
Avalanches and Diffusion in Amorphous 
Solids Under Athermal, Quasistatic Shear

KITP
June 2010

Craig Maloney

Collaborators:
M. O. Robbins (Hopkins)

Funding:
NSF DMR-0454947 and 
PHY99-07949

Saturday, June 12, 2010



Outline

• Amorphous solids
• Types
• Athermal quasistatic shear (AQS)

• Slip lines in Lennard-Jones solids
• CEM + M.O. Robbins (J. Phys 2008, PRL 2009)
• Spatial structure of plasticity
• Effective diffusion

• Jamming
• (CEM. PRL Submitted) 
• Bubble model / critical scaling near jamming
• Effective diffusion
• Avalanches
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The question(s) I am asking

• For “simple” amorphous solids in 
AQS:
• What is the elementary 
mechanism(s) which 
accommodates applied shear?
• How are they organized in 
space and time?
• (How does this impact visco-
plastic rheology)?
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• Types
• Emulsions / Foams
• Granular packings
• Colloidal suspensions
• Atoms / Molecules

Polydisperse PMMA spheres in density-matched solvent

(Weeks et. al.)

Solid-like (glassy) regime, no applied shear strain

(Schall et. al.)

Local shear strain under driving:

Types of amorphous solids
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• Types
• Emulsions / Foams
• Granular packings
• Colloidal suspensions
• Atoms / Molecules

Axial compression

Axial compression

• From Schroers and Johnson: Pt57.5Cu14.7Ni5.3P22.5 

• Shear bands:
• ~ few µm of slip
• ~ few 10s of µm spacing

Types of amorphous solids

Saturday, June 12, 2010



Athermal, quasistatic shear (AQS)

• Differences in particle-scale physics (do they matter?):
• Inertial or overdamped?
• “Real” temperature
• Dissipation mechanisms / hydrodynamics
• Attractive forces / adhesion
• Coulomb friction / covalent bonding

• Energy landscape picture of AQS (Malandro and Lacks)
• 

Increasing shear 
• tthermal >> tshear >> trearrange 
• first Temperature to zero, then shear rate to zero.
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control: Ly(t), Lx(t)
conserve area

Ly(t)

Lx(t)

Zero temperature molecular dynamics
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• 2D Molecular Dynamics:
control: Ly(t), Lx(t)

conserve area

Ly(t)

Lx(t)

Zero temperature molecular dynamics
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• 2D Molecular Dynamics:
• binary Lennard-Jones 

control: Ly(t), Lx(t)
conserve area

Ly(t)

Lx(t)

Zero temperature molecular dynamics
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• 2D Molecular Dynamics:
• binary Lennard-Jones 
• quenched at Pressure=0

control: Ly(t), Lx(t)
conserve area

Ly(t)

Lx(t)

Zero temperature molecular dynamics
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• 2D Molecular Dynamics:
• binary Lennard-Jones 
• quenched at Pressure=0
• damp relative velocity (Kelvin/
DPD)

control: Ly(t), Lx(t)
conserve area

Ly(t)

Lx(t)

Zero temperature molecular dynamics
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• 2D Molecular Dynamics:
• binary Lennard-Jones 
• quenched at Pressure=0
• damp relative velocity (Kelvin/
DPD)

• axial, fixed area strain

control: Ly(t), Lx(t)
conserve area

Ly(t)

Lx(t)

Zero temperature molecular dynamics
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• 2D Molecular Dynamics:
• binary Lennard-Jones 
• quenched at Pressure=0
• damp relative velocity (Kelvin/
DPD)

• axial, fixed area strain
• periodic boundaries

control: Ly(t), Lx(t)
conserve area

Ly(t)

Lx(t)

Zero temperature molecular dynamics
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• 2D Molecular Dynamics:
• binary Lennard-Jones 
• quenched at Pressure=0
• damp relative velocity (Kelvin/
DPD)

• axial, fixed area strain
• periodic boundaries
• system sizes up to 3000x3000 
~ 10M particles

control: Ly(t), Lx(t)
conserve area

Ly(t)

Lx(t)

Zero temperature molecular dynamics
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• 2D Molecular Dynamics:
• binary Lennard-Jones 
• quenched at Pressure=0
• damp relative velocity (Kelvin/
DPD)

