Kavli Institute for Theoretical Physics University of California, Santa Barbara

Fluid-Mediated Particle Transport in Geophysical Flows

Sep 23, 2013 - Dec 20, 2013

Intense Bed Load and Surroundings

luigi fraccarollo

University of Trento, Italy

Focus on two-phase fluid on coarse mobile bed

Ordinary bed-load at Shields ≈ 0.1

Ordinary bed-load at Shields ≈ 0.3

debris flows on loose bed

Shields ≈ 10

Rheological-phase diagram (from theory #2)

Sheet flow (0.3<Shields<3)

Measurements

Image technique for both velocity and concentration

particle velocity

and concentration

Laser stripe measurements: a new, simple and robust imaging method allowing concentration measurements in granular flows *Spinewine, Capart, Fraccarollo, Larcher, Exp. in Fluids, 2011.*

Sheet flow, or intense bed-load (0.3<Shields<3)

Aug-Sept 2009

Lab set-up

Measured profiles

Layer-structure variables

Layer-structure variables (idealized)

theory #1

Capart, H., Fraccarollo, L. (2011), Geophysical Research Letters

theory #2

Berzi, D. and Fraccarollo, L. (2013), Physics of Fluids

Main features of the theory #1

$$G = \frac{-g \cos\beta \,\mathrm{d}\rho/\mathrm{d}z}{\rho_W (\mathrm{d}u/\mathrm{d}z)^2} = 0.058$$

$$\hat{u} = \sqrt{2/(GR)} \hat{\tau}^{1/2}$$
Kinetic theory
$$\hat{q}_{S} = \frac{1}{6} c \hat{\delta} \hat{u}$$

$$\hat{\delta} = \frac{\delta}{D} = \frac{f(c)}{R} \sqrt{\frac{2(s + a(c))}{G}}$$

$$\hat{q}_{S} = \hat{\omega} \hat{\tau}^{3/2}$$

$$\hat{\omega} = (2/(9GR^{3}))^{1/2} \approx 4.2$$

close to the value obtained by Wong and Parker [2006]

Main outcomes of the theory #1

Main outcomes of the theory #1

Comparison with Bagnold (1956)

Main outcomes of the theory #1

Main features of the theory #2

Let's have a look at Richardson #, it increases as Shields decrease

By theory #2 (no assumption on Richardson), we get

Uniform unsteady flow provides more info about G at low Shields

Let's consider G dependence on Shields in both the steady and unsteady stages of the flow

Let's consider G dependence on Shields in both the steady and unsteady stages of the flow

Resistance function

Look at the distributions and local information

$$p = 4\nu GFT$$

$$F = \frac{1+e}{2} + \frac{1}{4G} \quad e = \varepsilon - \frac{1}{2} + \frac{1}{4G} = \varepsilon - \frac{1}{4G} = \frac{1}{4G}$$

$$\frac{\partial p}{\partial z} = v(\rho_s - \rho)g\cos\beta$$

 $+\mathcal{E}$

St

6.9

What about the kinematics?

Let's have a look at the trajectories

At low Shields values (Θ <0.1) we observe a few grains moving in a random way

At moderate Shields values ($\Theta \approx 1$) we have the following sheet flow and relevant trajectories

Shields ≈ 1

What about the kinematics?

Let's have a look at the trajectories

At low Shields values (Θ <0.1) we observe a few grains moving in a random way

At moderate Shields values ($\Theta \approx 1$) we have the following sheet flow and relevant trajectories

Increasing Shields up to the limit of sheet flow range ($\Theta \approx 3$), flow and trajectories present new features

Shields ≈ 3

Imaging technique applied to ordinary-bedload runs

Problems with trajectory reconstruction: interruptions

less than 10% of trajectories are complete

What the images may tell without the trajectories?

EINSTEIN [1937]

$$q_{S} = E_{b}L_{S} \forall_{p}$$

- E_b is the number rate per unit bed area at which particles are entrained from the bed into bed load motion;
- L_S is the step length, or distance a particle moves before being re-deposited

Let's look at image differences

we subtracted pixel-by-pixel the grey scale intensity of the first image from the current image first image

after a few seconds

after a few minutes

after several minutes

Subtraction of images pixels by pixels

After a few seconds

After a minute

After a few minutes

After several minutes

After an hour

Use the pixel image-differences as a random variable

Use the pixel image-differences as a random variable

$$\operatorname{var}(t) = \operatorname{var}_{noise} + \operatorname{var}_{Q_{S}} + \operatorname{var}_{E_{b}}(t)$$

Kavli Institute for Theoretical Physics University of California, Santa Barbara

Fluid-Mediated Particle Transport in Geophysical Flows

Sep 23, 2013 - Dec 20, 2013

Intense Bed Load and Surroundings

luigi fraccarollo

University of Trento, Italy

