Avalanches and Diffusion in Amorphous Solids Under Athermal, Quasistatic Shear

Craig Maloney
Collaborators:
M. O. Robbins (Hopkins)

Funding:
NSF DMR-0454947 and PHY99-07949

KITP
June 2010

CarnegieMellon

ENGINEERING

Outline

- Amorphous solids
- Types
- Athermal quasistatic shear (AQS)
- Slip lines in Lennard-Jones solids
- CEM + M.O. Robbins (J. Phys 2008, PRL 2009)
- Spatial structure of plasticity
- Effective diffusion
- Jamming
- (CEM. PRL Submitted)
- Bubble model / critical scaling near jamming
- Effective diffusion
- Avalanches

Carnegie Mellon

The question(s) I am asking

- For "simple" amorphous solids in AQS:
- What is the elementary mechanism(s) which accommodates applied shear?
- How are they organized in space and time?
- (How does this impact visceplastic rheology)?

CarnegieMellon

Types of amorphous solids

- Types
- Emulsions / Foams
- Granular packings
- Colloidal suspensions
- Atoms / Molecules

Local shear strain under driving:

(Schall et. al.)
CarnegieMellon

Polydisperse PMMA spheres in density-matched solvent

(Weeks et. al.)
Civil \& Environmental ENGINEERING

Types of amorphous solids

- Types
- Emulsions / Foams
- Granular packings
- Colloidal suspensions
- Atoms / Molecules

\square Axial compression

CarnegieMellon

 ENGINEERING
Athermal, quasistatic shear (AQS)

- Differences in particle-scale physics (do they matter?):
- Inertial or overdamped?
- "Real" temperature
- Dissipation mechanisms / hydrodynamics
- Attractive forces / adhesion
- Coulomb friction / covalent bonding
- Energy landscape picture of AQS (Malandro and Lacks)

- $t_{\text {thermal }} \gg t_{\text {shear }} \gg t_{\text {rearrange }}$

- first Temperature to zero, then shear rate to zero.

Zero temperature molecular dynamics

> control: $L_{y}(t), L_{x}(t)$ conserve area

Civil \& Environmental

CarnegieMellon

Zero temperature molecular dynamics

- 2D Molecular Dynamics:

CarnegieMellon

$$
\begin{aligned}
& \text { control: } L_{y}(t), L_{x}(t) \\
& \text { conserve area }
\end{aligned}
$$

Civil \& Environmental
ENGINEERING

Zero temperature molecular dynamics

- 2D Molecular Dynamics:
- binary Lennard-Jones

CarnegieMellon

$$
\text { control: } L_{y}(t), L_{x}(t)
$$ conserve area

Civil \& Environmental
ENGINEERING

Zero temperature molecular dynamics

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0

CarnegieMellon

> control: $\mathrm{L}_{\mathrm{y}}(\mathrm{t}), \mathrm{L}_{\mathrm{x}}(\mathrm{t})$ conserve area

Zero temperature molecular dynamics

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)

> control: $L_{y}(t), L_{x}(t)$ conserve area

Zero temperature molecular dynamics

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)
- axial, fixed area strain

CarnegieMellon

Civil \& Environmental
ENGINEERING

Zero temperature molecular dynamics

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)
- axial, fixed area strain
- periodic boundaries

CarnegieMellon

Civil \& Environmental
ENGINEERING

Zero temperature molecular dynamics

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)
- axial, fixed area strain
- periodic boundaries
- system sizes up to 3000×3000 ~ 10M particles

Civil \& Environmental
ENGINEERING

Zero temperature molecular dynamics

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)
- axial, fixed area strain
- periodic boundaries
- system sizes up to 3000×3000 ~ 10M particles
- Quasi-static limit (about 500 CPU days / run)

Civil \& Environmental
ENGINEERING

Zero temperature molecular dynamics

- 2D Molecular Dynamics:
- binary Lennard-Jones
- quenched at Pressure=0
- damp relative velocity (Kelvin/ DPD)
- axial, fixed area strain
- periodic boundaries
- system sizes up to 3000×3000 ~ 10M particles
- Quasi-static limit (about 500 CPU days / run)
- Strain window, $\Delta \gamma$, plays role of time!

Civil \& Environmental
CarnegieMellon

Local vorticity, ω

For each triangle:

$$
\begin{gathered}
\frac{\partial u_{i}}{\partial x_{j}}=F_{i j} \\
\epsilon_{1}=\frac{F_{x x}-F_{y y}}{2} \\
\epsilon_{2}=\frac{F_{x y}+F_{y x}}{2}
\end{gathered}
$$

Invariants:
$\epsilon=\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}$

$$
\omega=F_{x y}-F_{y x}
$$

CarnegieMellon

"Canonical" atomistic Eshelby shear transformation:
pure shear $\epsilon_{1}>0 \epsilon_{2}=0 \omega=0$

Falk PRB 1998

Civil \& Environmental
ENGINEERING

Local vorticity, ω

For each triangle:

$$
\begin{gathered}
\frac{\partial u_{i}}{\partial x_{j}}=F_{i j} \\
\epsilon_{1}=\frac{F_{x x}-F_{y y}}{2} \\
\epsilon_{2}=\frac{F_{x y}+F_{y x}}{2}
\end{gathered}
$$