• axial, fixed area strain
• periodic boundaries
• system sizes up to 3000x3000 
~ 10M particles

• Quasi-static limit (about 500 
CPU days / run)

control: Ly(t), Lx(t)
conserve area

Ly(t)

Lx(t)

Zero temperature molecular dynamics
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• 2D Molecular Dynamics:
• binary Lennard-Jones 
• quenched at Pressure=0
• damp relative velocity (Kelvin/
DPD)

• axial, fixed area strain
• periodic boundaries
• system sizes up to 3000x3000 
~ 10M particles

• Quasi-static limit (about 500 
CPU days / run)

• Strain window, Δγ, plays role of 
time!

control: Ly(t), Lx(t)
conserve area

Ly(t)

Lx(t)

Zero temperature molecular dynamics
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∂ui

∂xj

= Fij

ω = Fxy − Fyx

For each triangle:

Invariants:

ε1 =
Fxx − Fyy

2

ε2 =
Fxy + Fyx

2

ε =

√

ε
2
1

+ ε
2
2

“Right Strain” “Left Strain”

Local vorticity, ω

“Canonical“ atomistic Eshelby 
shear transformation: 

pure shear ε1>0 ε2=0 ω=0

Falk PRB 1998
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∂ui

∂xj

= Fij

ω = Fxy − Fyx

For each triangle:

Invariants:

ε1 =
Fxx − Fyy

2

ε2 =
Fxy + Fyx

2

ε =

√

ε
2
1

+ ε
2
2

“Right Strain” “Left Strain”

Local vorticity, ω

simple shear, 
“dislocation loop”

Argon, Acta Metal. 1979

ε1>0
ε2=0
ω>0

ε1>0
ε2=0
ω<0
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|Δr|

ω

γ: 6.0% to 6.1% 6.0% to 6.2% 6.0% to 6.4%

Correlations in steady state
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Transverse displacement traces (6.1% -> 6.2%)

•walking along y-x 

•walking along x+y 

•(δ
x+
δy

)
•(δ

x-
δy

)

h

L

a

h

L

a

δx-δy

δx+δy
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Transverse displacement traces (6.1% -> 6.2%)

•walking along y-x 

•walking along x+y 

•(δ
x+
δy

)
•(δ

x-
δy

)

h

L

a

h

L

a

width, h~50σ0

a~1 to 2 σ0

strain in shear 
zone ~2% to 4%

δx-δy

δx+δy

unloaded ~ a/L ~ 
0.1% to 0.2% 
globally

L~1000σ0
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P(δx,δy) for 8 consecutive Δγ=0.001 windows

δy

δx

+1

+2

-1

-2
-2 +2+1-1

•System is either:
• active along δx=δy
• active along δx=-δy
• or quiescent
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P(δx,δy) for 8 consecutive Δγ=0.001 windows
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active:
P(δx+δy) flat up to “a”
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Elementary slip lines 
have <Δr2>elem. ~ a2/12

active:
P(δx+δy) flat up to “a”
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a

P(
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+δ
y)

(δx+δy)

P(δx+δy) for 8 consecutive Δγ=0.001 windows

Elementary slip lines 
have <Δr2>elem. ~ a2/12

At larger Δγ, these add 
incoherently

<Δr2> = {Νevents} {<Δr2>elem.} = {Δγ/(a/L)} {a2/12} = La/12 Δγ 

active:
P(δx+δy) flat up to “a”

Saturday, June 12, 2010



P(Δr) for various Δγ
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by Fickian expectation:

s = <Δr2>/Δγ
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P(Δr) for various Δγ
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P(Δr) for various Δγ
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Δγ=0.001

Δγ=0.002

Δγ=0.008

Δγ=0.032

Fickian limit

All distributions rescaled 
by Fickian expectation:

s = <Δr2>/Δγ

Looks Fickian but:
•spatial correlations
•<Δr2>/Δγ depends on L

At Δγ=0.001, P(Δr) is exponential for 7 decades!
Crossover to Fickian (Δγ~0.032) consistent with thick bands filling space

•Slip line argument:
a=(12s/L) ~ 0.7σ0
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P(ω;Δγ)

exponential “plastic” tails

Quasi-lorentzian 
“elastic” peak

Δγ=0.001
Δγ=0.002
Δγ=0.004
Δγ=0.008
Δγ=0.016
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P(ω;Δγ).  Scale by Δγ, fit to e-ω/ω* 

Rescaling by Δγ almost
collapses tails... better 
for smaller Δγ.

