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Diversity of views on the glass transition

What makes the problem interesting ?
What would it take to declare it solved ?

Atomic-level description & local relaxation mechanisms 

versus 

Coarse-graining, scaling & underlying critical points

Dynamic vs static

•If critical point:
          Unattainable vs avoided



What is there to be explained about glass formation ?

Tempting to look for detail-independent, collective explanation,
BUT: no observed singularity, 

only modest supra-molecular length scale.

•Phenomenon is universal and 
spectacular

•Dramatic temperature 
dependence of relaxation time 
and viscosity

•Slowing down faster than 
anticipated from high-T behavior
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Arrhenius plot of relaxation time of 
a “fragile” glassforming liquid

molecular collective ?
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Frustration in liquids

“Frustration”= incompatibility between extension of the local 
         order preferred in a liquid and tiling of the whole space

• Paradigm: frustrated icosahedral/polytetrahedral order in
metallic glasses

Locally preferred 
structure in liquid

No global tiling
No icosahedral/polytetrahedral xtal
       (instead: FCC/HCP xtal)

Frustration important for: - supercooling (Frank, 1952,

Charbonneau et al., 2009)

                - glasses (Curved-space approach: 
                     Nelson, Sadoc-Mosseri, Sethna, 80’s)
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avoided singularity
("onset" T*)

molecular collective

• Avoided singularity at T*              frustration-limited
           cooperative behavior

                               scaling below T* &  
                             some universality   

Frustration based approach of glass formation

• Fragility goes inversely with frustration

D. & S. Kivelson , G.T., et al.
Review: 
J.Phys.: Condens. Matter 17 (2005)



Locally preferred structures (LPS) and 
fragility in 3D binary Lennard-Jones 

mixtures

(a) BMLJ (P = 10, T = 0.60)

(b) WAHN (P = 10, T = 0.645)

(a) (0,2,8)-polyhedron (b) (0,3,6)-polyhedron

(c) (0,0,12)-polyhedron

(a) (0,2,8)-polyhedron (b) (0,3,6)-polyhedron

(c) (0,0,12)-polyhedron

• Kob-Andersen model (“BMLJ”)

• Wahnstrom model (“WAHN”)

LPS:

LPS:

D. Coslovich & G. Pastore, J. Chem. Phys. 127, 124504 (2007)
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Arrhenius plot of relaxation time Fraction of small atoms in LPS

(          reference T at which                 )Tr = τ = 4.104
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Atomistic glassformer with
tunable frustration:

Monodisperse Lennard-Jones liquid on the 
hyperbolic plane

•Known local order of liquid: hexatic/hexagonal

•Frustration (no crystal) due to 
negative curvature of space 

•MD simulation of 2D L-J model in hyperbolic 
geometry (NVE ensemble)

!

!

−κ2



Why the hyperbolic plane!?
Monoatomic liquid in 2 dimensions

•Negative curvature (hyperbolic) for an infinite space

Global 
tiling

Local 
ordering

Euclidean Curved space

Compatible

NO GLASS!!

?
Frustration

(but not 
hexagonal/

hexatic)

GLASS!!

Frustrated hexagonal order in 
2D curved space

Frustrated icosahedral order 
in 3D 
Euclidean space

∼
!

!

!
!



• Constant negative Gaussian 
curvature:

• Metric (polar coordinates):

• Conformal representation:

Poincaré disk model
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Hyperbolic geometry

−κ2

ds2 = dr2 +
(

sinh(κr)
κ

)2

dθ2

r′ = tanh
(κr

2

)
; θ′ = θ



• Usual one-component Lennard-
Jones model on H2

• Newton’s equations: generalized 
Verlet algorithm

• Periodic boundary conditions:

! the simplest case!: {8,8} tiling 
+ special pairing of edges 

! infinite ways to build p.b.c. 
(F. Sausset,G.T., J. Phys. A: Math. Gen. (2007))
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Molecular Dynamics
simulation

v(r) = 4ε((σ/r)12 − (σ/r)6)



Te 
! Frustration: 

! Density:

! Temperature: T

Parameters and dynamical
observables

• Control parameters:

! System’s area:

(Gauss-Bonnet)
= genus of associated quotient spaceg

4πκ−2(g − 1)

1.09055

0
T

Heptagonal tiling

?
HexagonalT*

Liquid

Fs(k, t) =
1
N

N∑

j=1

〈
P− 1

2+i k
κ

(cosh(κdj(0, t)))
〉

• Dynamical observable: self intermediate scattering function

κσ

ρσ2

κσ



•Adjustable parameters:

! Frustration!:

! Density!:

! Temperature!: T

•Observables:

! Diffusion!:

! Incoherent intermediate scattering function!:

! Four-point dynamical susceptibility :

! Bond-orientational correlation function :

Observables

5

〈d(τ)〉

ρ

κσ

Fs(k, t) =
1
N

N∑

j=1

〈P− 1
2+i k

κ
(cosh(κdj(0, t))〉

Translational relaxation
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Euclidean plane (          )κ = 0
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Arrhenius plot of relaxation time !
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Arrhenius plot of the translational relaxation time !
[from Fs(k,t)]
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Frustration and fragility
(frustration-induced avoided transition at T*)

•Fragility increases with 

decreasing frustration

 and

can be made as large as 

wanted (as             ) 

•Onset temperature

κ→ 0+

! T ∗
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Growth of frustration-limited domains
as T decreases

Topological defects 
in hexatic medium

T/T*=2.4 T/T*=0.5

: 6 neighbors
: 7 neighbors (negative disclination)

: 5 neighbors (positive disclination)

Poincaré disk representation

"#=0.05, $=0.85 

T/T*=0.98



Structural length grows as T 
and saturates at        due to 

frustration/curvature
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From the bond-orientational 
correlation function: 

G6(r) = 〈ψ6(r)ψ6(0)∗〉Γ /g(r)

(Hexatic) structural length ξ6



Link between relaxation & structure
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Rescaled relaxation time vs T*/T

0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

0

1

T*/T

!
0

.5
 l
o
g(
"
!

2
)

#$=0.2

#$=0.1

#$=0.05

#$=0.2

#$=0.1

#$=0.05

From defect diffusion
+ scaling hypothesis:

with

and find 

τ ∼ ξ2
6 exp[

E(ξ6)
T

]

E(ξ6) ∼ ξψ
6

ψ ! 0.5



T/T*=1.80 T/T*=0.39
12

Dynamic heterogeneities

Atomic trajectories

κσ = 0.05

〈d(t)〉 # σ



Growing spatial correlations in 
the dynamics as T
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Growing spatial correlations in the 
dynamics: link with structure
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From the 4-point space-time 
correlation function G4(r,t): 

Dynamic (   ) and static (   ) lengths go together
in regime dominated by proximity to T* 

ξ6ξ4



Frustration-induced low-T crossover to
irreducible-defect regime

At low enough T, growth of 
local (hexatic) order saturates 
and
crossover from
regime controlled by avoided 
transition
to
regime dominated by 
irreducible defects 
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•Frustration approach provides:

•Could (some) theories be compatible or even 
complementary ?

Conclusion

! Physical mechanism for slowdown

! Avoided singularity for scaling and "universality"

! Strategy for exaggerating collective properties.



Octagonal p.b.c.: topology of 2-hole torus

Illustration for one atom:


