Exploring soft glassy rheology: Mesoscopic analysis of simulation data and effective temperature dynamics

Peter Sollich A Barra, M E Cates, S M Fielding, P Hébraud, F Lequeux

King's College London

University of London

Soft glasses

- Emulsions, dense colloidal suspensions, foams, microgels
- Structural similarities: made up of squishy "particles"
- Oil droplets [ignore coalescence], colloidal particles, air bubbles [ignore coarsening]
- ullet Typical particle scale μ m, larger for foams, smaller for colloids
- Particles have different shapes and sizes (polydisperse)
- Particle packing is amorphous (disordered)
- Metastable: k_BT too small to make system ergodic & reach optimal packing (crystalline, if polydispersity not too strong)
- So glassy (repulsive glass) but soft, can easily be made to flow

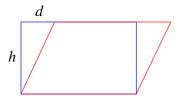
Outline

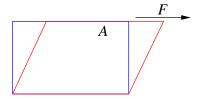
- Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- 3 SGR predictions and model limitations
- 4 Comparison with simulations: Virtual strain analysis
- 5 Effective temperature dynamics, shear banding
- **6** Outlook

Outline

- Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- 3 SGR predictions and model limitations
- 4 Comparison with simulations: Virtual strain analysis
- 5 Effective temperature dynamics, shear banding
- Outlook

Shear stress and strain





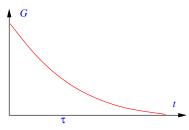
- Shear strain: $\gamma = d/h$, shear stress $\sigma = F/A$ (really tensors)
- Elastic solid: $\sigma = G\gamma$, elastic (shear) modulus G
- Newtonian fluid: $\sigma = \eta \dot{\gamma}$, viscosity η

Linear rheology & viscoelasticity

- Small strain increment (step) $\Delta \gamma$ at t=0 causes stress $\sigma(t)=G(t)\Delta \gamma$
- G(t)= stress relaxation function Constant for solid, spike $\eta\delta(t)$ for fluid
- Most materials are in between: viscoelastic
- For short t, G(t) nearly constant (solid), but eventually $\to 0$ (fluid)
- Linear superposition of many small strain steps $\Delta \gamma = \dot{\gamma} \Delta t$:

$$\sigma(t) = \int_0^t G(t - t')\dot{\gamma}(t') dt'$$

Maxwell model



- Elastic solid and viscous fluid "in series" (spring & damper)
- Common stress σ , elastic strain obeys $\sigma = G_0 \gamma_{\rm el}$, viscous strain $\sigma = \eta \dot{\gamma}_{\rm visc}$
- Total strain rate $\dot{\gamma} = \dot{\gamma}_{\rm el} + \dot{\gamma}_{\rm visc} = \dot{\sigma}/G_0 + \sigma/\eta$
- Solve for small strain step ($\dot{\gamma}(t) = \Delta \gamma \, \delta(t)$):

$$G(t) = G_0 \exp(-t/\tau), \qquad \tau = \eta/G_0$$

• Note $\eta = \int_0^\infty G(t) \, dt$, generally true if(!) flow with constant strain rate is a linear perturbation

Another Maxwell model

Complex modulus

- Experimentally, oscillatory measurements often easier
- If $\gamma(t) = \gamma_0 \cos(\omega t) = \gamma_0 \operatorname{Re} e^{i\omega t}$, then

$$\sigma(t) = \operatorname{Re} \int_0^t G(t - t') i\omega \gamma_0 e^{i\omega t'} dt' = \operatorname{Re} G^*(\omega) \gamma(t)$$

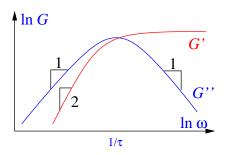
$$G^*(\omega) = i\omega \int_0^\infty G(t'') e^{-i\omega t''} dt'' \quad \text{for large } t$$

• Write complex modulus $G^*(\omega) = G'(\omega) + iG''(\omega)$, then

$$\sigma(t) = G'(\omega)\gamma_0 \cos(\omega t) - G''(\omega)\gamma_0 \sin(\omega t)$$

- Elastic modulus $G'(\omega)$: in-phase part of stress
- Viscous or loss modulus $G''(\omega)$: out-of-phase (ahead by $\pi/2$)