ω* depends weakly on Δγ.
Extrapolates to ~ 0.1 
εyield~0.05,  

P~e-ω/ω*
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RMS ω vs Δγ

0.001 0.01
Δγ

10-3

10-2

10-1

100 <dr2>
<ω2

>

<Δr2>
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RMS ω vs Δγ

0.001 0.01
Δγ

10-3

10-2

10-1

100 <dr2>
<ω2

>

<Δr2>

<ω2>~Δγ, despite 
exponential P(ω) 
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Effective diffusion in Lennard-Jones
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Effective diffusion in Lennard-Jones

• Slip in bands: a~σ0, h~50σ0, γband~1%  (for L~1000)
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Effective diffusion in Lennard-Jones

• Slip in bands: a~σ0, h~50σ0, γband~1%  (for L~1000)
• (system size dependent) “time” scale Δγ=a/L ~ 1/1000 ~ 0.001
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Effective diffusion in Lennard-Jones
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• A flat “elementary” P(Δr) gives: Deff=<Δr2>/Δγ=(La/12) 
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Effective diffusion in Lennard-Jones

• Slip in bands: a~σ0, h~50σ0, γband~1%  (for L~1000)
• (system size dependent) “time” scale Δγ=a/L ~ 1/1000 ~ 0.001
• A flat “elementary” P(Δr) gives: Deff=<Δr2>/Δγ=(La/12) 
• Measured Deff is consistent with apparent a.
• P(Δr2) Guassian at Δγ~0.032 
• <ω2>~Δγ, BUT, P(ω) highly non-Gaussian: P~eω/ω* 
• ω*~0.1 compatible with yield strain εyield~0.05 
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Structure factor for Δγ=0.04 S(!q) =

∣

∣

∣

∣

∫

ω(!r)exp[i!q · !r]dr

∣

∣

∣

∣

2

θ=π/8

θ=3π/8

θ=π/8 and θ=3π/8 have same shear 
stress, different normal stress.

λ=100

λ=2.5 Particles

S
d 

ln
(S

)/
d 

ln
(q

)

10-2

10-3

-1

-2
q10 100

Α: broken shear symmetry
bigger for planes with low normal load

S(q;θ)=A(θ)q-α(θ)

λ=10

α depends on angle! 
α: has “shear” symmetry
θ: does not
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Α: broken shear symmetry
bigger for planes with low normal load

Compare to Talamali et. al.  (Vandembroucq talk)
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<LogS>θ scaled by Δγ
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<LogS>θ best-rescaling
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ln(q)
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 - 
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Δγ=.8%
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<
ln

S>
θ-

ar
b.

ln(q)

<α>θ ~ 0.75
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Summary: Spatial structure of strain

• Measured vorticity, ω, for 
various, Δγ
• In steady state, S(q,θ)=A(θ)qα
(θ)

• α has “shear symmetry”
• A(θ): Mohr-Coulomb effect
• S/Δγ collapse implies: ω is de-
correlated
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Jammed systems

From F. Lechenault From A. Abate

Saturday, June 12, 2010



Jammed systems

From F. Lechenault From A. Abate

Expect different spatial heterogeneity in steadily sheared systems!
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Jammed systems

From F. Lechenault From A. Abate

vanHecke group

Layer of polydisperse soap bubbles on water

Expect different spatial heterogeneity in steadily sheared systems!
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Jamming and critical scaling at φc

Heussinger and Barrat
 (PRL 2009)
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Jamming and critical scaling at φc

Heussinger and Barrat
 (PRL 2009)

•quasistatic avalanches
• CEM+Robbins / Lemaître
+Caroli
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Jamming and critical scaling at φc

Heussinger and Barrat
 (PRL 2009)

• φ,σ rheology scaling near “point J”
•Olsson and Teitel (bubbles), Hatano (grains)...

•Olsson and Teitel PRL 2008
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Jamming and critical scaling at φc

Heussinger and Barrat
 (PRL 2009)

• φ,σ rheology scaling near “point J”
•Olsson and Teitel (bubbles), Hatano (grains)...

