The onset of rigidity in simple particulate systems

David Head, University of Tokyo

ITP Granular Physics program, 2005

Rigidity transition

- Many systems have a rigidity transition at a finite volume fraction ϕ_{c}, when the elastic moduli become non-zero
- At least in some cases, the same point is reached with controlled pressure P as $\mathrm{P} \rightarrow 0$ or (bond stiffness) $\mu \rightarrow \infty$
- Example: emulsion experiments

[Mason et al., PRL 1995]

Truncated Hookean/ Hertzian contacts in $\mathrm{d}=2,3$ (minimisation algorithm)
[O’Hern et al., PRE 2003]

Frictionless and frictional granular media ($\mathrm{g}=0$)

[Aharonov \& Sparks, PRE 1999]

(b) Frictional Pile

[Kasahara \& Nakanishi, J.Phys.Soc.J. 2004]

Rigidity percolation

- Disordered lattices constructed by bond dilution
- Transport of vector quantity (force)
- Exhibits rigidity percolation when a rigid cluster first spans the system
- e.g. $d=2$ Hookean springs: $z_{c}=3.96 \mathrm{I}(2), D_{f}=$ $1.86(2), D_{b}=1.80(3)$ [Jacobs\&Thorpe, PRL 1995]
- Typically start from unstressed networks, although prestresses are important [Alexander, Phys. Rep. 1998]

[C. Moukarzel et al., PRL 1997]
(Black - stressed; green - rigid but unstressed; red - 'cutting')
- Dynamics-inspired dilution rules have been devised [Thorpe et al., J. Non-Cryst. Sol. 2000; Schwarz et al., condmat/04I0595]

Approximation schemes

Effective medium approximation (EMA)

[S. Feng et al., PRB 1985]

Disordered lattice, known stiffness μ

Homogeneous lattice, unknown effective stiffness $\mu^{\text {eff }}$

Rigidity transition at $\mathrm{z}=\mathrm{z}_{\mathrm{c}}=2 \mathrm{~d}$:

Affine deformation

[K.Walton, J. Mech. Phys. Solids I987; H. Makse et al., PRL 1999]

Impose microscopic displacement field

No transition at finite volume fraction ϕ

More complex theories reduce G; still no clear transition
[F. Trentadue, Int. J. Sol. Struct. 200I;
N. P. Kruyt et al., Int. J. Eng. Sci. 1998]

Maxwell counting

- A cluster is rigid when any non-trivial deformation mode increases the elastic energy, i.e. the elastic moduli are non-zero
- A system at the onset of rigidity can be called e.g. isostatic, marginally rigid or at the rigidity percolation threshold.
- Can determine via constraint counting; in its simplest form :

Contact forces are the degrees of freedom	d.o.f.	Force/torque balance	$\mathbf{z}_{\mathbf{c}}$
Particle position/ orientation are the d.o.f.	Geometric constraints	d.o.f.	\mathbf{z}_{c}
Frictionless spheres	$\frac{N z}{2} \cdot 1$	$N \cdot d$	$\mathbf{2 d}$
Frictionless non-spheres	$\frac{N z}{2} \cdot 1$	$N \cdot \frac{1}{2} d(d+1)$	$\mathrm{d}(\mathrm{d}+\mathrm{I})$
Friction (any convex shape)	$\frac{N z}{2} \cdot d$	$N \cdot \frac{1}{2} d(d+1)$	$\mathrm{d}+\mathrm{I}$

- Constraint counting is not exact
- "Rattlers" or other independent subsystems should not be counted
- Rigid body translation/rotation of the entire cluster should be subtracted off
- ...?
- Frictionless sphere systems appear to agree with the predicted value if the two corrections above are included
[A. Donev et al., cond-mat/0408550;
C. O'Hern et al., PRE 68, 0 I I 306 (2003)]
- Not clear if extra corrections are required for transverse forces
- Only considers mechanical equilibrium (i.e. force/torque balance); says nothing about mechanical stability

ii. Statics: the MMA

- Determination of mechanical stability by an approximation scheme (the 'mean mode approximation', or MMA) which:
- Requires no mapping to analogous system with known Green's function
- Can incorporate prestress
- Has a finite z transition

