
The onset of 
rigidity in simple 

particulate systems

David Head, University of Tokyo

ITP Granular Physics program, 2005



Rigidity transition

• Many systems have a rigidity transition at a finite volume fraction 
ϕc , when the elastic moduli become non-zero

• At least in some cases, the same point is reached with controlled 
pressure P as P→0 or (bond stiffness) μ→∞

• Example: emulsion experiments

[ Mason et al., PRL 1995 ]



‘Bubble’ model for wet foams
(d=2, molecular dynamics with 

viscous damping)

D. Durian, PRL 1995

mined by where the pressure approaches zero, not by where

the static shear modulus first approaches zero. Thus, Figs. 3

and 4 show that the static shear modulus G! and the pressure

p "and therefore, the static bulk modulus B! as well# ap-
proach zero at the same packing fraction $c to a precision of

better than two parts in 105 for the monodisperse systems.

Each state develops a bulk modulus and shear modulus at the

same packing fraction. This is true for all polydispersities,

dimensionalities, and potentials studied. Thus, $c truly

marks the onset of jamming for a given initial state.

Note that in measuring the static shear modulus, we apply

a shear stress in a given direction. Although we have shown

that every studied state can withstand a shear stress in that

direction for $!$c , it is not obvious from these measure-

ments that every state can withstand a shear stress in any

arbitrary direction. To address this, we have studied the ei-

genvalues of the dynamical matrix %34& for our T"0 con-
figurations with harmonic repulsions. We find that at least for

$#$c'10
#6, the only zero-frequency modes correspond to

isolated clusters of ‘‘rattlers,’’ i.e., particles that do not over-

lap with any other particles and to uniform translations of the

entire system. The lack of any nontrivial zero-frequency

modes shows unambiguously that the system can withstand a

shear stress in all directions. We will discuss the statistics of

rattlers in greater detail in Sec. II E and the properties of the

dynamical matrix in more detail in Sec. II G.

C. Onset of jamming is sharp in the limit

of infinite system size

In the preceding subsection, we showed that different ini-

tial random (T"!) states have inherent structures (T"0
states# that jam at different threshold values $c . Here we

measure the distribution of jamming thresholds. For each

system size N and packing fraction $ , we start with at least
500 (100 for the largest system sizes# random (T"!) con-
figurations and use the conjugate gradient method to quench

each configuration infinitely rapidly to T"0. We then find
the fraction of these final states that are ‘‘jammed,’’ i.e., that

have a finite pressure and static shear modulus. The resulting

fraction f j of jammed states is shown as a function of $ in

Fig. 5"a# for a two-dimensional bidisperse system and in Fig.
5"b# for a three-dimensional monodisperse system with har-

monic repulsions. Similar graphs were shown for three-

dimensional bidisperse systems with harmonic repulsions in

Ref. %27&.
In measuring these distributions, the system remains at

one fixed, well-defined density since we do not dilate or

FIG. 3. Upper curves: Pressure p vs $#$c for 3D monodis-

perse "circles#, 3D bidisperse "diamonds#, and 2D bidisperse "left-
ward triangles# systems with harmonic repulsions (("2). The
solid line has slope of 1.0. Lower curves: p vs $#$c for 3D mono-

disperse "squares#, 3D bidisperse "upward triangles#, and 2D bidis-
perse "downward triangles# systems with Hertzian repulsions ((
"5/2). The solid line has a slope of 1.5. These symbols for the
different systems are used throughout the text. N"1024 (N"512)
particles were used for the 2D "3D# systems.

FIG. 4. Upper curves: Static shear modulus G! vs $#$c for

3D monodisperse "circles#, 3D bidisperse "diamonds#, and 2D bid-
isperse "leftward triangles# systems with harmonic repulsions ((
"2). The solid line has a slope of 0.5. Lower curves: G! vs $
#$c for 3D monodisperse "squares#, 3D bidisperse "upward
triangles#, and 2D bidisperse "downward triangles# systems with
Hertzian potentials (("5/2). The solid line has a slope of 1.0. N
"1024 (N"512) particles were used for the 2D "3D# systems.