Complex modulus of Maxwell model



• $G^*(\omega)=i\omega \times$ Fourier transform of $G_0\exp(-t/\tau)=G_0\,\frac{i\omega\tau}{1+i\omega\tau}$

$$G'(\omega) = G_0 \frac{\omega^2 \tau^2}{1 + \omega^2 \tau^2}, \qquad G''(\omega) = G_0 \frac{\omega \tau}{1 + \omega^2 \tau^2}$$

• Single relaxation time gives peak in $G''(\omega)$ at $\omega=1/\tau$

Nonlinear rheology

- For most complex fluids, steady flow (rate $\dot{\gamma}$) is not a small perturbation, don't get $\sigma=\eta\dot{\gamma}$
- Flow curve $\sigma(\dot{\gamma})$: stress in steady state
- Often shear-thinning: downward curvature
- Many other nonlinear perturbations:
 - large step stress or strain
 - large amplitude oscillatory stress or strain
 - startup/cessation of steady shear etc
- Most general description: constitutive equation

$$\sigma(t) = \text{some function(al) of strain history } [\gamma(t'), t' = 0 \dots t]$$

Outline

- Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- 3 SGR predictions and model limitations
- 4 Comparison with simulations: Virtual strain analysis
- 5 Effective temperature dynamics, shear banding
- Outlook

Soft glasses: Linear rheology

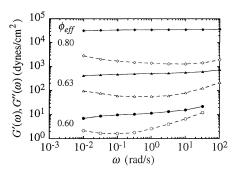
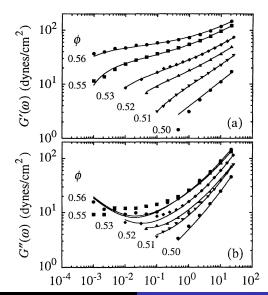


FIG. 2. The frequency dependence of the storage G' (solid points) and loss G'' (open points) moduli of a monodisperse emulsion with $r \approx 0.53 \ \mu \text{m}$ for $\phi_{\text{eff}} = 0.80$ (diamonds), 0.63 (triangles), and 0.60 (circles). The results for the two larger

- Complex modulus for dense emulsions (Mason Bibette Weitz 1995)
- Almost flat $G''(\omega)$: broad relaxation time spectrum, glassy

Rheology SGR Predictions Virtual Banding Outlook

Colloidal hard sphere glasses Mason Weitz 1995



Onion phase Panizza et al 1996

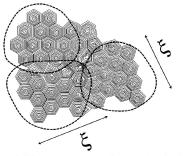
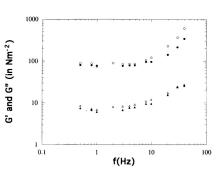


Figure 3. Schematic representation of an onion phase. ξ is the characteristic length of monodomains. Each monodomain is



- Vesicles formed out of lamellar surfactant phase
- Again nearly flat moduli

Rheology SGR Predictions Virtual Banding Outlook

Microgel particles

Purnomo van den Ende Vanapalli Mugele 2008

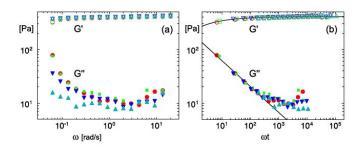
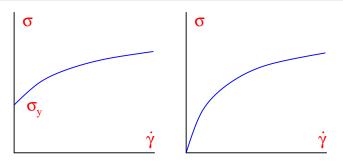


FIG. 1 (color online). G' (open symbols) and G'' (solid symbols) of a 7% w/w suspension at 25 °C plotted versus ω (a) or ωt (b) for $t_w = 3$ (\bigcirc), 30 (\square), 300 (∇), and 3000 s (\triangle). Lines represent the SGR model (x = 0.55, $G_p = 410$ Pa).

