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How do amorphous solids deform?
M. Dennin, CI
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e particle packing is disordered (similar to liquids, not
crystals)

e possess a yield stress: initial response like an elastic
solid



Disorder affects vibrational
modes and plastic flow

OUTLINE
. vibrational properties of jammed solids

. shear transformation zone (STZ) model for
plasticity in amorphous solids

. using normal modes to identify STZs
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Jamming transition & Point J

* Focus on
frictionless,
granular packings

* Point J is density
where
coordination
number jumps
from zero to
Isostaticity

* What are the
elastic properties
near point J?

temperature

stress

1/density

C.S. O’Hern, S. A. Langer, A. J. Liu and S. R. Nagel, Phys. Rev.
Lett. 88, 075507 (2002).

C.S. O’Hern, L. E. Silbert, A. J. Liu, S. R. Nagel, Phys. Rev. E 68,
011306 (2003).



|sostaticity

 What is the minimum number of interparticle contacts

needed for mechanical equilibrium?
No friction, spherical particles, D dimensions

Match unknowns (number of interparticle normal forces)
with equations (force balance for mechanical stability)
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Summary of Point J

Mixed first order/second order transition

Number of overlapping neighbors per particle
| 0 0<9,

Z = 1/
 Z, +2,(0-0.)"" ¢>0,

Static shear modulus/bulk modulus
G/B~(¢p—9¢)""

Two diverging length scales
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Recall: calculating vibrational modes
for soft repulsive discs

dynamical matrix M
determines linear response

of packing to displacement u
away from mechanical
equilibrium

normal modes are

eigenvectors of the
dynamical matrix

each normal mode
composed of N polarization
vectors (or d N components)

eigenvalue is energy ~
frequency

Find density of states, etc.
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Vibrations in Solids at Low w

Solids all have density of vibrational states
D(w)~w! in d dimensions (Debye prediction)
* Why?

Low-frequency excitations are sound modes. At
long length scales all solids look elastic

BUT

near Point J, there is a diverging length scale :

) 1 ( -0 )-0.5 M. Wyart, SR. Nagel, T.A. Witten, EPL 72, 486 (05)
Z-7 ‘ L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 098301 ('05)
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So what happens?



Vibrations in Marginally Jammed Solids

L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 098301 (‘05)
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 More and more modes in excess of Debye prediction as ¢->Pc

* New class of excitations distinct from sound modes originates
from soft modes at Point J m. wyart, s.R. Nagel, T.A. Witten, EPL 72, 486 (05)



Nature of Excess Modes

quasilocalized

localized

15

(M)

05

extended and
disordered

N. Xu, Vi Vitelli, A. J. Liu, S. R. Nagel, EPL 90 (2010) 56001.



Excess Modes (over Debye prediction)

Modes become quasilocalized near w*

08 UL R T UL L 1 l|lllIlI'r -
. $
+ *
*

pa——
—
o
-
D —
—

I L L B

Ll 111
A LI N

N. Xu, Vi Vitelli, A. J. Liu, S. R. Nagel, EPL 90 (2010) 56001.



Some excess modes very anharmonic

N. Xu, Vi Vitelli, A. J. Liu, S. R. Nagel, EPL 90 (2010) 56001.

* Low-frequency quasi-
ocalized modes have the
owest energy barriers to
rearrangement

* These modes are the most
likely to go unstable due
to temperature or
mechanical load
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Disorder affects vibrational
modes and plastic flow

OUTLINE
. Vvibrational properties of jammed solids

. shear transformation zone (STZ) model for
plasticity in amorphous solids

. using normal modes to identify STZs



Observation of plastic deformation

Experimental Foams (Lundberg et al, 2007) Simulated granular materials (Maloney
PRE 74 1 2006)

Images for reversible plastic Instantaneous nonaffine
events in a foam displacement field



Apparently:

deformat

oh accommodated in

localized regions

where are they located?

what sets the attempt rate?

how do these regions interact?



One model: Shear Transformation

ones
e continuum
ﬁ

model for 1®

disordered solids )o
* postulates

equations for %O

density and <

orientation of

susceptible Spaepen (1977), Argon (1979),

regions: STZs Falk and Langer (1998)



STZ model fits simulation data

VA initially more ordered
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but where are the STZs?

want to identify
region
susceptible to
deformation
before a plastic
rearrangement

then we can ask:

how many STZs? How does the population
change with strain? How do they interact?