FIG. 5. Fraction f j of jammed states as a function of $ for "a#
2D bidisperse systems and for "b# 3D monodisperse systems with

harmonic and Hertzian repulsions. In "a# and "b#, the lines "down-
ward triangles# represent potentials with ("2 (("5/2). f j for 2D
bidisperse systems with ("3/2 are also shown in "a# using plus
symbols. Each curve represents a different system size N.
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Hertzian

Hookean

[ D. Durian, PRL 1995 ]

Truncated Hookean/ 
Hertzian contacts in d=2,3 
(minimisation algorithm)
[ O’Hern et al.,  PRE 2003 ]

[ cf. Bolton & Weaire, PRL 1990 ]



tribution that peaks at R̄ , with a standard deviation of R̄ ,

clipped at 0.25R̄ and 2.0R̄ . The systems were initiated as tall

loosely packed boxes, which were compacted vertically by

normal stresses to a predetermined height l. After compac-

tion the top and bottom walls were allowed to move freely in

the horizontal direction to relax shear forces. Using CVBCs

unrelaxed normal forces were maintained on the walls, since

we did not allow the walls to move vertically. Global rear-

rangements during compaction and relaxation ensure a !lo-
cal" minimal energy configuration, as would occur during
natural compaction.

II. TWO-DIMENSIONAL GRAIN PACKINGS

After compaction and relaxation we measured properties

of static configurations !by static we mean velocities have
decayed to 10!8

v 0 or smaller" at different prescribed densi-
ties, or solid fractions, #"$

i"1
n %R

i

2/l2, ranging between

0.75 to 0.96. These two-dimensional !2D" solid fractions can
be mapped to 3D volume fractions of 0.49 to 0.71, using a

relationship between packings of circles and spheres (#3D
"4#2D

3/2/3%1/2 &18'". For each value of the solid fraction,
simulations were performed for two different values of the

friction coefficient (("0.0 and ("0.5) and system size

!12#12 and 24#24). Simulations performed at the same
conditions with different random grain assemblages pro-

duced very similar results.

Figure 2 presents three measured parameters plotted as a

function of solid fraction: !a" the number of grains touching
!i.e., exerting a force on" a grain, averaged over the interior
of the box, termed the coordination number Z, !b" the normal
stress !normal force per unit length" N operating on the upper
and lower confining walls, and !c" the system’s shear modu-
lus G. All measurements show an abrupt change in behavior

at a critical volume fraction #c , which depends on the coef-
ficient of friction prescribed between the grains, but not on

the system size. The coordination number is approximately

zero for #$#c . At #c the coordination number abruptly
jumps indicating a first-order phase transition. Above #c Z
increases as an empirical power law, Z"Zc(%b((#
!#c()

)(, where the subscript ( denotes fits to simulations

with different friction values. Power-law fits !in solid curves"
yield Zc0"3.2&0.5, b0"5.6&0.5, #c0"0.83&0.01, )0
"0.48&0.1 and Zc0.5"1.7&0.5, b0"5.8&0.5, #c0.5"0.8
&0.01, )0.5"0.36&0.1, for simulations performed with (
"0 and ("0.5, respectively. Critical behavior with values
of #c0"0.82&0.02 were previously obtained for hard fric-
tionless disks &19', and viscoelastic 2D bubbles &20' for
monodispersed and polydispersed systems, demonstrating

that #c is fairly independent of the disk size distribution, and
the interaction law in the absence of friction. This value of

#c0"0.82&0.02 was shown to mark the upper limit of com-
pacity of disordered packings of smooth hard monosized and

polysized disks &19'; for #'*c0 there appears long-range

order in disk positions. The difference in Zc , #c, and ) be-
tween frictional and smooth grains occurs because frictional

grains tend to ‘‘stick,’’ and thus cannot achieve the lower

energy configuration of smooth disks. The transition density

for frictional grains corresponds to a 3D volume fraction of

0.54. Experiments &8' confirm that immense stiffening of

rapidly shearing frictional grain aggregates occurs at #c
+0.54.
The fact that N and Z &Figs. 2!a", 2!b"' are zero for #

$#c , indicates that grains can rearrange so that they are not
touching, a state with no stored elastic energy. In systems

that are denser than #c , packing constraints lead to contacts
between grains so that there is residual elastic potential en-

ergy. The elastic repulsion forces at these contacts exert nor-

mal stresses on the walls which follow N,Z(#!#c) !shown
in solid lines". This is physically expected because the nor-
mal stress must be proportional to the number of elastic con-

FIG. 1. Representative instantaneous grain stresses and configu-

rations during shear !here v"10!3
v 0), in a CVBC, 24#24 system,

with ("0.5, at times (t1) and (t2). A line is drawn through

stressed contacts. Line thickness is proportional to normal stress on

the contact, and is scaled to the largest value in the frame. The

system shown here has #"0.80+#c , and thus exhibits ‘‘solidlike’’
and ‘‘gaslike’’ behaviors intermittently during shearing: At (t1), it

is ‘‘jammed’’ with system-spanning stress chains. At time (t2), the

system is ‘‘loose,’’ with only local stress clusters. Systems with #
'#c always look similar to the snapshot in (t1), while those with
#$#c always look similar to (t2).