- \bullet $G''(\omega)$ flat but with upturn at low frequencies
- Aging: Results depend on time elapsed since preparation, typical of glasses

Nonlinear rheology: Flow curves



- Flow curves typically well fitted by $\sigma(\dot{\gamma}) \sigma_y \sim \dot{\gamma}^p \ (0$
- Herschel-Bulkley if yield stress $\sigma_y \neq 0$, unsheared state = "glass"
- Otherwise power law flow curve, unsheared state = "fluid" (but $\eta = \sigma/\dot{\gamma} \to \infty$ for $\dot{\gamma} \to 0$)
- Shear thinning: $\sigma/\dot{\gamma}$ decreases with $\dot{\gamma}$

A non-glassy model for foam rheology

- Ideal 2d foam (identical hexagonal cells), T=0
- Apply shear: initially perfectly reversible response, stress increases
- Eventually interfaces rearrange, bubbles "slide": global yield
- Process repeats under steady shear
- We get: yield stress
- We don't get: broad relaxation time spectrum (Buzza Lu Cates 1995), aging

SGR model PS Lequeux Hébraud Cates 1997, PS 1998

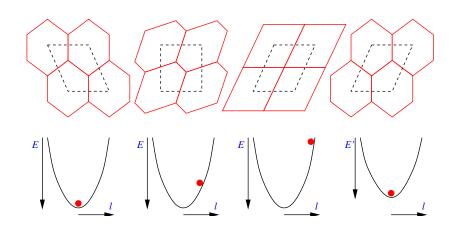
- How do we incorporate structural disorder?
- Divide sample conceptually into mesoscopic elements
- Each has local shear strain l, which increments with macroscopic shear γ
- Assumes strain rate $\dot{\gamma}$ uniform throughout system, but allows for variation in local strain and stress (compare STZ)
- When strain energy $\frac{1}{2}kl^2$ reaches yield energy E, element can yield and so reset to l=0
- k = local shear modulus
- If all elements have same E and k, this would essentially give back the Princen model

SGR model PS Lequeux Hébraud Cates 1997, PS 1998

- New ingredient 1: disorder \Rightarrow every element has its own E
- ullet Initial distribution of E across elements depends on preparation
- When an element yields, it rearranges into new local equilibrium structure \Rightarrow acquires new E from some distribution $\rho(E) \propto e^{-E/\bar{E}}$ (assume no memory of previous E)
- New ingredient 2: Yielding is activated by an effective temperature x, to model interactions between elements
- x should be of order \bar{E} , $\gg k_B T$ (negligible)
- Model implicitly assumes low frequency/slow shear: yields are assumed instantaneous, no solvent dissipation

Rheology SGR Predictions Virtual Banding Outlook

Sketch



Dynamical equation for SGR

- P(E, l, t): probability of an element having yield energy E and local strain l at time t
- Master equation ($\Gamma_0 = \text{attempt rate for yields}$)

$$\begin{array}{ll} \dot{P}(E,l,t) & = & -\dot{\gamma}\frac{\partial P}{\partial l} & \text{convection of } l \\ & & -\Gamma_0 e^{-(E-kl^2/2)/x}P & \text{elements yield} \\ & & +\Gamma(t)\rho(E)\delta(l) & \text{elements reborn after yield} \end{array}$$

where
$$\Gamma(t) = \Gamma_0 \langle e^{-(E-kl^2/2)/x} \rangle$$
 = average yielding rate

- Macroscopic stress $\sigma(t) = k \langle l \rangle$
- Given initial condition P(E, l, 0) and strain history (input) can in principle calculate stress (output)
- We'll rescale E, t, l so that $\bar{E} = \Gamma_0 = k = 1$; this means also typical yield strains are 1

Equilibrium & glass transition in the trap model

• Master equation for P(E,t) in absence of flow (l=0)

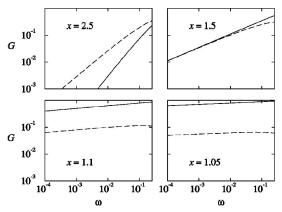
$$\dot{P}(E,t) = -e^{-E/x}P + \Gamma(t)\rho(E)$$

- P(E,t) approaches equilibrium $P_{\rm eq}(E) \propto \exp(E/x) \rho(E)$ for long t (Boltzmann distribution; E is measured downwards)
- Get glass transition if $\rho(E)$ has exponential tail (possible justification from extreme value statistics)
- Reason: for low enough x, $P_{eq}(E)$ cannot be normalized
- For $\rho(E)=e^{-E}$ this transition happens at x=1
- For x < 1, system is in glass phase; never equilibrates
- Aging: evolution into ever deeper traps