Invariants:
$\epsilon=\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}$
$\omega=F_{x y}-F_{y x}$

CarnegieMellon

ENGINEERING

Correlations in steady state

Civil \& Environmental

CarnegieMellon

Transverse displacement traces (6.1\% -> 6.2\%)

Civil \& Environmental
CarnegieMellon ENGINEERING

Transverse displacement traces (6.1\% -> 6.2\%)

$P(\delta x, \delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

-System is either:

- active along $\delta x=\delta y$
- active along $\delta x=-\delta y$
- or quiescent$+1$
δy
-1
-2
$\begin{array}{lllll}-2 & -1 & \delta x & +1 & +2\end{array}$

CarnegieMellon

$P(\delta x, \delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

-System is either:

- active along $\delta x=\delta y$
- active along $\delta x=-\delta y$
- or quiescent

CarnegieMellon

$P(\delta x, \delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

-System is either:

- active along $\delta x=\delta y$
- active along $\delta x=-\delta y$
- or quiescent

CarnegieMellon

$P(\delta x, \delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

-System is either:

- active along $\delta x=\delta y$
- active along $\delta x=-\delta y$
- or quiescent

CarnegieMellon

$P(\delta x, \delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

-System is either:

- active along $\delta x=\delta y$
- active along $\delta x=-\delta y$
- or quiescent

CarnegieMellon

$P(\delta x, \delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

-System is either:

- active along $\delta x=\delta y$
- active along $\delta x=-\delta y$
- or quiescent

CarnegieMellon

$P(\delta x, \delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

-System is either:

- active along $\delta x=\delta y$
- active along $\delta x=-\delta y$
- or quiescent

CarnegieMellon

$P(\delta x, \delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

-System is either:

- active along $\delta x=\delta y$
- active along $\delta x=-\delta y$
- or quiescent

CarnegieMellon

$P(\delta x, \delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

-System is either:

- active along $\delta x=\delta y$
- active along $\delta x=-\delta y$
- or quiescent

CarnegieMellon

$P(\delta x+\delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

CarnegieMellon
Civil \& Environmental ENGINEERING

$P(\delta x+\delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

Civil \& Environmental

$P(\delta x+\delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

CarnegieMellon
Civil \& Environmental
ENGINEERING

$P(\delta x+\delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

Civil \& Environmental

CarnegieMellon

ENGINEERING

$P(\delta x+\delta y)$ for 8 consecutive $\Delta \gamma=0.001$ windows

Civil \& Environmental
ENGINEERING

$P(\Delta r)$ for various $\Delta \gamma$

All distributions rescaled by Fickian expectation:
$s=\left\langle\Delta r^{2}\right\rangle / \Delta Y$

CarnegieMellon

$P(\Delta r)$ for various $\Delta \gamma$

All distributions rescaled by Fickian expectation:
$s=\left\langle\Delta r^{2}\right\rangle / \Delta Y$

Looks Fickian but: -spatial correlations
$\cdot<\Delta r^{2}>/ \Delta \gamma$ depends on L

CarnegieMellon

$P(\Delta r)$ for various $\Delta \gamma$

All distributions rescaled by Fickian expectation:
$s=\left\langle\Delta r^{2}\right\rangle / \Delta Y$

Looks Fickian but: -spatial correlations
$\cdot<\Delta r^{2}>/ \Delta \gamma$ depends on L

At $\Delta y=0.001, P(\Delta r)$ is exponential for 7 decades!
Crossover to Fickian ($\Delta \gamma \sim 0.032$) consistent with thick bands filling space

$P(\Delta r)$ for various $\Delta \gamma$

At $\Delta y=0.001, P(\Delta r)$ is exponential for 7 decades!
Crossover to Fickian ($\Delta \gamma \sim 0.032$) consistent with thick bands filling space

$P(\omega ; \Delta \gamma)$

Civil \& Environmental

CarnegieMellon

ENGINEERING

$P(\omega ; \Delta \gamma)$. Scale by $\Delta \gamma$, fit to $e^{-\omega / \omega^{*}}$

RMS ω vs $\Delta \gamma$

RMS ω vs $\Delta \gamma$

> Civil \& Environmental
> ENGINEERING

Effective diffusion in Lennard-Jones

CarnegieMellon

Effective diffusion in Lennard-Jones

- Slip in bands: $\mathrm{a} \sim \sigma_{0}, \mathrm{~h} \sim 50 \sigma_{0}$, $\mathrm{Y}_{\text {band }} \sim 1 \%$ (for $\mathrm{L} \sim 1000$)

Effective diffusion in Lennard-Jones

- Slip in bands: $\mathrm{a} \sim \sigma_{0}, \mathrm{~h} \sim 50 \sigma_{0}, \gamma_{\text {band }} \sim 1 \%$ (for L~1000)
- (system size dependent) "time" scale $\Delta y=a / L \sim 1 / 1000 \sim 0.001$

CarnegieMellon

Effective diffusion in Lennard-Jones

- Slip in bands: $\mathrm{a} \sim \sigma_{0}, \mathrm{~h} \sim 50 \sigma_{0}, \gamma_{\text {band }} \sim 1 \%$ (for L~1000)
- (system size dependent) "time" scale $\Delta \gamma=a / L \sim 1 / 1000 \sim 0.001$
- A flat "elementary" $P(\Delta r)$ gives: $D_{\text {eff }}=<\Delta r^{2}>/ \Delta \gamma=(L a / 12)$

Effective diffusion in Lennard-Jones

- Slip in bands: $\mathrm{a} \sim \sigma_{0}, \mathrm{~h} \sim 50 \sigma_{0}$, $\mathrm{Y}_{\text {band }} \sim 1 \%$ (for L~1000)
- (system size dependent) "time" scale $\Delta \gamma=a / L \sim 1 / 1000 \sim 0.001$
- A flat "elementary" $P(\Delta r)$ gives: $D_{\text {eff }}=<\Delta r^{2}>/ \Delta \gamma=(L a / 12)$
- Measured $D_{\text {eff }}$ is consistent with apparent a.