FIG. 2. Results from CVBC simulations of static 12#12 and
24#24 grain packings as a function of solid fraction #, for smooth,
("0, and frictional, ("0.5, grains !a" Z, average coordination
number per interior grain, !b" N/-0 , scaled normal stress exerted
on horizontal walls, !c" G/-0 , scaled shear modulus of the aggre-
gate. Solid curves are theoretical predictions, as explained in the

text.
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= volume fraction (d=2)

[ Aharonov & Sparks, PRE 1999 ]

Frictionless and frictional 
granular media (g=0)

This consideration prompts us to employ the viscous
equation

! _xxðtÞ ¼ FðtÞ ð7Þ
for the time development during the deposition process
instead of the Newtonian equation, in order to see if it
creates a structure closer to an isostatic one. The viscous
equation tends to produce random configurations in equili-
brium because the disks stop as soon as the force balance is

achieved without the inertia effect. In the simulation with the
viscous equation, we take ! ¼ 5½m0

ffiffiffiffiffiffiffiffiffiffi
g="0

p % with !n ¼ !t ¼
0 in eqs. (4) and (5).

The data for the piles by the viscous equation are also
shown in Fig. 3 and Table I. One can see that the limiting
values for the viscous equation are actually closer to 3 than
those for the Newtonian equation.

In summary, in this report we have shown the followings.
The piles of frictionless disks become isostatic when the
disks are very hard and they are not very sensitive to the
preparation procedure, which is consistent with the con-
jecture that the pile of rigid grains is isostatic. On the other
hand, for the piles of frictional disks with infinite friction,
the structure depends on the preparation process. If the pile
is formed from a triangular lattice with the inertia, the pile
structure seems to be distinctively different from the
isostatic one even in the rigid limit, as has been found in
the previous work on the three-dimensional system.5) We
found, however, that the pile of frictional disks becomes
very close to an isostatic one in the rigid grain limit when we
employ the deposition process that tends to produce random
structure.

The isostaticity of granular pile should play a crucial role
in the stress propagation of a granular system. In the case of
a frictionless pile, it has been shown that the isostatic
structure has some peculiar features: (i) unidirectional nature
of stress propagation,6) (ii) correspondence between the
force-force response and the displacement-displacement
response,2) and (iii) unstable response that increases with
increasing distance from the point of an external perturba-
tion.1) The effects of friction on the mechanical properties of
the isostatic structure are now under investigation.

1) C. F. Moukarzel: Phys. Rev. Lett. 81 (1998) 1634.
2) C. F. Moukarzel: Granular Matter 3 (2001) 41.
3) R. C. Ball and R. Blumenfeld: Phys. Rev. Lett. 88 (2002) 115505.
4) R. C. Ball and R. Blumenfeld: Philos. Trans. R. Soc. London, Ser. A

361 (2003) 731.
5) L. E. Silbert, D. Erta!s, G. S. Grest, T. C. Halsey and D. Levine: Phys.

Rev. E 65 (2002) 031304.
6) A. V. Tkachenko and T. A. Witten: Phys. Rev. E 60 (1999) 687.
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Fig. 3. The coordination numbers z for various elastic constants kn in the
log–log scale frictionless pile (a) and frictional pile (b). The same data are
plotted using the same marks as those in Fig. 2.
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Frictionless and frictional 
granular media (g>0)

 [ Kasahara & Nakanishi, J.Phys.Soc.J. 2004 ]



Rigidity percolation

• Disordered lattices constructed by bond dilution

• Transport of vector quantity (force)

• Exhibits rigidity percolation when a rigid 
cluster first spans the system

• e.g. d=2 Hookean springs: zc = 3.961(2), Df = 
1.86(2), Db = 1.80(3) [ Jacobs&Thorpe, PRL 1995 ]

• Typically start from unstressed networks, although 
prestresses are important [ Alexander, Phys. Rep. 1998 ]