Outline

- Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- 3 SGR predictions and model limitations
- 4 Comparison with simulations: Virtual strain analysis
- 5 Effective temperature dynamics, shear banding
- Outlook

Linear response in the fluid phase

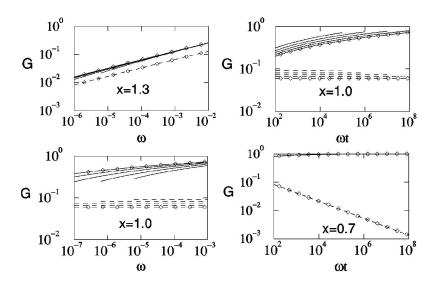


- Calculation yields average of Maxwell models: $G^*(\omega) = \left\langle \frac{i\omega \tau}{1+i\omega \tau} \right\rangle$, average is over $P_{\rm eq}(\tau)$, $\tau = \exp(E/x)$
- \bullet For large x, get usual power-law dependences for small ω
- But near x=1 get $G'\sim G''\sim \omega^{x-1}$: both become flat

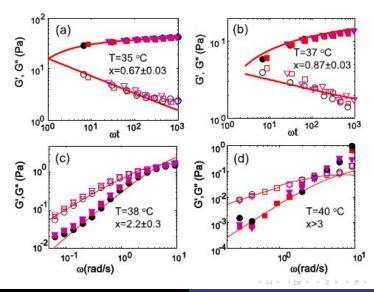
Linear response: Aging Sollich PS Cates 2000

- Conceptual issue: with aging, $G^*(\omega) \to G^*(\omega, t, t_w)$
- $G^*(\omega, t, t_w)$ could depend on final time t and start time t_w of shear
- Luckily, dependence on $t_{\sf w}$ is weak: $G^*(\omega,t)$
- Find simple aging $1/\omega \sim t$: $G^*(\omega,t) \sim 1 (i\omega t)^{x-1}$

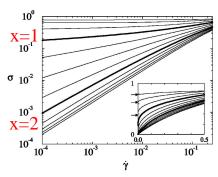
Linear response: Aging



Comparison with experiments on microgel particles Purnomo van den Ende Vanapalli Mugele 2008



Flow curve

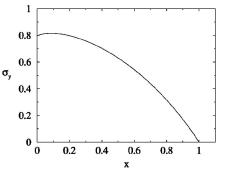


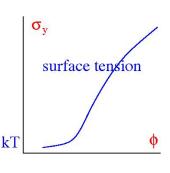
- Calculation: steady state, so set $\dot{P}=0$ in master equation, integrate differential eqⁿ for l; Γ from normalization
- Three regimes for small $\dot{\gamma}$:

$$\sigma \sim \left\{ \begin{array}{ll} \dot{\gamma} & \text{for} \quad 2 < x: & \text{Newtonian} \\ \dot{\gamma}^{x-1} & \text{for} \quad 1 < x < 2: & \text{power law} \\ \sigma_y(x) + \dot{\gamma}^{1-x} & \text{for} \quad x < 1: & \text{Herschel-Bulkley} \end{array} \right.$$

Rheology SGR Predictions Virtual Banding Outlook

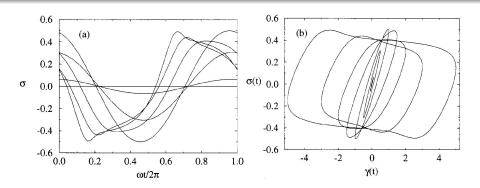
Yield stress





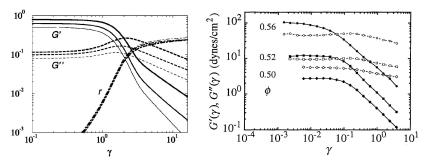
- Yield stress increases continuously at glass transition
- Compare MCT prediction: discontinuous onset of yield stress
- Physics?
 Elastic networks/stress chains vs caging?
 Jamming transition vs glass transition?
- Could e.g. emulsions exhibit both transitions?