•Olsson and Teitel PRL 2008
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Jamming and critical scaling at φc

Heussinger and Barrat
 (PRL 2009)

• φ,σ rheology scaling near “point J”
•Olsson and Teitel (bubbles), Hatano (grains)...

•Olsson and Teitel PRL 2008

•Point J scaling implies: φ-φc 
sets stress and time scale.

• τJ=(φ-φc)Δ-β

•How does this affect quasistatic 
behavior?
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δ"vi = "Fi/D; δ"vi = "vi − yiγ̇x̂; "̇ri = "vi

U =
ε

2
a2

a =
(Ri + Rj)− rij

Ri + Rj

Bubble model

s

r
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•Drag force, Dδv, proportional to 
motion w/r/t homogeneous flow
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δ"vi = "Fi/D; δ"vi = "vi − yiγ̇x̂; "̇ri = "vi

U =
ε

2
a2

a =
(Ri + Rj)− rij

Ri + Rj

τD
.= Dσ2

0/ε

Bubble model

• 50:50 bidisperse
• R_large = 1.4 R_small = 1.4 σ0

s

r

•Drag force, Dδv, proportional to 
motion w/r/t homogeneous flow

•Must balance potential force, F

• Only single timescale in model:
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“Slow” shear at various density

φ=1.0 φ=0.85

How are they different?

dγ/dt=1.25x10-6
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Δ
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Δγ=1.25Ε−4
Δγ=5.00Ε−4
Δγ=2.00Ε−3
Δγ=8.00Ε−3

Increasing Δγ

Transverse displacement distribution

P(Δy) much 
broader for φ=1.0 

than φ=0.85 at 
early Δγ

P(Δy) similar for 
φ=1.0 and φ=0.85 

at late Δγ
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2nd and 4th moments (φ=1.0)

10-1

100

101

<Δ
y2
n >
/Δ
γn

10-3 10-2 10-1
Δγ

10-2

10-1

100

α

no rate dependence 
at plateau,

we’re quasistatic!

From LJ slip-line 
arguments:
Deff~ La/12

a~0.8σ

Δγ*~a/L~.05

decreasing rate
2nd moment

4th moment

α
.= 3〈∆y2〉2/〈∆y4〉

increasing rate
dγ/dt = 0.125 10-5

dγ/dt = 0.250 10-5

dγ/dt = 0.500 10-5

dγ/dt = 1.000 10-5
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Typical displacement over Δγ~0.05

From LJ slip-line 
arguments:
Deff~ La/12

a~0.8σ

Δγ*~a/L~.05
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2nd and 4th moments (φ=0.85)

10-3
10-2
10-1
100

<Δ
y2
n >
/Δ
γn

10-3 10-2 10-1
Δγ

10-1

100

α

slight rate 
dependence at 

plateau 

at slowest rate,
Deff within 10% of 

Deff for φ=1.0

increasing rate

increasing rate
α

.= 3〈∆y2〉2/〈∆y4〉

2nd moment

4th moment

dγ/dt = 0.125 10-5

dγ/dt = 0.250 10-5

dγ/dt = 0.500 10-5

dγ/dt = 1.000 10-5
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Typical displacement over Δγ~0.05

φ=1.0 φ=0.85
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-9 -8 -7 -6 -5 -4 -3
ln(Δγ)

-3

-2

-1

0

ln
(α
)

rate=0.125E-5
rate=0.250E-5
rate=0.500E-5
rate=1.000E-5

φ=1.000

φ=0.850

α
.= 3〈∆y2〉2/〈∆y4〉

Non-gaussian parameter, α

Decreasing
shear rate

cross-over to 
Gaussian is 

roughly 
independent of φ 

and dγ/dt.
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Conclusion (Diffusion)

•Slip lines argument gives:
   slip amplitude = a ~ 0.8σ   
   strain quantum = Δγ* ~ a/L ~ 0.05

• Displacement fields at Δγ~0.05 look like slip lines with 
consistent slip amplitude

• Seems surprisingly robust with respect to φ!
• systems near φc much less intermittent at small Δγ
• but surprisingly similar in Fickian regime!
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dU

dt
=

∂U

∂γ

∣∣∣∣
s

γ̇ +
∑

i

∂U

∂#si
#̇si = σγ̇ −

∑

i

#Fi · δ#vi

Dissipation
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dU

dt
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∂γ
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∂U