• Dynamics-inspired dilution rules have been 
devised [ Thorpe  et al., J. Non-Cryst. Sol. 2000; Schwarz  et al., cond-
mat/0410595 ]
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FIG. 1. The geometry of the infinite rigid cluster (a) (color)
An infinite rigid cluster at the rigidity threshold of a site-diluted
triangular lattice of size L ! 128. Backbone (stressed) bonds
are black, isostatic ends (rigid but unstressed bonds) are green,
and cutting bonds (if one of them is removed the backbone
collapses) are red. (b) P` (long dashes); PB (solid lines),
and PI (short dashes) for site- (plusses) and bond- (circles)
diluted triangular lattices. The calculations were done at the
percolation point for each lattice size and are averaged over
roughly 108!L2 configurations.

where for the triangular lattice, the backbone exponent

b0
t ! 0.25 6 0.03. Here we have used the result, 2 2

b0!n ! DB, with n ! 1.16 6 0.03 from our previous

calculations [9,10]. For the site-diluted triangular lattice

the first-order jump in P`, at
sd ! 0.086 6 0.005, while

for the case of bond dilution at
bd ! 0.11 6 0.02 [see

Fig. 1(b)]. Our mean-field theory uses exact “constraint

counting”(see below) on trees. We assign each node of a

lattice g degrees of freedom and coordination z. On the
triangular lattice treated in the previous paragraph, each

node has two degrees of freedom and z ! 6 for the pure
lattice. If the nodes of a triangular lattice were extended

objects or bodies instead of being pointlike “joints,” then

each node would have an additional rotational degree of

freedom. Cases of physical interest are then

g ! 1 for connectivity percolation, (2)

g ! d for a joint, (3)

g ! d 1
d"d 2 1#

2
for a body, (4)

where d is the dimensionality of the embedding space.

Knowledge of g and z is enough to write down the sim-
plest constraint-counting mean-field theory [3]. Consider

bond dilution with probability p that a bond is present.

Present bonds restrict the motion of the nodes, and hence

they impose “constraints” on the degrees of freedom of

the lattice. We assume that all of the constraints are “in-

dependent” (a “dependent” bond can be removed without

causing any reduction in the size of the rigid clusters),

then the number of degrees of freedom that remain uncon-

strained (the “floppy” modes per site f) is approximated
by

f ! g 2 pz!2 for p , p! ! 2g!z . (5)

For p . p!, f ! 0 in this approximation. This mean-
field theory has been useful in the study of glasses [3],

but has yielded little information about P`, PB, and

PI . More recently, a continuum mean-field theory has

been developed [11], which focuses on P`. That theory

indicates that the infinite-cluster probability undergoes

a first-order transition at the rigidity threshold, but the

connection with the key parameters g and z is unclear.
In addition, in that work a pathological lattice model (a

square lattice with random diagonals) was suggested as a

paradigm for the rigidity transition. We show later why

that model is anomalous.

We now present our Cayley-tree model for rigidity

percolation, which provides a complete mean-field model

for arbitrary g and z. The trees have coordination number
z but, as usual in tree models, the key results come

from consideration of one branch of a tree [see Fig. 2(a)].

Consider site-diluted trees which are grown from a rigid

boundary at infinity. Building inward from this boundary,

we keep track of the number of degrees of freedom of a

node with respect to the boundary. Rigidity can only be

transmitted to higher levels of the tree if there are enough

rigid bonds present to offset the g degrees of freedom of a
newly added node. For connectivity percolation only one

bond is needed. If a node is added to a g ! 2 tree, two
bonds are needed to offset the two degrees of freedom of

the added node. In general, if the nodes of the tree have g
degrees of freedom, rigidity is transmitted to the next level

of the tree provided the node is occupied, and provided at

1481

[ C. Moukarzel et al., PRL 1997 ]
(Black - stressed; green - rigid but 

unstressed; red - ‘cutting’)



Approximation schemes
Effective medium approximation (EMA)

Disordered lattice, 
known stiffness μ

Homogeneous lattice, 
unknown effective stiffness μeff

[S. Feng et al., PRB 1985]

Affine deformation
[K. Walton, J. Mech. Phys. Solids 1987; 

H. Makse  et al., PRL 1999]

z

G

zc

Impose microscopic 
displacement field

Rigidity transition at z = zc = 2d :

No transition at finite 
volume fraction ϕ

[F.  Trentadue, Int. J. Sol. Struct. 2001; 
N. P. Kruyt et al., Int. J. Eng. Sci. 1998]

More complex theories reduce G; 
still no clear transition



Maxwell counting

• A cluster is rigid when any non-trivial deformation mode increases 
the elastic energy, i.e. the elastic moduli are non-zero

• A system at the onset of rigidity can be called e.g. isostatic, 
marginally rigid or at the rigidity percolation threshold.