Effective diffusion in Lennard-Jones

- Slip in bands: $\mathrm{a} \sim \sigma_{0}, \mathrm{~h} \sim 50 \sigma_{0}$, $\mathrm{Y}_{\text {band }} \sim 1 \%$ (for L~1000)
- (system size dependent) "time" scale $\Delta \gamma=a / L \sim 1 / 1000 \sim 0.001$
- A flat "elementary" $P(\Delta r)$ gives: $D_{\text {eff }}=<\Delta r^{2}>/ \Delta \gamma=(L a / 12)$
- Measured $D_{\text {eff }}$ is consistent with apparent a.
- $P\left(\Delta r^{2}\right)$ Guassian at $\Delta y \sim 0.032$

CarnegieMellon

Effective diffusion in Lennard-Jones

- Slip in bands: $\mathrm{a} \sim \sigma_{0}, \mathrm{~h} \sim 50 \sigma_{0}$, $\mathrm{Y}_{\text {band }} \sim 1 \%$ (for L~1000)
- (system size dependent) "time" scale $\Delta \gamma=a / L \sim 1 / 1000 \sim 0.001$
- A flat "elementary" $P(\Delta r)$ gives: $D_{\text {eff }}=<\Delta r^{2}>/ \Delta \gamma=(L a / 12)$
- Measured $D_{\text {eff }}$ is consistent with apparent a.
- $P\left(\Delta r^{2}\right)$ Guassian at $\Delta y \sim 0.032$
- $\left\langle\omega^{2}\right\rangle \sim \Delta \gamma$, BUT, $P(\omega)$ highly non-Gaussian: P~e ω / ω^{*}

CarnegieMellon

Effective diffusion in Lennard-Jones

- Slip in bands: $\mathrm{a} \sim \sigma_{0}, \mathrm{~h} \sim 50 \sigma_{0}, \gamma_{\text {band }} \sim 1 \%$ (for L~1000)
- (system size dependent) "time" scale $\Delta \gamma=a / L \sim 1 / 1000 \sim 0.001$
- A flat "elementary" $P(\Delta r)$ gives: $D_{\text {eff }}=<\Delta r^{2}>/ \Delta \gamma=(L a / 12)$
- Measured $D_{\text {eff }}$ is consistent with apparent a.
- $P\left(\Delta r^{2}\right)$ Guassian at $\Delta y \sim 0.032$
- $<\omega^{2}>\sim \Delta \gamma, B U T, P(\omega)$ highly non-Gaussian: P~e ${ }^{\omega / \omega^{*}}$
- $\omega^{\star} \sim 0.1$ compatible with yield strain $\varepsilon_{\text {yield }} \sim 0.05$

CarnegieMellon

Structure factor for $\Delta \mathrm{\gamma}=0.04 S(\vec{q})=\left|\int \omega(\vec{r}) \exp [i \vec{q} \cdot \vec{r}] d r\right|^{2}$

$$
S(q ; \theta)=A(\theta) q^{-\alpha(\theta)} \quad \begin{aligned}
& \alpha \text { depends on angle! } \\
& \alpha: \text { has "shear" symmetry }
\end{aligned}
$$

Civil \& Environmental
ENGINEERING

Compare to Talamali et. al. (Vandembroucq talk)

Civil \& Environmental
CarnegieMellon ENGINEERING
$<$ LogS $>_{\theta}$ scaled by $\Delta \gamma$

<LogS> ${ }_{\theta}$ best-rescaling

Summary: Spatial structure of strain

- Measured vorticity, ω, for various, $\Delta \gamma$
- In steady state, $\mathrm{S}(\mathrm{q}, \theta)=\mathrm{A}(\theta) \mathrm{q}^{\alpha}$ (θ)
- α has "shear symmetry"
- A($\theta)$: Mohr-Coulomb effect
- $\mathrm{S} / \Delta \gamma$ collapse implies: ω is decorrelated

CarnegieMellon

ENGINEERING

Jammed systems

From F. Lechenault

From A. Abate

CarnegieMellon

Civil \& Environmental ENGINEERING

Jammed systems

From F. Lechenault

From A. Abate

CarnegieMellon

Jammed systems

From F. Lechenault
Expect different spatial heterogeneity in steadily sheared systems!
 vanHecke group

From A. Abate

CarnegieMellon

Civil \& Environmental ENGINEERING

Jamming and critical scaling at φ_{c}

CarnegieMellon

Jamming and critical scaling at φ_{c}

CarnegieMellon

Jamming and critical scaling at φ_{c}

- ϕ, σ rheology scaling near "point J"
-Olsson and Teitel (bubbles), Hatano (grains)...

