# The onset of rigidity in simple particulate systems

David Head, University of Tokyo

ITP Granular Physics program, 2005

### **Rigidity transition**

- Many systems have a rigidity transition at a finite volume fraction  $\phi_c$ , when the elastic moduli become non-zero
- At least in some cases, the same point is reached with controlled pressure P as P $\rightarrow$ 0 or (bond stiffness)  $\mu \rightarrow \infty$

• Example: emulsion experiments



[ Mason et al., PRL 1995 ]



[cf. Bolton & Weaire, PRL 1990]





Truncated Hookean/ Hertzian contacts in d=2,3 (minimisation algorithm) [ O'Hern et al., PRE 2003 ]

# Frictionless and frictional granular media (g=0)

[Aharonov & Sparks, PRE 1999]





Frictionless and frictional granular media (g>0)

[Kasahara & Nakanishi, J.Phys.Soc.J. 2004]

## **Rigidity percolation**

- Disordered lattices constructed by bond dilution
- Transport of vector quantity (force)
- Exhibits **rigidity percolation** when a rigid cluster first spans the system
- e.g. d=2 Hookean springs:  $z_c = 3.961(2)$ ,  $D_f = 1.86(2)$ ,  $D_b = 1.80(3)$  [Jacobs&Thorpe, PRL 1995]
- Typically start from unstressed networks, although prestresses are important [Alexander, Phys. Rep. 1998]
- Dynamics-inspired dilution rules have been devised [Thorpe et al., J. Non-Cryst. Sol. 2000; Schwarz et al., condmat/0410595]



[ C. Moukarzel et al., PRL 1997 ] (Black - stressed; green - rigid but unstressed; red - 'cutting')

## **Approximation schemes**

#### Effective medium approximation (EMA)

[S. Feng et al., PRB 1985]

Disordered lattice, known stiffness µ



Homogeneous lattice, unknown effective stiffness  $\mu^{\text{eff}}$ 

Rigidity transition at  $z = z_c = 2d$ :



#### Affine deformation

[K.Walton, J. Mech. Phys. Solids 1987; H. Makse et al., PRL 1999]

Impose microscopic displacement field



No transition at finite volume fraction  $\phi$ 

More complex theories reduce G; still no clear transition [F. Trentadue, Int. J. Sol. Struct. 2001; N. P. Kruyt et al., Int. J. Eng. Sci. 1998]

### **Maxwell counting**

- A cluster is rigid when any non-trivial deformation mode increases the elastic energy, *i.e.* the elastic moduli are non-zero
- A system at the onset of rigidity can be called e.g. *isostatic*, *marginally rigid* or at the *rigidity percolation threshold*.
- Can determine via constraint counting; in its simplest form :

| Contact forces are the degrees of freedom        | d.o.f.                 | Force/torque<br>balance     | Zc     |
|--------------------------------------------------|------------------------|-----------------------------|--------|
| Particle position/<br>orientation are the d.o.f. | Geometric constraints  | d.o.f.                      | Zc     |
| Frictionless spheres                             | $rac{Nz}{2}\cdot 1$   | $N\cdot d$                  | 2d     |
| Frictionless non-spheres                         | $\frac{Nz}{2} \cdot 1$ | $N \cdot \frac{1}{2}d(d+1)$ | d(d+1) |
| Friction (any convex shape)                      | $\frac{Nz}{2} \cdot d$ | $N \cdot \frac{1}{2}d(d+1)$ | d+I    |

- Constraint counting is not exact
  - "Rattlers" or other independent subsystems should not be counted
  - Rigid body translation/rotation of the entire cluster should be subtracted off

• ...?

