3 

 suspended sheet-flow 
Shields>3 

Shields<0.3 

Shields>3 



Ordinary bed-load at Shields  0.1 

Ordinary bed-load at Shields  0.3 



Shields  1 



debris flows on loose bed 

Shields  10 Shields  50 
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Rheological-phase diagram (from theory #2) 
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Sheet flow (0.3<Shields<3) 



 
 

Measurements 

Image technique for both velocity and concentration 

particle velocity and concentration 



 Laser stripe measurements: a 

new, simple and robust imaging 

method allowing concentration 

measurements in granular flows 
Spinewine, Capart, Fraccarollo, 

Larcher, Exp. in Fluids, 2011. 



Sheet flow, or intense bed-load (0.3<Shields<3) 

Aug-Sept 2009 



Lab set-up 



Measured profiles 



Layer-structure variables 



Layer-structure variables (idealized) 



theory #1 

theory #2 

Capart, H., Fraccarollo, L. (2011), Geophysical Research Letters 

Berzi, D. and Fraccarollo, L. (2013), Physics of Fluids 
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Main outcomes of the theory #1 



Comparison with Bagnold (1956) 

Main outcomes of the theory #1 



Transport relation 

Main outcomes of the theory #1 
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Main features of the theory #2 

We removed any assumption on  
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By theory #2 (no assumption on Richardson), we get 

Let’s have a look at Richardson #, it increases as Shields decreases 



Uniform unsteady flow provides more info about G at low Shields 
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steady state

Let’s consider G dependence on Shields in both the steady and 

unsteady stages of the flow 
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steady state

unsteady state

Let’s consider G dependence on Shields in both the steady and 

unsteady stages of the flow 
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Further global predictors 
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Resistance function 
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Run45  Shields is 0.55  S* is 0.38376  u*/S* is 0.45084
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Run46  Shields is 0.75  S* is 0.45367  u*/S* is 0.49019
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Run47  Shields is 0.85  S* is 0.42135  u*/S* is 0.4724

-1 -0.5 0 0.5 1 1.5 2 2.5 3

35

40

45

50

55

z
[m

]

Run48  Shields is 1.03  S* is 0.41787  u*/S* is 0.47045
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Run49  Shields is 1.08  S* is 0.40346  u*/S* is 0.46227
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Run50  Shields is 1.37  S* is 0.38827  u*/S* is 0.45348
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Look at the distributions and local information 
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Run45  Shields is 0.55  S* is 0.38376  u*/wFall is 0.45084
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Run46  Shields is 0.75  S* is 0.45367  u*/wFall is 0.49019
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What about the kinematics? 

Let’s have a look at the trajectories 

At low Shields values (<0.1) we observe a few grains moving in a random way 

At moderate Shields values (1) we have the following sheet flow and relevant 

 trajectories 



Shields  1 
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What about the kinematics? 

Let’s have a look at the trajectories 

At low Shields values (<0.1) we observe a few grains moving in a random way 

Increasing Shields up to the limit of sheet flow range (3), flow and trajectories 

present new features 

At moderate Shields values (1) we have the following sheet flow and relevant 

 trajectories 



Shields  3 
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37 

less than 10% of trajectories are complete 

Problems with trajectory reconstruction: interruptions  

Imaging technique applied to ordinary-bedload runs 



 EINSTEIN [1937] 
pSbS LEq 

is the number rate per unit bed area at 

which particles are entrained from the bed 

into bed load motion; 

 

is the step length, or distance a particle 

moves before being re-deposited 
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What the images may tell without the trajectories? 
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Let’s look at image differences 

we subtracted pixel-by-pixel the grey scale intensity of the first  

image from the current image 



first image 



after a few seconds 



after a few minutes 



after several minutes 
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After a few seconds 
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After a minute 
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After a few minutes 
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Use the pixel image-differences as a random variable 

)(varvarvar)( var tt
bS EQnoise 
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Use the pixel image-differences as a random variable 

)(varvarvar)( var tt
bS EQnoise 

A simple theoretical model yields: 
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