General nonlinear rheology Example: Large amplitude oscillatory strain



- Close to but above glass transition ($x = 1.1, \omega = 0.01$)
- Increasing strain amplitude gives stronger nonlinearities
- Hysteresis-like loops

Large oscillatory strain: Complex modulus



- ullet G'' first increases with amplitude, becomes larger than G'
- Large strain fluidizes an initially predominantly elastic system
- Compare experiments on colloidal hard spheres (right)
- Quantitative comparison for foam (Rouyer Cohen-Addad Höhler PS Fielding 2008)

SGR predictions: Summary

- Flow curves: Find both Herschel-Bulkley (x < 1) and power-law (1 < x < 2)
- Viscoelastic spectra G', $G'' \sim \omega^{x-1}$ are flat near x=1
- In glass phase (x < 1) find rheological aging, loss modulus $G'' \sim (\omega t)^{x-1}$ decreases with age t
- Steady shear always interrupts aging, restores stationary state
- Large amplitude G' and G'' show fluidization behaviour similar to experiments
- Stress overshoots in shear startup, linear and nonlinear creep, rejuvenation and overaging (Lequeux, Viasnoff, McKenna, Cloître, Roettler . . .)

Limitations of SGR model

- Scalar model with ideal local elasticity up to yield both can be fixed (Cates PS 2004)
- No spatial information: geometry of stress redistribution might be important, also non-affine flow
- Length scale of elements: needs to be large enough to allow local strain and stress to be defined, but otherwise unspecified
- Interpretation of effective temperature x?
 Link to material parameters?
 Should have own dynamics? (see later)
- What sets fundamental time scale (attempt rate for yielding)?

Thermodynamic interpretation of SGR model

- Can interpret SGR within Bouchbinder & Langer non-equilibrium thermodynamics framework
- Slow degrees of freedom Λ used to characterize non-equilibrium state: P(E,l) (finite but large nr. of bins)
- Internal energy and entropy associated with these:

$$U_{\Lambda}(\Lambda) = (V/v_e) \int dE \, dl \, P(E, l) (\frac{1}{2}kv_e l^2 - E)$$

$$S_{\Lambda}(\Lambda) = -(V/v_e) \int dE \, dl \, P(E, l) \left(\ln[P(E)/\rho(E)] - 1 \right)$$

- Note: no entropy for l-distribution as l-dynamics is "slaved" to E-dynamics (times of yields)
- Thermodynamic consistency (2nd law) requires that x must be identical to thermodynamic temperature χ of slow d.o.f.
- ullet Most plausible choices of yield rates $\Gamma(E,l)$ are allowed

Comparison to Jim Langer's "simple" SGR model

 What would we get only with effective temperature dynamics and a Maxwell model with temperature-dependent relaxation time?

$$\dot{\chi} = \dots e^{-1/\chi} + \dots (T - \chi), \qquad \dot{\sigma} = k\dot{\gamma} - \dots e^{-1/\chi}\sigma$$

- ullet $G''(\omega)$ in steady state always Maxwell, not broad
- Broadening of spectra can arise only from aging effects
- Also no nonlinearities in strain amplitude, so no solid-liquid crossover in oscillatory strain
- \bullet Interesting flow curves only from additional flow-dependent driving terms for χ

Outline

- Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- 3 SGR predictions and model limitations
- 4 Comparison with simulations: Virtual strain analysis
- 5 Effective temperature dynamics, shear banding
- Outlook

Simulations to the rescue?

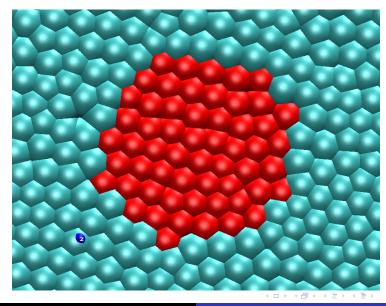
- Can we use simulation data to:
- See how far the SGR model represents physical reality?
- Get better understanding of model parameters?
- Tell us where we should improve the model?
- Need to develop method for explicit coarse-graining of simulation data