Can vibrational modes be used to
predict plastic rearrangements?

idea: use normal modes to identify soft
spots in sheared amorphous solids



Model system: harmonic discs under
guasi-static shear
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Strain

e At T=0, rearrangements (stress drops) occur when
a vibrational mode goes unstable (reaches w=0)

* So lowest-w quasilocalized mode is most likely
culprit



Lowest energy mode and plastic
displacement

Quasi-localized mode Rearrangement at higher strain

Normal modes analyzed at 10 units of strain from plastic rearrangement




Predicting Rearrangements

* Lowest-w quasilocalized mode most likely to
go unstable NO!

In a large system,
lowest mode is the one
that goes unstable only
very close to the
instability!

Eigenvalues

N o (o)} @
T

0.014 0.0145 0.0150.0155 0.016 0.0165 0.017 0.0175 0.018
strain

Can we find spatial regions susceptible to rearrangement
well before the instability?



ldentifying Soft Spots

unlike Anderson-localized modes, the low energy
guasi-localized modes are in same energy band
as plane waves and modes can mix

idea: analyze all lowest energy modes and
identify subsets of the mode which are special

— tool: variance in the polarization vector distribution
combine subsets together to identify soft spots

guantify similarity between soft spots and plastic
rearrangements
— tool: binary overlap



Which subsets of polarization vectors
are special?

obviously
want high
displacement
regions. ..

where should
the threshold
be?
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Q: Frac of polarization vectors larger than |
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Variance in the polarization vector
distribution
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ldentifying
Soft Spots

Each color corresponds
to the large
displacement region of
a particular normal
mode

Regions often overlap

Regions are clustered
(not very string-y)



ldentifying
Soft Spots
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ldentifying
Soft Spots

Blue regions are the
“soft” regions
identified by our
algorithm,

red arrows are the next
plastic rearrangement
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ldentifying soft spots

* Need to quantify the similarity between one a
“soft spot” and the plastic displacement field

* Want a metric that
— does not depend on size of the soft spot

— equals zero for two random vector fields

— equals one if the two vector fields are perfectly
correllated

* New tool: binary overlap



(N-m) smallest

m largest
. 1(b1°b2+(1—b1)°(1—b2))

) m N-m




binary overlap measure

Opin =

ldentifying soft spots

—e— actual PVD/ disp field
—e—random vectors
perfectly correlated

perfectly anticorrelated

500

1000 1500 2000
m = number of PV¥s

2500

This works!

(with additional term
for anticorrelated
vectors)

very sensitive metric
(0.5 is a strong
correlation!)



Result: we CAN identify STZs

250

Number of events
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Binary overlap with best cluster
Plastic rearrangement strongly overlaps best soft spot for
most events: total number of events is 1333




“Best” soft spot really is the best
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“Binary overlap” is a really strict metric; anything above ~0.2 is significant



How does overlap change with
distance to the plastic event?

0.5 . . average strain
log,o Ay between
— 56 to 5.2368, rearrangements
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Preliminary results: system size
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Conclusions

The vibrational spectrum of amorphous solids
includes “quasi-localized” modes which will
eventually accommodate plastic rearrangements

These modes mix together and mix with plane
waves, but there are common “soft spots”

We have developed algorithms and tools that
allow us to identify soft regions or “STZs” that
take up roughly 1/5% of the area in 2D binary
mixtures

It appears that these regions are clustered into
spots with an average size



Thanks for your attention!

M. L. Manning, A. J. Liu (manuscript in
preparation, 2010)

email: Im2@princeton.edu
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binary overlap measure

Ohin

Binary overlap

e Need two terms to handle correlated AND anti-
correlated
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Binary overlap

Synthetic tests on features of size = 50 particles

sum fixed vector from U[0,1] with random vector
on UJO, offset]
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Binary overlap

* Why don’t you just take the dot product?

e X to—X, y to -y symmetry of dynamical matrix
means there is an m-dependence
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How many modes to analyze?

* Currently: Analyzing lowest 8 eigenvectors

Binsize =4 Binsize=7
1 g
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Binsize = 10 Binsize = 20
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0

V_'.‘-c..—.... . 0 Ve
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* still an open question how this scales with
system size




How many modes to analyze?

* Currently: Analyzing lowest 8 eigenvectors

10.96

participation ratio
1 - fraction of particles

eigenvalues

* still an open question how this scales with
system size