CarnegieMellon

Civil \& Environmental
ENGINEERING

Jamming and critical scaling at φ_{c}

- ϕ, σ rheology scaling near "point J"
-Olsson and Teitel (bubbles), Hatano (grains)...

Jamming and critical scaling at φ_{c}

- ϕ, σ rheology scaling near "point J"
-Olsson and Teitel (bubbles), Hatano (grains)...

Jamming and critical scaling at φ_{c}

- ϕ, σ rheology scaling near "point J"
-Olsson and Teitel (bubbles), Hatano (grains)...

CarnegieMellon

Civil \& Environmental

Bubble model

$$
\delta \vec{v}_{i}=\vec{F}_{i} / D ; \quad \delta \vec{v}_{i}=\vec{v}_{i}-y_{i} \dot{\gamma} \hat{x} ; \quad \dot{\vec{r}}_{i}=\vec{v}_{i}
$$

CarnegieMellon

Bubble model

$$
\delta \vec{v}_{i}=\vec{F}_{i} / D ; \quad \delta \vec{v}_{i}=\vec{v}_{i}-y_{i} \dot{\gamma} \hat{x} ; \quad \dot{\vec{r}}_{i}=\vec{v}_{i}
$$

- 50:50 bidisperse

CarnegieMellon

Bubble model

$$
\delta \vec{v}_{i}=\vec{F}_{i} / D ; \quad \delta \vec{v}_{i}=\vec{v}_{i}-y_{i} \dot{\gamma} \hat{x} ; \quad \dot{\vec{r}}_{i}=\vec{v}_{i}
$$

- 50:50 bidisperse
- R_large = 1.4 R_small = $1.4 \sigma_{0}$

CarnegieMellon

Bubble model

$$
\delta \vec{v}_{i}=\vec{F}_{i} / D ; \quad \delta \vec{v}_{i}=\vec{v}_{i}-y_{i} \dot{\gamma} \hat{x} ; \quad \dot{\vec{r}}_{i}=\vec{v}_{i}
$$

- 50:50 bidisperse
- R_large = 1.4 R_small = $1.4 \sigma_{0}$
-Drag force, D $\overline{\text { v }}$, proportional to motion w/r/t homogeneous flow

CarnegieMellon

Bubble model

$$
\delta \vec{v}_{i}=\vec{F}_{i} / D ; \quad \delta \vec{v}_{i}=\vec{v}_{i}-y_{i} \dot{\gamma} \hat{x} ; \quad \dot{\vec{r}}_{i}=\vec{v}_{i}
$$

- 50:50 bidisperse
- R_large = 1.4 R_small = $1.4 \sigma_{0}$
-Drag force, D $\overline{\text { v }}$, proportional to motion w/r/t homogeneous flow
-Must balance potential force, F

CarnegieMellon

Bubble model

$$
\delta \vec{v}_{i}=\vec{F}_{i} / D ; \quad \delta \vec{v}_{i}=\vec{v}_{i}-y_{i} \dot{\gamma} \hat{x} ; \quad \dot{\vec{r}}_{i}=\vec{v}_{i}
$$

- Only single timescale in model:
- 50:50 bidisperse
- R_large = 1.4 R_small = $1.4 \sigma_{0}$
-Drag force, D $\overline{\text { v }}$, proportional to motion w/r/t homogeneous flow
- Must balance potential force, F

CarnegieMellon

Bubble model

$$
\delta \vec{v}_{i}=\vec{F}_{i} / D ; \quad \delta \vec{v}_{i}=\vec{v}_{i}-y_{i} \dot{\gamma} \hat{x} ; \quad \dot{\vec{r}}_{i}=\vec{v}_{i}
$$

- Only single timescale in model:
- 50:50 bidisperse
- R_large = 1.4 R_small = $1.4 \sigma_{0}$

$$
\tau_{D} \doteq D \sigma_{0}^{2} / \epsilon
$$

-Drag force, Dסv, proportional to motion w/r/t homogeneous flow

- Must balance potential force, F
"Slow" shear at various density

$$
\phi=1.0
$$

$\mathrm{d} y / \mathrm{dt}=1.25 \times 10^{-6}$
$\phi=0.85$
How are they different?

CarnegieMellon

Civil \& Environmental ENGINEERING

Transverse displacement distribution

$P(\Delta y)$ much

 broader for $\phi=1.0$ than $\phi=0.85$ at early $\Delta \gamma$$P(\Delta y)$ similar for $\phi=1.0$ and $\phi=0.85$ at late Δy

2nd and 4th moments ($\varphi=1.0$)

no rate dependence at plateau, we're quasistatic!

From LJ slip-line arguments: $D_{\text {eff }} \sim L a / 12$
$a \sim 0.8 \sigma$
$\Delta \gamma^{*} \sim a / L \sim .05$

Civil \& Environmental
ENGINEERING

Typical displacement over $\Delta \gamma \sim 0.05$

From LJ slip-line arguments:
$D_{\text {eff }} \sim L a / 12$
$\mathrm{a} \sim 0.8 \sigma$
$\Delta Y^{\star} \sim \mathrm{a} / \mathrm{L} \sim .05$

CarnegieMellon

Civil \& Environmental
ENGINEERING

2nd and 4th moments ($\varphi=0.85$)

Typical displacement over $\Delta \gamma \sim 0.05$

Civil \& Environmental
CarnegieMellon
ENGINEERING

Non-gaussian parameter, α

cross-over to Gaussian is roughly independent of ϕ and $d y / d t$.