Start from a static configuration $\left\{\mathbf{x}^{\beta}\right\}$ of soft spheres β with contact forces

$$
\begin{aligned}
\mathbf{f}^{\beta \gamma} & =f\left(r^{\beta \gamma}\right) \hat{\mathbf{n}}^{\beta \gamma} \\
f(r) & = \begin{cases}\mu\left(1-\frac{r}{r_{0}}\right)^{\alpha} & : r<r_{0} \\
0 & : \text { otherwise }\end{cases}
\end{aligned}
$$

Apply a small external force $\delta f^{\text {ext }}$ to α

Ensemble average over configurations with macroscopic quantities fixed; force balance on α :

$$
\delta \mathbf{f}^{\mathrm{ext}}-\left\langle\sum_{\beta \sim \alpha} \delta \mathbf{f}^{\alpha \beta}\right\rangle=0
$$

$$
\delta f_{i}^{\alpha \beta}=A_{i j}^{\alpha \beta}\left(\delta x_{j}^{\beta}-\delta x_{j}^{\alpha}\right)
$$

with

$$
A_{i j}=\frac{f(r)}{r}\left(\delta_{i j}-\hat{n}_{i} \hat{n}_{j}\right)+f^{\prime}(r) \hat{n}_{i} \hat{n}_{j}
$$

(sum over all β in contact with α)
[Tanguy et al., PRB 2002]

Mean mode approximation

- Mean response of α follows from symmetry,

$$
\left\langle\delta \mathbf{x}^{\alpha}\right\rangle=\lambda \delta \mathbf{f}^{\mathrm{ext}}
$$

- Impose this form before averaging
- Further impose an intuitive form on the β :

$$
\delta \mathbf{x}^{\beta}=\lambda \delta \mathbf{f}^{\alpha \beta}
$$

- Can now determine each contact force from the external force: $\delta f_{i}^{\alpha \beta}=S_{i j}^{\alpha \beta} \delta f_{j}^{\text {ext }}$,

$$
\begin{aligned}
S_{i j}^{\alpha \beta}= & {\left[1+\left(\lambda\left|f^{\prime}\left(r^{\alpha \beta}\right)\right|\right)^{-1}\right]^{-1} \hat{n}_{i}^{\alpha \beta} \hat{n}_{j}^{\alpha \beta} } \\
& +\left[1-\left(\frac{\lambda f\left(r^{\alpha \beta}\right)}{r^{\alpha \beta}}\right)^{-1}\right]^{-1}\left(\delta_{i j}-\hat{n}_{i}^{\alpha \beta} \hat{n}_{j}^{\alpha \beta}\right)
\end{aligned}
$$

- To perform final averaging, make simplest choices:
- z independent of f
- contact angles uniformly, independently distributed
- Monodisperse overlaps, so all f, f' equal

Can now solve for λ,
$G, K \sim \lambda^{-1}$

$$
\omega=\frac{f(r) / r}{\left|f^{\prime}(r)\right|} \sim \frac{1}{\alpha}\left(1-\frac{r}{r_{0}}\right)
$$

Boundary is locally quadratic:

$$
\omega_{\mathrm{bdy}} \approx \frac{\left(z-z_{\mathrm{c}}\right)^{2}}{4 d^{2}(d-1)}
$$

$$
G_{\mathrm{bdy}}, K_{\mathrm{bdy}} \sim \lambda_{\mathrm{bdy}}^{-1} \sim\left(z-z_{\mathrm{c}}\right)^{2 \alpha-1}
$$

$$
\begin{aligned}
& \lambda\left|f^{\prime}\right|=(z / d-1)^{-1}, \\
& G, K \sim\left(z / z_{\mathrm{c}}-1\right)^{f}, \\
& \mathrm{l}
\end{aligned}
$$

Lattice models under tension also show an extended stable regime; cf. [Tang\&Thorpe, PRB I988; Zhou et al., PRE 2003]

iii. Dynamics

- One-particle description of dynamical phase as the excited system relaxes
- Overdamped motion (kinetic energy is ignored)
- Spontaneous evolution cease when a stable regime has been reached (coupling to statics)

Energy potential

- Suitable energy potential depends on whether volume V or pressure P is being controlled (overdamped limit):