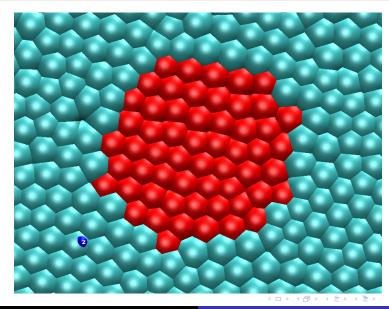
Defining elements

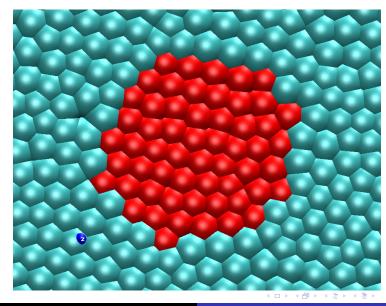
- Focus on d = 2 (d = 3 can be done but more complicated)
- Make elements circular to minimize boundary effects
- Position circle centres on square lattice to cover all of the sample (with some overlap)
- Once defined, element is co-moving with strain: always contains same particles
- Avoids sudden change of element properties when particles leave/enter, but makes sense only up to moderate $\Delta\gamma$
- Measuring average stress in an element is easy but how do we assign strain l, yield energy etc for a given snapshot?

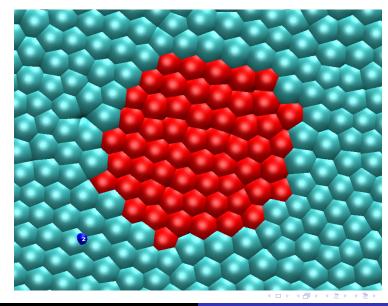
Virtual strain analysis

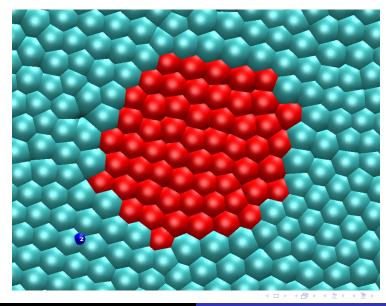
- Deliberately want local yield points etc: interaction between elements is accounted for separately within model
- Cannot "cut" an element out of sample and then strain until yield – unrealistic boundary condition
- Idea: Use rest of sample as a frame
- ullet Deform the frame affinely to impose a virtual strain $ilde{\gamma}$
- Particles inside element relax non-affinely to minimize energy
- Gives energy landscape $\epsilon(\tilde{\gamma})$ of element
- Yield points are determined (for $\tilde{\gamma} > 0$ and < 0) by checking for reversibility for each small $\Delta \tilde{\gamma}$ (adaptive steps)

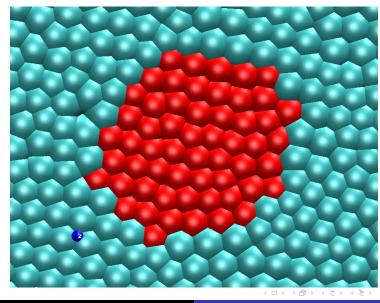


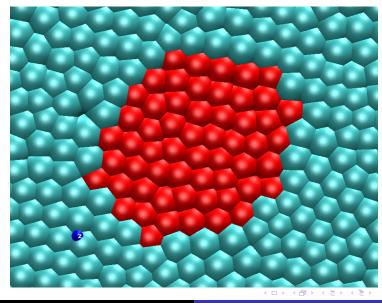


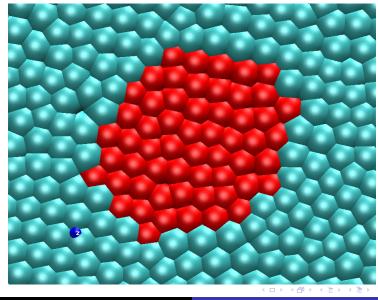


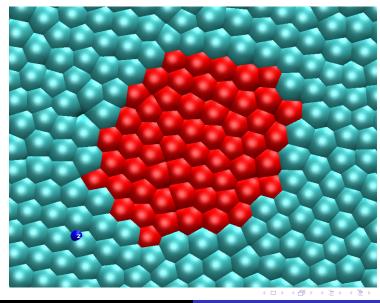




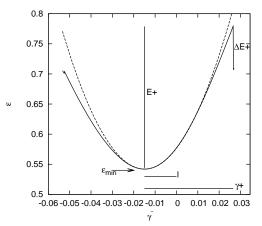








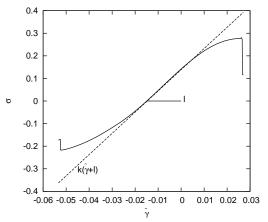
Element energy landscape



Extract: minimum energy ϵ_{\min} , strain away from local minimum $l=-\tilde{\gamma}_{\min}$, yield strains γ_{\pm} , yield barriers E_{\pm}