CarnegieMellon

Civil \& Environmental
ENGINEERING

Conclusion (Diffusion)

-Slip lines argument gives: slip amplitude $=\mathrm{a} \sim 0.8 \sigma$
strain quantum $=\Delta \gamma^{*} \sim a / L \sim 0.05$

- Displacement fields at $\Delta y \sim 0.05$ look like slip lines with consistent slip amplitude
- Seems surprisingly robust with respect to ϕ !
- systems near ϕ_{c} much less intermittent at small $\Delta \gamma$
- but surprisingly similar in Fickian regime!

CarnegieMellon

Dissipation

$$
\frac{d U}{d t}=\left.\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma}-\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

Dissipation

$$
\frac{d U}{d t}=\left|\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma}-\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

CarnegieMellon

Dissipation

$$
\frac{d U}{d t}=\left.\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma}-\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

-Energy change under affine deformation $=\sigma$

Dissipation

$$
\frac{d U}{d t}=\left.\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma}-\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

-Energy change under affine deformation $=\sigma$

Dissipation

$$
\frac{d U}{d t}=\left|\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma}-\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

-Energy change under •Identify as input power affine deformation $=\sigma$

Dissipation

$$
\frac{d U}{d t}=\left.\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma}-\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

-Energy change under •Identify as input power affine deformation $=\sigma$

Dissipation

$$
\frac{d U}{d t}=\left.\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma}-\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

-Energy change under •Identify as input power affine deformation $=\sigma \quad \bullet$ Identify as dissipation rate

Dissipation

$$
\frac{d U}{d t}=\left.\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma}-\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

-Energy change under •Identify as input power affine deformation $=\sigma \quad \bullet$ Identify as dissipation rate

$$
\Gamma \dot{\gamma}=\sigma \dot{\gamma}-\frac{d U}{d t}=\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}=D \sum_{i} \delta v_{i}^{2}
$$

Dissipation

$$
\frac{d U}{d t}=\left|\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma}-\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

-Energy change under •Identify as input power affine deformation $=\sigma \quad \bullet$ Identify as dissipation rate

$$
\begin{aligned}
& \quad \Gamma \dot{\gamma}=\sigma \dot{\gamma}-\frac{d U}{d t}=\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}=D \sum_{i} \delta v_{i}^{2} \\
& \langle\Gamma\rangle=\langle\sigma\rangle=\frac{D N}{\dot{\gamma}}\left\langle\delta v^{2}\right\rangle
\end{aligned}
$$

Dissipation

$$
\frac{d U}{d t}=\left.\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma}-\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

-Energy change under •Identify as input power affine deformation $=\sigma \quad \bullet$ Identify as dissipation rate

$$
\begin{aligned}
& \quad \Gamma \dot{\gamma}=\sigma \dot{\gamma}-\frac{d U}{d t}=\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}=D \sum_{i} \delta v_{i}^{2} \\
& \langle\Gamma\rangle=\langle\sigma\rangle=\frac{D N}{\dot{\gamma}}\left\langle\delta v^{2}\right\rangle
\end{aligned}
$$

- Γ is energy dissipated per unit strain

CarnegieMellon

Dissipation

$$
\frac{d U}{d t}=\left|\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma}-\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

-Energy change under •Identify as input power affine deformation $=\sigma \quad \bullet$ Identify as dissipation rate

$$
\begin{gathered}
\Gamma \dot{\gamma}=\sigma \dot{\gamma}-\frac{d U}{d t}=\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}=D \sum_{i} \delta v_{i}^{2} \\
\langle\Gamma\rangle=\langle\sigma\rangle=\frac{D N}{\dot{\gamma}}\left\langle\delta v^{2}\right\rangle \quad \text { •Ono et. al. PRE } 2003
\end{gathered}
$$

- Γ is energy dissipated per unit strain

Dissipation

$$
\frac{d U}{d t}=\left.\frac{\partial U}{\partial \gamma}\right|_{s} \dot{\gamma}+\sum_{i} \frac{\partial U}{\partial \vec{s}_{i}} \dot{\vec{s}}_{i}=\sigma \dot{\gamma} \sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}
$$

-Energy change under •Identify as input power affine deformation $=\sigma \quad \bullet$ Identify as dissipation rate

$$
\begin{array}{cl}
\Gamma \dot{\gamma}=\sigma \dot{\gamma}-\frac{d U}{d t}=\sum_{i} \vec{F}_{i} \cdot \delta \vec{v}_{i}=D \sum_{i} \delta v_{i}^{2} \\
\langle\Gamma\rangle=\langle\sigma\rangle=\frac{D N}{\dot{\gamma}}\left\langle\delta v^{2}\right\rangle & \text { •Ono et. al. PRE 2003 } \\
& \text { •Rheology = fluctuations }
\end{array}
$$

- Γ is energy dissipated per unit strain

CarnegieMellon

Civil \& Environmental
ENGINEERING

「 distribution (like acoustic emission spectrum)