• Can determine via constraint counting; in its simplest form :

Contact forces are the 
degrees of freedom d.o.f. 

Force/torque 
balance zc

Particle position/
orientation are the d.o.f.

Geometric 
constraints

d.o.f. zc

Frictionless spheres
Nz

2
· 1 N · d 2d

Frictionless non-spheres
Nz

2
· 1 N · 1

2
d(d + 1) d(d+1)

Friction (any convex shape)
Nz

2
· d N · 1

2
d(d + 1) d+1



• Constraint counting is not exact

• “Rattlers” or other independent subsystems should not be 
counted

• Rigid body translation/rotation of the entire cluster should be 
subtracted off

• ... ?

• Frictionless sphere systems appear to agree with the predicted value 
if the two corrections above are included

 

• Not clear if extra corrections are required for transverse forces

• Only considers mechanical equilibrium (i.e. force/torque balance); says 
nothing about mechanical stability

[ A. Donev et al., cond-mat/0408550;
C. O’Hern et al., PRE 68, 011306 (2003) ]



ii. Statics: the MMA

• Determination of mechanical stability by an approximation 
scheme (the ‘mean mode approximation’, or MMA) which:

• Requires no mapping to analogous system with known 
Green’s function

• Can incorporate prestress

• Has a finite z transition



β γnβγ

rβγ

f
βγ = f(rβγ)n̂βγ

3

ulations.

A. Determining the mechanical stability

Given central force interactions, there is no need to
track particle orientations and the static system is fully
specified by the d–dimensional position vectors xβ of all
particles β. The force on β due to γ is denoted by fγβ ,

fγβ = f(rγβ)n̂γβ (1)

where rγβ =| xβ − xγ | is the distance between particle
centres and n̂γβ = (xβ − xγ)/rγβ is the unit vector from
γ to β. In this context the scalar central force f(r) is
usually taken to be of the form

f(r) =

{
µ

(
1− r

r0

)α
: r < r0

0 : otherwise
(2)

with α = 1 (truncated Hookean) or α = 3/2 (Hertzian),
and r0 is the sum of the two particle radii. The prefac-
tor µ > 0 is typically treated as a particle–independent
parameter, although strictly speaking it is a function of
the radii of curvature at the point of contact for Hertzian
interactions [33, 44]. Note that with this sign convention,
positive f corresponds to compressive forces and negative
f to tensile ones.

Suppose we are given an initial configuration {xβ} that
is static, i.e. the vector sum of all contact forces on
each particle vanishes. To determine its linear stability,
apply an arbitrarily small external force δf ext onto the
particle lying nearest some arbitrary point in space —
call this particle α (not to be confused with the force
law exponent). If the system is stable, it will move to a
nearby static configuration in which all particles β have
been displaced to xβ +δxβ with |δx| " r0. Force balance
must again be obeyed, i.e. the changes in contact forces
on β sum to zero for β #= α, and to −δf ext for particle α.

The response δxα for a particular configuration {xβ},
even if tractable, would be of no practical interest and
we must instead ensemble average, keeping fixed a set
of parameters that dominate the mechanical response of
the system. A wealth of data has shown the mean coor-
dination number z to be a crucial factor in determining
stability, and Alexander [46] has highlighted the impor-
tance of prestresses, so we also assume that both z and
some measure of the initial contact force distribution is
kept fixed. Once the ensemble (denoted by the angled
brackets 〈. . .〉 below) has been suitably defined, the re-
quirement of force balance on the perturbed bead α can
be written

δf ext −
〈∑

β∼α

δfαβ

〉
= 0 (3)

where the sum is over all β interacting with α. The
change in contact force δfαβ can be related to the particle
displacements δxα and δxβ by

δfαβ
i = Aαβ

ij

(
δxβ

j − δxα
j

)
(4)

with summation over Roman indices only. The d × d
matrix Aαβ is defined by [45]

Aij =
f(r)

r
(δij − n̂in̂j) + f ′(r)n̂in̂j (5)

assuming f(r) is continuous with a finite first derivative
f ′(r) #= 0 over all r of interest. Here and below the
suffices α, β are dropped whenever the meaning is clear.