Local modulus

Quadratic fit of energy near minimum, or linear fit of stress, gives local modulus \boldsymbol{k}



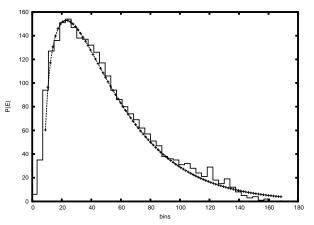
Systems studied

- \bullet Polydisperse Lennard-Jones mixtures (Tanguy et al), quenched to low temperatures ($T=0.005 \ll T_{\rm g}$)
- Low shear rates $\dot{\gamma} \sim 10^{-3}$; $N=10^4$ particles at $\rho=0.95$
- Steady shear driven from the walls (created by "freezing" particles in top/bottom 5% some time after quench)
- Check for stationarity & affine shape of velocity profile before taking data
- Each element contains ≈ 40 particles (diameter = 7): large enough to have near-parabolic energy landscape, small enough to avoid multiple local yield events inside one element

Simulation demo

Close-up

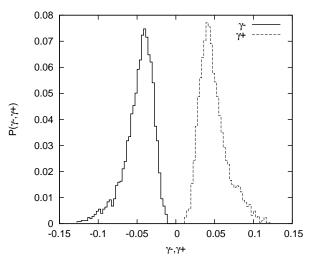
Results: Yield energy distribution



Exponential tail; detailed form can be fitted by SGR model

Rheology SGR Predictions Virtual Banding Outlook

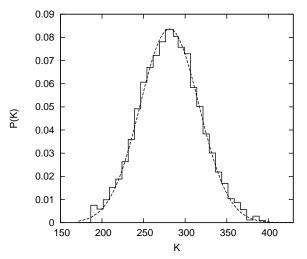
Yield strain distributions



Symmetric as assumed in SGR; gap around 0 or maybe power-law approach (exponent ≈ 4)

Rheology SGR Predictions Virtual Banding Outlook

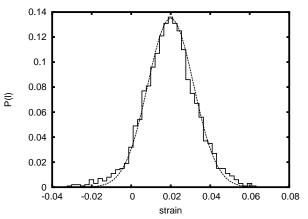
Modulus distribution



Clear spread; not constant as assumed in model.

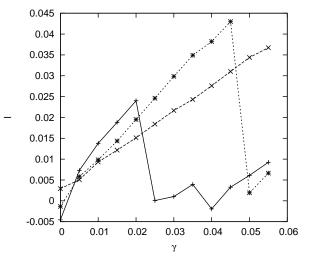
But yield strains γ_{\pm} still controlled by E_{\pm} ; no correlation with k

Local strain distribution



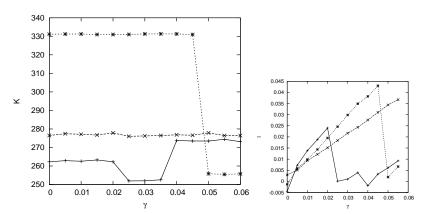
Negative l, need to extend SGR to allow frustration: $l\neq 0$ after yield $(\delta(l)\to \rho(l|E)\propto (1-kl^2/2E)^b$ – but thermodynamics then broken?)

Dynamics: Evolution of local strain with time



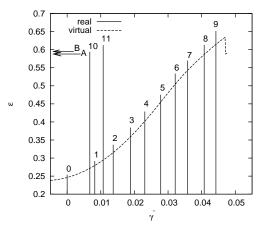
Typical sawtooth shape assumed by SGR

Change in other landscape properties Example of modulus



Stays largely constant between yields as expected; same for yield barriers etc

Comparing real and virtual deformations Primary yield

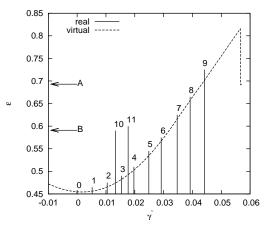


Curve: virtual energy landscape.