CarnegieMellon
Civil \& Environmental
ENGINEERING

「 distribution (like acoustic emission spectrum)

「 distribution (like acoustic emission spectrum)

「 distribution power-law rescaling

CarnegieMellon
Civil \& Environmental
ENGINEERING

「 distribution power-law rescaling

「 distribution kinematic QS rescaling

Conclusion (avalanches/dissipation)

CarnegieMellon

Conclusion (avalanches/dissipation)

- Instantaneous energy dissipation:

CarnegieMellon

Conclusion (avalanches/dissipation)

- Instantaneous energy dissipation:
- $\phi>\phi_{\mathrm{c}}, \mathrm{d} \gamma / \mathrm{dt}->0$:

CarnegieMellon

Conclusion (avalanches/dissipation)

- Instantaneous energy dissipation:
- $\phi>\phi_{\mathrm{c}}, \mathrm{d} \gamma / \mathrm{dt}->0$:
- Quasistatic peak

CarnegieMellon

Conclusion (avalanches/dissipation)

- Instantaneous energy dissipation:
- $\phi>\phi_{\mathrm{c}}, \mathrm{d} \gamma / \mathrm{dt}->0$:
- Quasistatic peak
- Power law regime with exponent ~ 1.2

Conclusion (avalanches/dissipation)

- Instantaneous energy dissipation:
- $\phi>\phi_{\mathrm{c}}, \mathrm{d} \gamma / \mathrm{dt}->0$:
- Quasistatic peak
- Power law regime with exponent ~ 1.2
-Questions:

CarnegieMellon

Conclusion (avalanches/dissipation)

- Instantaneous energy dissipation:
- $\phi>\phi_{\mathrm{c}}, \mathrm{d} \gamma / \mathrm{dt}->0$:
- Quasistatic peak
- Power law regime with exponent ~ 1.2
-Questions:
- Slip line argument predicts $D_{\text {eff }} \sim L$. Can we see it?

CarnegieMellon

Conclusion (avalanches/dissipation)

- Instantaneous energy dissipation:
- $\phi>\phi_{\mathrm{c}}, \mathrm{d} \gamma / \mathrm{dt}->0$:
- Quasistatic peak
- Power law regime with exponent ~ 1.2
-Questions:
- Slip line argument predicts $D_{\text {eff }} \sim L$. Can we see it?
-How does combined rate/size dictate Fickian cross-over?

CarnegieMellon

Conclusion (avalanches/dissipation)

- Instantaneous energy dissipation:
- $\phi>\phi_{\mathrm{c}}, \mathrm{d} \gamma / \mathrm{dt}->0$:
- Quasistatic peak
- Power law regime with exponent ~ 1.2
-Questions:
- Slip line argument predicts $D_{\text {eff }} \sim L$. Can we see it?
- How does combined rate/size dictate Fickian cross-over?
- Is physics the same at the same $\tau_{\jmath} d \gamma / d t$?

CarnegieMellon

THE END

CarnegieMellon

Civil \& Environmental ENGINEERING

Thanks!

CarnegieMellon

Numerical models / algorithms

Various interaction potentials:
$U_{\text {harm }}=(\epsilon / 2) \mathrm{s}^{2}$
$U_{\text {hertz }}=\epsilon \mathrm{s}^{5 / 2}$
$U_{\text {Lennard-Jones }}=\epsilon\left(r^{-12}-r^{-6}\right)$
Binary distribution in 2D
Athermal, Quasistatic Procedure:

- Minimize potential energy
- Shear boundaries and particles
-Repeat
Represents: $\tau_{p l} \ll \tau_{d r} \ll \tau_{t h}$
-Bulk metallic glass in the zero temperature, zero strain rate limit
- Granular material or emulsion in zero strain rate limit

Behavior:

-Discrete plastic jumps separate smooth, reversible elastic segments

Strain
Civil \& Environmental
ENGINEERING

Linear elastic response (at zero temperature)

- Take a binary LennardJones system
- Quench instantaneously from $\mathrm{T}=$ infinity to $\mathrm{T}=0$
- Apply infinitesimal shear strain
- Compute deviations from homogeneous shear
- Note vortex-like patterns... lengthscale?
A. Tanguy et. al. PRB 2002

Civil \& Environmental
CarnegieMellon

Computing linear response

- Single particle toy problem:
- Start at $\mathrm{F}=0$

Civil \& Environmental ENGINEERING

Computing linear response

- Single particle toy problem:
- Start at $\mathrm{F}=0$
- Apply affine shear
- Forces remain zero
- No correction necessary

Civil \& Environmental
ENGINEERING

Computing linear response

- Single particle toy problem:
- Start at $\mathrm{F}=0$

Disordered Case

Civil \& Environmental ENGINEERING

Computing linear response

- Single particle toy problem:
- Start at $\mathrm{F}=0$
- Apply strain

CarnegieMellon

Civil \& Environmental ENGINEERING

Computing linear response

- Single particle toy problem:
- Start at $\mathrm{F}=0$
- Apply strain

Use Hessian to compute "Affine force"

$$
\vec{\Xi}_{i}=\gamma \sum_{j} \mathbf{H}_{i j} \hat{\mathbf{x}} \delta y_{j}
$$