 Frictionless sphere systems appear to agree with the predicted value if the two corrections above are included

> [A. Donev et al., cond-mat/0408550; C. O'Hern et al., PRE **68**, 011306 (2003)]

- Not clear if extra corrections are required for transverse forces
- Only considers mechanical equilibrium (i.e. force/torque balance); says nothing about mechanical stability

## ii. Statics: the MMA

- Determination of mechanical stability by an approximation scheme (the 'mean mode approximation', or MMA) which:
  - Requires no mapping to analogous system with known Green's function
  - Can incorporate prestress
  - Has a finite z transition

Start from a static configuration  $\{\mathbf{x}^{\beta}\}$ of soft spheres  $\beta$  with contact forces

 $\mathbf{f}^{\beta\gamma} = f(r^{\beta\gamma})\mathbf{\hat{n}}^{\beta\gamma}$  $f(r) = \begin{cases} \mu \left(1 - \frac{r}{r_0}\right)^{\alpha} & : r < r_0 \\ 0 & : \text{ otherwise} \end{cases}$ 



Apply a small external force  $\delta \mathbf{f}^{\text{ext}}$  to  $\alpha$ 

Ensemble average over configurations with macroscopic quantities fixed; force balance on  $\alpha$ :

with

$$\delta \mathbf{f}^{\text{ext}} - \left\langle \sum_{\beta \sim \alpha} \delta \mathbf{f}^{\alpha \beta} \right\rangle = 0$$



$$A_{ij} = \frac{f(r)}{r} (\delta_{ij} - \hat{n}_i \hat{n}_j) + f'(r) \hat{n}_i \hat{n}_j$$

(sum over all  $\beta$  in contact with  $\alpha$ )

[Tanguy et al., PRB 2002]



### Mean mode approximation

- Mean response of  $\alpha$  follows from symmetry,  $\langle \delta \mathbf{x}^{\alpha} \rangle = \lambda \delta \mathbf{f}^{\text{ext}}$ 
  - Impose this form before averaging
  - Further impose an intuitive form on the  $\beta$ :

 $\delta \mathbf{x}^{\beta} = \lambda \delta \mathbf{f}^{\alpha\beta}$ 

• Can now determine each contact force from the external force:  $\delta f_i^{\alpha\beta} = S_{ij}^{\alpha\beta} \delta f_j^{\text{ext}},$  $S_{ij}^{\alpha\beta} = [1 + (\lambda |f'(r^{\alpha\beta})|)^{-1}]^{-1} \hat{n}_i^{\alpha\beta} \hat{n}_i^{\alpha\beta}$ 

- To perform final averaging, make simplest choices:
  - z independent of f
  - contact angles uniformly, independently distributed
  - Monodisperse overlaps, so all f, f' equal



 $+ \left[1 - \left(\frac{\lambda f(r^{\alpha\beta})}{r^{\alpha\beta}}\right)^{-1}\right]^{-1} \left(\delta_{ij} - \hat{n}_i^{\alpha\beta} \hat{n}_j^{\alpha\beta}\right)$ 

Can now

solve for  $\lambda$ ,

G. K ~ λ-I



## iii. Dynamics

- One-particle description of dynamical phase as the excited system relaxes
- Overdamped motion (kinetic energy is ignored)
- Spontaneous evolution cease when a stable regime has been reached (coupling to statics)

## **Energy potential**

 Suitable energy potential depends on whether volume V or pressure P is being controlled (overdamped limit):

Constant VConstant PInternal energy UEnthalpy H=U+PV

Using same simplifications as for the statics,

$$U = \frac{Nz}{2} \frac{r_0 \mu}{\alpha + 1} (\alpha \omega)^{\alpha + 1} \qquad PV = \frac{Nz}{2} \frac{r_0 \mu}{d} (\alpha \omega)^{\alpha} \qquad (\alpha \omega \sim 1 - r/r_0)$$

• Simple choice for V: decreasing function of z and  $\omega$  that obeys

$$\frac{V_{,z}}{V_{,\omega}} = D\omega^b \quad \text{as} \quad \omega \to 0$$

so that V barely changes with z when particles are 'just' overlapping



Red lines : constant volume (minimising the internal energy U) Blue lines : constant pressure P (minimising the enthalpy H=U+PV)