∂#si
#̇si = σγ̇ −

∑
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#Fi · δ#vi

Dissipation
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dU

dt
=

∂U

∂γ

∣∣∣∣
s

γ̇ +
∑

i

∂U

∂#si
#̇si = σγ̇ −

∑

i

#Fi · δ#vi

Dissipation

•Energy change under 
affine deformation = σ
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Dissipation

•Energy change under 
affine deformation = σ
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dU
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∂γ

∣∣∣∣
s

γ̇ +
∑
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∂U

∂#si
#̇si = σγ̇ −

∑

i

#Fi · δ#vi

Dissipation

•Identify as input power•Energy change under 
affine deformation = σ
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∑
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#Fi · δ#vi

Dissipation

•Identify as input power•Energy change under 
affine deformation = σ
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dU

dt
=

∂U

∂γ

∣∣∣∣
s

γ̇ +
∑

i

∂U

∂#si
#̇si = σγ̇ −

∑

i

#Fi · δ#vi

Dissipation

•Identify as input power•Energy change under 
affine deformation = σ •Identify as dissipation rate
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dU

dt
=

∂U

∂γ

∣∣∣∣
s

γ̇ +
∑

i

∂U

∂#si
#̇si = σγ̇ −

∑

i

#Fi · δ#vi

Γγ̇ = σγ̇ − dU

dt
=

∑

i

#Fi · δ#vi = D
∑

i

δv2
i

Dissipation

•Identify as input power•Energy change under 
affine deformation = σ •Identify as dissipation rate
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dU

dt
=

∂U

∂γ

∣∣∣∣
s

γ̇ +
∑

i

∂U

∂#si
#̇si = σγ̇ −

∑

i

#Fi · δ#vi

Γγ̇ = σγ̇ − dU

dt
=

∑

i

#Fi · δ#vi = D
∑

i

δv2
i

〈Γ〉 = 〈σ〉 =
DN

γ̇
〈δv2〉

Dissipation

•Identify as input power•Energy change under 
affine deformation = σ •Identify as dissipation rate
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dU

dt
=

∂U

∂γ

∣∣∣∣
s

γ̇ +
∑

i

∂U

∂#si
#̇si = σγ̇ −

∑

i

#Fi · δ#vi

Γγ̇ = σγ̇ − dU

dt
=

∑

i

#Fi · δ#vi = D
∑

i

δv2
i

〈Γ〉 = 〈σ〉 =
DN

γ̇
〈δv2〉

Dissipation

•Identify as input power•Energy change under 
affine deformation = σ •Identify as dissipation rate

•Γ is energy dissipated per unit strain
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dU

dt
=

∂U

∂γ

∣∣∣∣
s

γ̇ +
∑

i

∂U

∂#si
#̇si = σγ̇ −

∑

i

#Fi · δ#vi

Γγ̇ = σγ̇ − dU

dt
=

∑

i

#Fi · δ#vi = D
∑

i

δv2
i

〈Γ〉 = 〈σ〉 =
DN

γ̇
〈δv2〉

Dissipation

•Identify as input power•Energy change under 
affine deformation = σ •Identify as dissipation rate

•Γ is energy dissipated per unit strain

•Ono et. al. PRE 2003
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dU

dt
=

∂U

∂γ

∣∣∣∣
s

γ̇ +
∑

i

∂U

∂#si
#̇si = σγ̇ −

∑

i

#Fi · δ#vi

Γγ̇ = σγ̇ − dU

dt
=

∑

i

#Fi · δ#vi = D
∑

i

δv2
i

〈Γ〉 = 〈σ〉 =
DN

γ̇
〈δv2〉

Dissipation

•Identify as input power•Energy change under 
affine deformation = σ •Identify as dissipation rate

•Γ is energy dissipated per unit strain

•Ono et. al. PRE 2003

•Rheology = fluctuations
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Γ distribution (like acoustic emission spectrum)
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dγ/dt = 0.125 x 10-5

dγ/dt = 0.250 x 10-5

dγ/dt = 0.500 x 10-5

dγ/dt = 1.000 x 10-5

Γ distribution (like acoustic emission spectrum)