Disordered Case

CarnegieMellon

Civil \& Environmental
ENGINEERING

Computing linear response

- Single particle toy problem:
- Start at $\mathrm{F}=0$
- Apply strain

Use Hessian to find position correction

$$
\begin{aligned}
& \vec{\Xi}_{i}=\mathbf{H}_{i i} \overrightarrow{d r}_{i} \\
& \overrightarrow{d r}_{i}=\mathbf{H}_{i i}^{-1} \vec{\Xi}_{i}
\end{aligned}
$$

Disordered Case

0

Civil \& Environmental
ENGINEERING

Computing linear response

- Back to full assembly:

$$
\vec{\Xi}_{i}=\gamma \sum_{j} \mathbf{H}_{\mathbf{i j}} \hat{\mathbf{x}} \delta y_{i j}
$$

- Measure of local disorder.
- Only short range correlations in our samples.

CarnegieMellon

Civil \& Environmental
ENGINEERING

Computing linear response

- Back to full assembly:

$$
\overrightarrow{d r}_{i}=\gamma \sum_{j} \mathbf{H}_{\mathbf{i j}}^{-1} \vec{\Xi}_{j}
$$

Force balance:
Affine forces, $\bar{\equiv}$, must be balanced by correction forces, $\mathrm{H}^{-1}{ }_{\mathrm{ij}} \mathrm{dx}_{\mathrm{j}}$

Civil \& Environmental
ENGINEERING

Spatial autocorrelation function $\mathrm{g}(\delta)$

$$
g(\vec{\delta}) \doteq \int \vec{v}(\vec{r}) \cdot \vec{v}(\vec{r}+\vec{\delta}) d \vec{r}
$$

-Usual autocorrelation

- Measures "vortex size"
-Characteristic length?

CarnegieMellon

Civil \& Environmental

ENGINEERING

Spatial autocorrelation function $\mathrm{g}(\delta)$

$g(\delta):$ theoretical form

Recall: $\overrightarrow{d r} r_{i}=\gamma \sum_{j} \mathbf{H}_{\mathbf{i j}}^{-\mathbf{1}} \vec{\Xi}_{j}$

CarnegieMellon

$g(\delta):$ theoretical form

Recall: $\overrightarrow{d r} r_{i}=\gamma \sum_{j} \mathbf{H}_{\mathbf{i j}}^{-1} \vec{\Xi}_{j}$
Then: $\overrightarrow{d r}_{i}=\gamma \sum_{p}\left(\frac{\Xi_{p}}{\lambda_{p}}\right) \vec{\psi}_{i p}$

CarnegieMellon

$g(\delta):$ theoretical form

Recall: $\overrightarrow{d r} r_{i}=\gamma \sum_{j} \mathbf{H}_{\mathbf{i j}}^{-1} \vec{\Xi}_{j}$
Then: $\overrightarrow{d r}_{i}=\gamma \sum_{p}\left(\frac{\Xi_{p}}{\lambda_{p}}\right) \vec{\psi}_{i p}$
-Assume:

- 三 is a random dipole
field
- Ψ_{p} are plane waves
- $\lambda_{\mathrm{p}}=\mathrm{k}_{\mathrm{p}}{ }^{2}$; $\mathrm{E}_{\mathrm{p}}=\mathrm{k}_{\mathrm{p}}$

CarnegieMellon

$g(\delta):$ theoretical form

Recall: $\overrightarrow{d r_{i}}=\gamma \sum_{j} \mathbf{H}_{\mathbf{i j}}^{-\mathbf{1}} \vec{\Xi}_{j}$ Then: $\overrightarrow{d r}_{i}=\gamma \sum_{p}\left(\frac{\Xi_{p}}{\lambda_{p}}\right) \vec{\psi}_{i p}$
-Assume:

- 三 is a random dipole field
- Ψ_{p} are plane waves
- $\lambda_{p}=k_{p}{ }^{2} ; \bar{E}_{p}=k_{p}$

Approximate dr_{i} as random sum of plane waves:

$$
\overrightarrow{d r}_{i} \sim \sum_{k=(m, n)} \phi_{m n} \frac{e^{2 \pi i \vec{k} \cdot \vec{x}_{i} / L}}{|\vec{k}|}
$$

$g(\delta):$ theoretical form

Recall: $\overrightarrow{d r_{i}}=\gamma \sum_{j} \mathbf{H}_{\mathbf{i j}}^{-\mathbf{1}} \vec{\Xi}_{j}$
Then: $\overrightarrow{d r}_{i}=\gamma \sum_{p}\left(\frac{\Xi_{p}}{\lambda_{p}}\right) \vec{\psi}_{i p}$
-Assume:

- 三 is a random dipole field
- Ψ_{p} are plane waves
- $\lambda_{\mathrm{p}}=\mathrm{k}_{\mathrm{p}}{ }^{2}$; $\mathrm{E}_{\mathrm{p}}=\mathrm{k}_{\mathrm{p}}$

CarnegieMellon
Approximate dr_{i} as random sum of plane waves:

$$
\overrightarrow{d r}_{i} \sim \sum_{k=(m, n)} \phi_{m n} \frac{e^{2 \pi i \vec{k} \cdot \vec{x}_{i} / L}}{|\vec{k}|}
$$