#### **Exponents**

| $G, K \sim \Delta z^c$ | $P \sim \Delta z^e$                              | $\Delta V \sim \Delta z^g$                                                                                                            |
|------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                  |                                                                                                                                       |
| $2\alpha - 1$          | 2lpha                                            | 2                                                                                                                                     |
|                        |                                                  |                                                                                                                                       |
| $\approx 1^a$          | $2\pm0.4$                                        | $2\pm0.4$                                                                                                                             |
|                        |                                                  |                                                                                                                                       |
| $1.01 \pm 0.1^a$       | $2.1\pm0.2$                                      | $2.04\pm0.1$                                                                                                                          |
| $2.08\pm0.1^a$         | $3.15\pm0.3$                                     | $2.08\pm0.1$                                                                                                                          |
|                        |                                                  |                                                                                                                                       |
| -                      | $\approx 2.45$                                   | $\approx 1.96$                                                                                                                        |
|                        |                                                  |                                                                                                                                       |
| -                      | $3.3 \pm 0.5$                                    | $2.1\pm0.6$                                                                                                                           |
|                        | $2\alpha - 1$ $\approx 1^{a}$ $1.01 \pm 0.1^{a}$ | $\approx 1^{a} \qquad 2 \pm 0.4$ $1.01 \pm 0.1^{a} \qquad 2.1 \pm 0.2$ $2.08 \pm 0.1^{a} \qquad 3.15 \pm 0.3$ $- \qquad \approx 2.45$ |

<sup>a</sup>Result for shear modulus shown.

<sup>b</sup>Only frictionless data shown.

[c.f. Schwarz et al., cond-mat/0410595 for a scalar lattice treatment]

## Prospects

- Still many issues:
  - Evolution after the first arrest by e.g. shaking/tapping
  - Taking the dynamics away from the overdamped limit
- Not yet a model for granular media
  - No friction or particle asphericity
  - No gravity, or any form of anisotropy (including shear)

#### **Distributed contact forces**

- Distribution of overlaps  $P(\delta)$ ,  $\delta = r_0 r$
- Assume system approaches a (stressless) rigidity transition
- Make the following ansatzes for  $\varepsilon = (z z_c)/z_c > 0$ 
  - $\lambda$  vanishes near transition as  $\lambda = \lambda_0 \varepsilon^{-\nu}$
  - Distribution scales uniformly,  $P(\delta) = \varepsilon^{-\gamma} q(\varepsilon^{-\gamma} \delta)$
- Perform integration to get  $1 \frac{d}{z} = (d-1)\frac{\lambda_0\mu}{r_0}\varepsilon^{-\nu+\alpha\gamma}\langle x^{\alpha}\rangle_{q(x)}$  $+ \frac{1}{\lambda_0\mu\alpha}\varepsilon^{\nu-\gamma(\alpha-1)}\langle x^{1-\alpha}\rangle_{q(x)}$
- Stability boundary corresponds to  $\lambda_0$  real
- Self-consistency demands get  $\gamma=2$ ,  $\nu=2\alpha-1$  as in the monodisperse case

#### Equation for $\lambda$

$$d\left(\frac{1}{z} - 1\right) = (d - 1)\frac{1}{\frac{\lambda f(r)}{r} - 1} - \frac{1}{1 + \lambda |f'|}$$

- d : dimension
- z : mean coordination number
- $\lambda$  : compliance
- r : interparticle separation
- f(r) : interparticle potential
- f'(r)<0 assumed

#### **Pressure scaling**

$$\frac{P}{\mu} \sim \frac{Nr_0}{2V_0} \left\{ \frac{\alpha(z-z_c)^2}{4d^2(d-1)} \right\}^{\alpha}$$

- $\mu$  : contact stiffness (units of force)
- V<sub>0</sub> : volume at transition
- N : Number of particles