φ=0.85

φ=0.90

φ=0.95

φ=1.00

•power-law regime

Saturday, June 12, 2010



102

104

P(
Γ
)

100
104
108

P(
Γ
)

10-4
100
104

P(
Γ
)

10-8 10-6 10-4 10-2

Γ

10-4
100
104

P(
Γ
)

dγ/dt = 0.125 x 10-5

dγ/dt = 0.250 x 10-5

dγ/dt = 0.500 x 10-5

dγ/dt = 1.000 x 10-5

Γ distribution (like acoustic emission spectrum)

φ=0.85

φ=0.90

φ=0.95

φ=1.00

•power-law regime
•exponent~-1.2
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2

dγ/dt = 0.125 x 10-5

dγ/dt = 0.250 x 10-5

dγ/dt = 0.500 x 10-5

dγ/dt = 1.000 x 10-5

Γ distribution power-law rescaling

φ=0.85

φ=0.90

φ=0.95

φ=1.00

•Scale P by Γ-1.2
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Γ distribution kinematic QS rescaling
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•QS scaling:

Increasing shear 
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Γ distribution kinematic QS rescaling

φ=0.85

φ=0.90

φ=0.95

φ=1.00

•QS scaling:

Increasing shear 
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Conclusion (avalanches/dissipation)
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•Instantaneous energy dissipation:
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•Instantaneous energy dissipation:
• φ>φc, dγ/dt -> 0:
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•Questions:
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•Instantaneous energy dissipation:
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• Quasistatic peak
• Power law regime with exponent ~ 1.2
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• Slip line argument predicts Deff ~ L.  Can we see it?
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Conclusion (avalanches/dissipation)

•Instantaneous energy dissipation:
• φ>φc, dγ/dt -> 0:

• Quasistatic peak
• Power law regime with exponent ~ 1.2

•Questions:
• Slip line argument predicts Deff ~ L.  Can we see it?
• How does combined rate/size dictate Fickian cross-over?
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Conclusion (avalanches/dissipation)

•Instantaneous energy dissipation:
• φ>φc, dγ/dt -> 0:

• Quasistatic peak
• Power law regime with exponent ~ 1.2

•Questions:
• Slip line argument predicts Deff ~ L.  Can we see it?
• How does combined rate/size dictate Fickian cross-over?
• Is physics the same at the same τJ dγ/dt?
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THE END
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Thanks!
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Numerical models / algorithms

Various interaction potentials:
Uharm=(ε/2) s2

Uhertz=ε s5/2

ULennard-Jones=ε(r-12-r-6)

Binary distribution in 2D

s

rAthermal, Quasistatic Procedure:
•Minimize potential energy
•Shear boundaries and particles
•Repeat

Represents:
•Bulk metallic glass in the zero 
temperature, zero strain rate limit
•Granular material or emulsion in zero 
strain rate limit

Behavior:
•Discrete plastic jumps separate smooth, 
reversible elastic segments

Minimize Energy

Shear system

En
er

gy

Strain

elast
ic

elast
ic

plastic

τpl << τdr << τth

Landscape picture:

(Malandro and Lacks)
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Linear elastic response (at zero temperature)

• Take a binary Lennard-
Jones system

• Quench instantaneously 
from T=infinity to T=0

• Apply infinitesimal shear 
strain

• Compute deviations from 
homogeneous shear

• Note vortex-like patterns... 
lengthscale?

A. Tanguy et. al. PRB 2002
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• Single particle toy 
problem:

• Start at F=0

Ordered Case

Computing linear response
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• Single particle toy 
problem:

• Start at F=0

• Apply affine shear

• Forces remain zero

• No correction 
necessary

Ordered Case

Computing linear response
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• Single particle toy 
problem:

• Start at F=0

Disordered Case

Computing linear response
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• Single particle toy 
problem:

• Start at F=0

• Apply strain

Disordered Case

Computing linear response
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• Single particle toy problem:
• Start at F=0
• Apply strain

Disordered Case

Use Hessian to compute 
“Affine force”

!Ξi = γ
∑

j

Hijx̂δyj

Computing linear response
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Disordered Case

Use Hessian to find 
position correction

!Ξi = Hii
!dri

!dri = H
−1

ii
!Ξi

Computing linear response

• Single particle toy problem:
• Start at F=0
• Apply strain
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•Back to full assembly:

•Measure of local 
disorder.

•Only short range 
correlations in our 
samples.

!Ξi = γ
∑

j

Hijx̂δyij

Computing linear response
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Force balance: 
Affine forces, Ξ , must be 
balanced by correction 
forces, H-1ijdxj

!dri = γ
∑

j

H
−1
ij

!Ξj

Computing linear response

•Back to full assembly:
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g(!δ)
.
=

∫
!v(!r) · !v(!r + !δ)d!r

δ

•Usual autocorrelation

•Measures “vortex size”

•Characteristic length?

Spatial autocorrelation function g(δ)
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Spatial autocorrelation function g(δ)

0 0.1 0.2 0.3 0.4 0.5
!/Lbox

0

0.2

0.4

0.6

0.8

1
<v
(r)
v(
r+
!)
>

Lbox=20
Lbox=25
Lbox=30
Lbox=35
Lbox=100
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Recall: !dri = γ
∑

j

H
−1
ij

!Ξj

g(δ): theoretical form
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Recall: !dri = γ
∑

j

H
−1
ij

!Ξj

Then: !dri = γ
∑

p

(

Ξp

λp

)

!ψip

g(δ): theoretical form
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•Assume:

•Ξ is a random dipole 
field

• Ψp are plane waves

• λp = kp2  ;  Ξp = kp 

Recall: !dri = γ
∑

j

H
−1
ij

!Ξj

Then: !dri = γ
∑

p

(

Ξp

λp

)

!ψip

g(δ): theoretical form
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Approximate dri as 
random sum of plane 
waves:

•Assume:

•Ξ is a random dipole 
field

• Ψp are plane waves

• λp = kp2  ;  Ξp = kp 

Recall: !dri = γ
∑

j

H
−1
ij

!Ξj

Then: !dri = γ
∑

p

(

Ξp

λp

)

!ψip

!dri ∼
∑

k=(m,n)

φmn
e2πi"k·"xi/L

|!k|

g(δ): theoretical form

Saturday, June 12, 2010



Approximate dri as 
random sum of plane 
waves:

Then g(δ) is:

•Assume:

•Ξ is a random dipole 
field

• Ψp are plane waves

• λp = kp2  ;  Ξp = kp 

Recall: !dri = γ
∑

j

H
−1
ij

!Ξj

Then: !dri = γ
∑

p

(

Ξp

λp

)

!ψip

!dri ∼
∑

k=(m,n)

φmn
e2πi"k·"xi/L

|!k|

g(!δ) ∼
∑

k=(m,n)

cos(2π!k ·
!δ/L)

k2

g(δ): theoretical form
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0.1 0.2 0.3 0.4 0.5
!/Lbox

-0.1

0

0.1

0.2

0.3

0.4

<v
(r)

v(
r+
!)

>

Lbox=20
Lbox=25
Lbox=30
Lbox=35
Lbox=100
Discrete Theory
Cont. Theory

Similar to DiDonna
+Lubenksy, 

•g(k)~1/k2

but:

•Fully discrete 
derivation

Blue curve:
Semi-continuum 

Red curve(s):
Partial sum (n=40)
3 different angles

g(!δ) ∼
∑

k=(m,n)

cos(2π!k ·
!δ/L)

k2

g(δ): theoretical form
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Summary: Elastic response

• Linear elastic (zero temperature) response is 
inhomogeneous.
• Displacement fluctuations appear as vortices
• Size scales with system size... no characteristic length 
• “Affine forces”: a new measure of local disorder.
• Fluctuations derived from approximating eigenmodes as 
plane waves and affine forces as a random dipoles.

Saturday, June 12, 2010



Plastic response (Shear Transformation Zones)

From C. Schuh

•Shear Transformation Zone (STZ) Mechanism:
•Argon and Kuo: bubble raft experiments
•Maeda and Takeuchi: computer simulations 
•Bulatov and Argon: banding mechanism 
•Falk and Langer: mean field theory

Higher

!
Higher

Higher
p

Higher
p

Lower
p

!
HigherLower

p

!
Higher

!

Elastic consequences:

What are the consequences of organization of local shear zones?