Then $g(\delta)$ is:

$$
g(\vec{\delta}) \sim \sum_{k=(m, n)} \frac{\cos (2 \pi \vec{k} \cdot \vec{\delta} / L)}{k^{2}}
$$

Civil \& Environmental
ENGINEERING

$g(\delta)$: theoretical form

Similar to DiDonna
+Lubenksy,
$\bullet g(k) \sim 1 / k^{2}$
but:
-Fully discrete derivation

Blue curve:
Semi-continuum
Red curve(s):
Partial sum ($\mathrm{n}=40$)
3 different angles
Civil \& Environmental
CarnegieMellon
ENGINEERING

Summary: Elastic response

- Linear elastic (zero temperature) response is inhomogeneous.
- Displacement fluctuations appear as vortices
- Size scales with system size... no characteristic length
- "Affine forces": a new measure of local disorder.
- Fluctuations derived from approximating eigenmodes as plane waves and affine forces as a random dipoles.

CarnegieMellon

Civil \& Environmental
ENGINEERING

Plastic response (Shear Transformation Zones)

No crystal... so no dislocations... but then what controls plasticity?

-Shear Transformation Zone (STZ) Mechanism:

- Argon and Kuo: bubble raft experiments
- Maeda and Takeuchi: computer simulations
-Bulatov and Argon: banding mechanism
-Falk and Langer: mean field theory

Analogous to dislocation glide:

What are the consequences of organization of local shear zones?

CarnegieMellon

Typical plastic cascade

- Protocol: shear, relax...

- Single typical plastic event
-All relaxation at one strain
-"Number of minimization steps" analogous to time $<\mathrm{F}^{2}>\sim \mathrm{dU} / \mathrm{dt}$
-Descent is intermittent...
Civil \& Environmental

CarnegieMellon

ENGINEERING

Typical plastic cascade

Initial portion of descent from previous slide:

Expected energy change after nucleation of localized slip:

CarnegieMellon

Typical plastic cascade

At the end of the whole cascade, we are left with a slip line:
"Slip": $\vec{u}-\langle\vec{u}\rangle$
Displacement: \vec{u}

Analogous to dislocation glide:

Carnegie Mellon

But with local shearing zones:

Civil \& Environmental ENGINEERING

Statistics and size scaling

Collect statistics for different system size and interaction potentials:
-"Modulus"

- Elastic interval
- Stress drop
-Energy drop

Civil \& Environmental
ENGINEERING

Statistics and size scaling

Collect statistics for different system size and interaction potentials:
-"Modulus"
-Elastic interval: $\Delta \gamma$

- Stress drop: $\Delta \sigma$
-Energy drop: $\Delta \mathrm{U}$

$$
\begin{gathered}
\Delta \gamma \sim \mathrm{a} / \mathrm{L} \\
\Delta \sigma \sim \mu \Delta \gamma \sim \mu \mathrm{a} / \mathrm{L} \\
\Delta \mathrm{U} \sim\left(\mathrm{~L}^{2} / \mu\right)<\sigma>\Delta \sigma \\
\sim \substack{\mathrm{a} L<\sigma>}
\end{gathered}
$$

Event size independent of potential and scales simply with system size!

Scaled distributions of $\Delta \gamma, \Delta \sigma, \Delta U$

Scaling argument: slip by length "a"

Civil \& Environmental
ENGINEERING

Summary: Plastic response

- Plastic response is intermittent with large, system-spanning events (avalanches)
- Avalanches composed of clusters of local slip (STZs)
- STZs interact elastically
- Universal yield strain $\varepsilon \sim 3 \% \ldots$ agrees with experiments
- Universal slip amplitude a \sim. 1 particle diameters...
experiments difficult

CarnegieMellon

Zero temperature molecular dynamics

- 2D Molecular Dynamics:
- binary Lennard-Jones quenched at Pressure $=0$
- relative velocity damping (Kelvin/DPD)
- axial, fixed area strain
- periodic boundaries
- system sizes up to
$3000 \times 3000 \sim 10 \mathrm{M}$ particles
- Quasi-static limit (about 500 CPU days / run)
prescribed $\mathrm{L}_{\mathrm{y}}(\mathrm{t}), \mathrm{L}_{\mathrm{x}}(\mathrm{t})$
to conserve area

Civil \& Environmental
ENGINEERING

Local vorticity, ω

For each triangle:

$$
\begin{gathered}
\frac{\partial u_{i}}{\partial x_{j}}=F_{i j} \\
\epsilon_{1}=\frac{F_{x x}-F_{y y}}{2} \\
\epsilon_{2}=\frac{F_{x y}+F_{y x}}{2}
\end{gathered}
$$

Invariants:
$\epsilon=\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}$

$$
\omega=F_{x y}-F_{y x}
$$

CarnegieMellon

Civil \& Environmental ENGINEERING

Future directions

-Recall:

- Differences in elementary physics:
- Inertial or overdamped?
- "Real" temperature
- Dissipation mechanisms / hydrodynamics
- Coulomb friction
- Attractive forces / adhesion
- How do microscopic details affect the intermittency, slip avalanches, elasticity, rheology, and yield?
- Currently looking at:
- densities near random close packing (RCP)
- massless (mean field bubbles) and massive (frictionless granular DEM) models.

CarnegieMellon