ConstantV

Constant P

Enthalpy $\mathrm{H}=\mathrm{U}+\mathrm{PV}$

- Using same simplifications as for the statics,

$$
U=\frac{N z}{2} \frac{r_{0} \mu}{\alpha+1}(\alpha \omega)^{\alpha+1} \quad P V=\frac{N z}{2} \frac{r_{0} \mu}{d}(\alpha \omega)^{\alpha} \quad\left(\alpha \omega \sim 1-r / r_{0}\right)
$$

- Simple choice for V : decreasing function of z and ω that obeys

$$
\frac{V_{, z}}{V_{, \omega}}=D \omega^{b} \quad \text { as } \quad \omega \rightarrow 0
$$

so that V barely changes with z when particles are 'just' overlapping

Red lines : constant volume (minimising the internal energy U) Blue lines : constant pressure P (minimising the enthalpy $\mathrm{H}=\mathrm{U}+\mathrm{PV}$)

Exponents

Model	$G, K \sim \Delta z^{c}$	$P \sim \Delta z^{e}$	$\Delta V \sim \Delta z^{g}$
MMA			
$\alpha>0, d \geq 2$	$2 \alpha-1$	2α	2
Wet foam $[9]$			
$\alpha=1, d=2$	$\approx 1^{a}$	2 ± 0.4	2 ± 0.4
O'Hern et al. $[29]$			
$\alpha=1, d=2,3$	1.01 ± 0.1^{a}	2.1 ± 0.2	2.04 ± 0.1
$\alpha=3 / 2, d=2,3$	2.08 ± 0.1^{a}	3.15 ± 0.3	2.08 ± 0.1
Zhang et al. $[12]$			
$\alpha=1.28, d=3$	-	≈ 2.45	≈ 1.96
Makse et al. $[32]^{b}$			
$\alpha=3 / 2, d=3$	-	3.3 ± 0.5	2.1 ± 0.6

${ }^{a}$ Result for shear modulus shown.
${ }^{b}$ Only frictionless data shown.
[c.f. Schwarz et al., cond-mat/04/0595 for a scalar lattice treatment]

Prospects

- Still many issues:
- Evolution after the first arrest by e.g. shaking/tapping
- Taking the dynamics away from the overdamped limit
- Not yet a model for granular media
- No friction or particle asphericity
- No gravity, or any form of anisotropy (including shear)

Distributed contact forces

- Distribution of overlaps $\mathrm{P}(\delta), \delta=r_{0}-r$
- Assume system approaches a (stressless) rigidity transition
- Make the following ansatzes for $\varepsilon=\left(z-z_{\mathrm{c}}\right) / z_{\mathrm{c}}>0$
- λ vanishes near transition as $\lambda=\lambda_{0} \varepsilon^{-\nu}$
- Distribution scales uniformly, $P(\delta)=\varepsilon^{-\gamma} q\left(\varepsilon^{-\gamma} \delta\right)$
- Perform integration to get $1-\frac{d}{z}=(d-1) \frac{\lambda_{0} \mu}{r_{0}} \varepsilon^{-\nu+\alpha \gamma}\left\langle x^{\alpha}\right\rangle_{q(x)}$

$$
+\frac{1}{\lambda_{0} \mu \alpha} \varepsilon^{\nu-\gamma(\alpha-1)}\left\langle x^{1-\alpha}\right\rangle_{q(x)}
$$

- Stability boundary corresponds to λ_{0} real
- Self-consistency demands get $\gamma=2, v=2 \alpha-I$ as in the monodisperse case

Equation for $\boldsymbol{\lambda}$

$$
d\left(\frac{1}{z}-1\right)=(d-1) \frac{1}{\frac{\lambda f(r)}{r}-1}-\frac{1}{1+\lambda\left|f^{\prime}\right|}
$$

- d:dimension
- z:mean coordination number
- λ : compliance
- r :interparticle separation
- $f(r)$: interparticle potential
- $f^{\prime}(r)<0$ assumed

Pressure scaling

$$
\frac{P}{\mu} \sim \frac{N r_{0}}{2 V_{0}}\left\{\frac{\alpha\left(z-z_{\mathrm{c}}\right)^{2}}{4 d^{2}(d-1)}\right\}^{\alpha}
$$

- μ : contact stiffness (units of force)
- V_{0} : volume at transition
- N : Number of particles