!
Higher
!

Higher

Cascade mechanism:

Analogous to dislocation glide:

No crystal... so no dislocations... 
but then what controls plasticity?
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Typical plastic cascade

0 1000 2000 3000 4000 5000
1658

1658.5

1659

1659.5

1660

1660.5

1661

U

0 1000 2000 3000 4000 5000

Number of Minimization Steps

0

0.05

0.1

0.15

0.2

<
F

*
F

>

0.15 0.155 0.16 0.165 0.17
!

1656

1658

1660

1662

U

•Protocol: shear, relax...
•Single typical plastic event
•All relaxation at one strain
•“Number of minimization 
steps” analogous to time 
<F2>~dU/dt

•Descent is intermittent...
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Typical plastic cascade

Initial portion of descent from previous slide:

Incremental “slip” Cumulative slip Incremental energy drop

Expected 
energy change 

after 
nucleation of 
localized slip:
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At the end of the whole cascade, we are left with a slip line:
!u − 〈!u〉 !u“Slip”: Displacement:

Analogous to dislocation glide:

!
Higher
!

Higher

But with local shearing zones:

Typical plastic cascade

Saturday, June 12, 2010



Statistics and size scaling

Collect statistics for different 
system size and interaction 
potentials:

•“Modulus”
•Elastic interval
•Stress drop
•Energy drop

<!>
!

"

<!>

<!>/<µ>
-20 0 20 40 60

µ/<!>
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

P(
µ
/<
!
>)

Harm
Hertz
LJ

L=50

L=12.5

L=25

<σ>/μ is 
universal!

 ~ 3%

µ=!"/!#

$#

$"

"

#
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Statistics and size scaling

Collect statistics for different 
system size and interaction 
potentials:

•“Modulus”
•Elastic interval: Δγ
•Stress drop: Δσ
•Energy drop: ΔU

µ=!"/!#

$#

$"

"

#

Δγ~a/L 

Δσ~μΔγ~μa/L

ΔU~(L2/μ)<σ>Δσ
~aL<σ>

Event size independent 
of potential and scales 

simply with system size!

L

a 0 0.2 0.4 0.6 0.8 1

0.1

1

10 Harm, P(L!")
Hertz, P(L!")
LJ, P(L!")
Harm, P(!U/(L<#>))
Hertz, P(!U/(L<#>))
LJ, P(!U/(L<#>))
Harm, P(L!#/µ)
Hertz, P(L!#/µ)
LJ, P(L!#/µ)

Scaled distributions of Δγ, Δσ, ΔU

a

P(
a)

Scaling argument: slip by length “a”

Saturday, June 12, 2010



Summary: Plastic response

• Plastic response is intermittent with large, system-spanning 
events (avalanches)
• Avalanches composed of clusters of local slip (STZs)
• STZs interact elastically
• Universal yield strain ε ~ 3%... agrees with experiments
• Universal slip amplitude a ~ .1 particle diameters... 
experiments difficult
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• 2D Molecular Dynamics:
• binary Lennard-Jones 
quenched at Pressure=0
• relative velocity damping 
(Kelvin/DPD)
• axial, fixed area strain
• periodic boundaries
• system sizes up to 
3000x3000 ~ 10M particles
• Quasi-static limit (about 
500 CPU days / run)

prescribed Ly(t), Lx(t)  
to conserve area

Ly(t)

Lx(t)

Zero temperature molecular dynamics
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∂ui

∂xj

= Fij

ω = Fxy − Fyx

ω<0

For each triangle:

Invariants:

ε1 =
Fxx − Fyy

2

ε2 =
Fxy + Fyx

2 ω>0

ε =

√

ε
2
1

+ ε
2
2

“Right Strain” “Left Strain”

Local vorticity, ω
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Future directions

Dense

• Differences in elementary physics:
• Inertial or overdamped?
• “Real” temperature
• Dissipation mechanisms / hydrodynamics
• Coulomb friction
• Attractive forces / adhesion

•How do microscopic details affect the 
intermittency, slip avalanches, 
elasticity, rheology, and yield?

•Recall:

Near RCP

• Currently looking at: 
• densities near random close packing (RCP)
• massless (mean field bubbles) and massive 
(frictionless granular DEM) models.
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