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Diversity of views on the glass transition

What makes the problem interesting ?
What would it take to declare it solved ?

Atomic-level description & local relaxation mechanisms
vVersus

Coarse-graining, scaling & underlying critical points

Dynamic vs static
® |f critical point:

Unattainable vs avoided



What is there to be explained about glass formation ¢

Arrhenius plot of relaxation time of

a “fragile” glassforming liquid
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® Phenomenon is universal and . glass
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® Dramatic temperature
dependence of relaxation time
and viscosity

¢ Slowing down faster than oL ]
anticipated from high-T behavior | laud- _
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Tempting to look for detail-independent, collective explanation,
BUT: no observed singularity,
only modest supra-molecular length scale.




Frustration in liquids

“Frustration”= incompatibility between extension of the local
order preferred in a liquid and tiling of the whole space

® Paradigm: frustrated icosahedral/polytetrahedral order in
metallic glasses

No global tiling
No icosahedral/polytetrahedral xtal
(instead: FCC/HCP xtal)

Locally preferred
structure in liquid

Frustration important for: - supercooling (Frank, 1952,
Charbonneau et al., 2009)

- glasses (Curved-space approach:
Nelson, Sadoc-Mosseri, Sethna, 80%)




Frustration based approach of glass formation

e Avoided singularity at T* === frustration-limited
15 . cooperative behavior

g —» scaling below T* &
_ avoided singularity o | some Universality

("onset" T%*)

log,,(v)

D. & S. Kivelson , G. T, et al.
Review:

0/ - J.Phys.: Condens. Matter 17 (2005)
- °| o | | -

molecular collective

® Fragility goes inversely with frustration




Locally preferred structures (LPS) and
fragility in 3D binary Lennard-Jones
mixtures

(a) (0,2,8)-polyhedron

e \Wahnstrom model (“WAHN")

(c) (0,0,12)-polyhedron

(b) WAHN (P =10, T = 0.645)



LPS and fragility

D. Coslovich & G. Pastore, |. Chem. Phys. 127, 124504 (2007)
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Atomistic glasstormer with
tunable frustration:

Monodisperse Lennard-Jones liquid on the
hyperbolic plane

® Known local order of liquid: hexatic/hexagonal

® Frustration (no crystal) due to x‘
2

negative curvature of space —k

® MD simulation of 2D L-J model in hyperbolic
geometry (NVE ensemble)



Why the hyperbolic plane

Monoatomic quuid in 2 dimensions

Euclidean Curved space

Lo(;:al. $ * Frustrated hexagonal order in
ordering
. 2D curved space FY
Compatlble
Frustratlon
} ! A w

(but not
Global ?hexago.nal/ Frustrated icosahedral order
\tlllng hexatic) in 3D
° Euclidean space
NO GLASS ! GLASS !

® Negative curvature (hyperbolic) for an infinite space



Hyperbolic geometry

® Constant negative Gaussian

curvature:

® Metric (polar coordinates):

. h 2
ds? = dr? + (Sm (W)> 402

K

e Conformal representation:
KT

r’ = tanh (?) -0 =0

Poincaré disk model



Molecular Dynamics
simulation

e Usual one-component Lennard-
Jones model on H-

v(r) = 4e((a/r)* — (0/7)")

® Newton'’s equations: generalized
Verlet algorithm

® Periodic boundary conditions:

* the simplest case : {8,8} tiling
+ special pairing of edges

* infinite ways to build p.b.c.
(F. Sausset, G.T., J. Phys. A: Math. Gen. (2007))




Parameters and dynamical
observables

e Control parameters:

KO 4
* Frustration: Ko
* Density: ng 1.09055 0—5 Heptagonal tiling
* Temperature: T ? Liquid
* System’s area: 4wk~ *(g — 1) °.
[ bt

(Gauss-Bonnet)

g = genus of associated quotient space

Hexagonal T*

® Dynamical observable: self intermediate scattering function

Fy(k,t) = %Z <P Lyk (cosh(ﬁ;dj(O,t)))>

71=1



Observables

® Adjustable parameters: Translational relaxation

* Frustration : ko
* Density : p

* Temperature : T

® Observables:
x Diffusion : (d(7))

* Incoherent intermediate scattering function :

— %Z Cosh kd;(0,1)))

j=1

* Four-point dynamical susceptibility : x2' " (¢)

* Bond-orientational correlation function : Ge(r)r = (g (r)6(0)) /g(r)



Euclidean plane (k = 0)

Arrhenius plot of relaxation time T
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Frustration and fragility

(frustration-induced avoided transition at T*)

Arrhenius plot of the translational relaxation time T
[from Fs(k, t)]
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Growth of frustration-limited domains
as T decreases

Topological defects | @ 7 neighbors (negative disclination)
in hexatic medium @ 5 neighbors (positive disclination)

@ 6 neighbors

ko=0.05, p=0.85
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U n/Gg

Structural length grows as T
and saturates at k£~ ' due to

frustration/curvature

From the bond-orientational
correlation function:

Ge(r) = (Y6 (r)vs(0)*)p /9(r)
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Link between relaxation & structure

Rescaled relaxation time vs T*/T

From defect diffusion 1l (G=0.2
. - . | ko=0.1
+ scaling hypothesis: |2 vono0s
E(f@) i K0=0.2 —
2 i ko=0.
T~ 56 eXp[ T ] O- ;l(- KO'=8.(1)5 Q'_l-

and find ¢ ~ 0.5




Dynamic heterogeneities

Atomic trajectories

T/T*=1.80 /T*=0.39



Growing spatial correlations in
the dynamics as T |

4-pt dynamic susceptibility x5 "~
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Growing spatial correlations in the
dynamics: link with structure

Dynamic (§4) and static (£6) lengths go together
in regime dominated by proximity to T*

From the 4-point space-time T
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Frustration-induced low-T crossover to
irreducible-defect regime

log(T) |
KO

At low enough T, growth of
local (hexatic) order saturates
and

crossover from

regime controlled by avoided
transition

to

regime dominated by
irreducible defects

fragile irreducible

normal liquid
"supercooled"  defects

1 T, Ta T*T
o >



Conclusion

® Frustration approach provides:

* Physical mechanism for slowdown
* Avoided singularity for scaling and "universality"

* Strategy for exaggerating collective properties.

® Could (some) theories be compatible or even
complementary ¢



Octagonal p.b.c.: topology of 2-hole torus

llustration for one atom:
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