Vertical lines: Real ϵ versus $l-l_0$ for uniform steps $\Delta\gamma$

Good match, even for energy drop after yield

Comparing real and virtual deformations (cont) Induced yield



Curve: virtual energy landscape.

Vertical lines: Real ϵ versus $l-l_0$ for uniform steps $\Delta\gamma$

Summary for virtual strain analysis

- Virtual strain method for assigning local strains, yield energies
- Generic: can be used on configurations produced by any (low-T) simulation
- Steady state distributions in shear flow seem in line with SGR (detailed fits in progress), though e.g. local modulus ≠ const
- Dynamics of local strain has typical sawtooth shape; local strain rate is of same order as global one but not identical
- Energy landscapes for real and virtual deformations match (but not purely quadratic)
- To do: analysis of induced yield events well modelled by effective temperature?

Outline

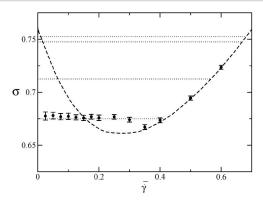
- Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- 3 SGR predictions and model limitations
- 4 Comparison with simulations: Virtual strain analysis
- 5 Effective temperature dynamics, shear banding
- Outlook

- Shouldn't effective temperature x be determined self-consistently by dynamics?
- To allow for potential shear banding, split sample in y (shear gradient)-direction
- Separate SGR model for each y, with x(y)
- Relaxation-diffusion dynamics:

$$\tau_x \dot{x}(y) = -x(y) + x_0 + S(y) + \lambda^2 \frac{\partial^2 x}{\partial y^2}$$

- x is "driven" by energy dissipation rate: $S = a \langle l^2 \exp(-[(E - l^2/2)/x]) \rangle$
- Assume that x equilibrates (locally) quickly: $\tau_x \to 0$

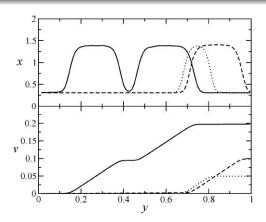
Flow curve a = 2, $x_0 = 0.3$



- Steady state: $x = x_0 + 2a\sigma(x,\dot{\gamma})\dot{\gamma}$
- Shear startup with imposed mean $\dot{\gamma}$ across sample: shear banding

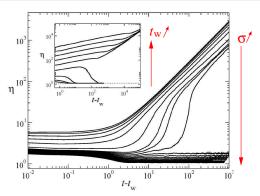
Nature of banded state

a=2, $x_0=0.3$, $\dot{\gamma}=0.05, 0.1, 0.2$



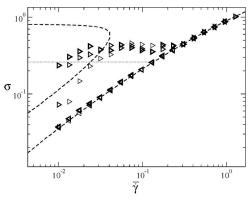
- "Hot" band: $\dot{\gamma} > 0$, ergodic
- "Cold" band: $\dot{\gamma} = 0$, aging

Viscosity bifurcation at imposed stress Coussot, Bonn, ...



- Plot instantaneous viscosity $\eta = \sigma/\dot{\gamma}$
- ullet Sample only reaches steady flow when σ is large enough
- ullet Depends on age $t_{
 m w}$ when stress is applied

Variation of driving term for x



- x now driven by yield rate, $S \propto \langle \exp(-[(E-l^2/2)/x]) \rangle$
- Hysteresis in shear rate sweep: banding on way up, stay on fluid branch on way down
- Resembles data for multi-arm polymers (Holmes Callaghan Vlassopoulos Roovers 2004)

Outline

- Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- 3 SGR predictions and model limitations
- 4 Comparison with simulations: Virtual strain analysis
- 5 Effective temperature dynamics, shear banding
- 6 Outlook

Summary & Outlook

- Trap models for aging dynamics in glasses, focus on activation
- SGR model adds strain to this & re-interprets trap depths as yield energies
- Reproduces much (not all) of rheological behaviour of soft glasses
- ...and some cytoskeletal rheology(?)
- Virtual strain method allows detailed comparison with simulations: some encouraging agreement, but also suggests modifications
- Dynamics of x: phenomenological models useful, but too much choice? Thermodynamic approach could fix driving term
- To do: linking to other approaches (STZ, Picard et al);
 coarse-graining from "microscopic" models?