B. Derivation of the MMA

So far this is exact but intractable. Now we approx-
imate. Consider that, for an isotropic system, the per-
turbed bead must move parallel to the external force af-
ter averaging, 〈δxα〉 = λδf ext with an unknown compli-
ance λ. The philosophy of the MMA is to impose this
form before averaging, i.e. inside the brackets in (3).
In this way the dependency of δxα on the entire initial
configuration {xγ} is subsumed into the single scalar pa-
rameter λ. This is clearly a significant saving in terms of
complexity, although it disallows the transverse motion
of the particle and hence reduces the degrees of freedom;
the consequence of this on the location of the rigidity
transition will be discussed later.

The logical continuation of this approach is to similarly
replace the δxβ by 〈δxβ〉; however, this averaged form
cannot be determined by symmetry considerations alone.
Instead we assume here that the change in the contact
force with α can be treated as an external force on β, so
that δxβ = λδfαβ with the same λ as before. Intuitively,
this corresponds to the statement that the displacement
of β is dominated by the change in contact force with α,
which, for a monotonically decaying force field extending
outwards from α, should at least not be embarrassingly
wrong. These two approximations taken together allows
each contact force δfαβ to be uniquely determined from
δf ext, as found by inserting δxα = λδf ext and δxβ =
λδfαβ into (4) and (5) (with s = 1) and inverting,

δfαβ
i = Sαβ

ij δf ext
j ,

Sαβ
ij =

[
1 + (λ|f ′(rαβ)|)−1

]−1
n̂αβ

i n̂αβ
j

+

[
1−

(
λf(rαβ)

rαβ

)−1
]−1 (

δij − n̂αβ
i n̂αβ

j

)
(6)

Thus each δfαβ is independent of the others. Note that
the unphysical singularity at λf/r = 1 is avoided by the
stability equation below.

Start from a static configuration {xβ}
of soft spheres β with contact forces

Apply a small external force δfext to α

3

ulations.

A. Determining the mechanical stability

Given central force interactions, there is no need to
track particle orientations and the static system is fully
specified by the d–dimensional position vectors xβ of all
particles β. The force on β due to γ is denoted by fγβ ,

fγβ = f(rγβ)n̂γβ (1)

where rγβ =| xβ − xγ | is the distance between particle
centres and n̂γβ = (xβ − xγ)/rγβ is the unit vector from
γ to β. In this context the scalar central force f(r) is
usually taken to be of the form

f(r) =

{
µ

(
1− r

r0

)α
: r < r0

0 : otherwise
(2)

with α = 1 (truncated Hookean) or α = 3/2 (Hertzian),
and r0 is the sum of the two particle radii. The prefac-
tor µ > 0 is typically treated as a particle–independent
parameter, although strictly speaking it is a function of
the radii of curvature at the point of contact for Hertzian
interactions [33, 44]. Note that with this sign convention,
positive f corresponds to compressive forces and negative
f to tensile ones.

Suppose we are given an initial configuration {xβ} that
is static, i.e. the vector sum of all contact forces on
each particle vanishes. To determine its linear stability,
apply an arbitrarily small external force δf ext onto the
particle lying nearest some arbitrary point in space —
call this particle α (not to be confused with the force
law exponent). If the system is stable, it will move to a
nearby static configuration in which all particles β have
been displaced to xβ +δxβ with |δx| " r0. Force balance
must again be obeyed, i.e. the changes in contact forces
on β sum to zero for β #= α, and to −δf ext for particle α.

The response δxα for a particular configuration {xβ},
even if tractable, would be of no practical interest and
we must instead ensemble average, keeping fixed a set
of parameters that dominate the mechanical response of
the system. A wealth of data has shown the mean coor-
dination number z to be a crucial factor in determining
stability, and Alexander [46] has highlighted the impor-
tance of prestresses, so we also assume that both z and
some measure of the initial contact force distribution is
kept fixed. Once the ensemble (denoted by the angled
brackets 〈. . .〉 below) has been suitably defined, the re-
quirement of force balance on the perturbed bead α can
be written

δf ext −
〈∑

β∼α

δfαβ

〉
= 0 (3)

where the sum is over all β interacting with α. The
change in contact force δfαβ can be related to the particle
displacements δxα and δxβ by

δfαβ
i = Aαβ

ij

(
δxβ

j − δxα
j

)
(4)

with summation over Roman indices only. The d × d
matrix Aαβ is defined by [45]

Aij =
f(r)

r
(δij − n̂in̂j) + f ′(r)n̂in̂j (5)

assuming f(r) is continuous with a finite first derivative
f ′(r) #= 0 over all r of interest. Here and below the
suffices α, β are dropped whenever the meaning is clear.

B. Derivation of the MMA

So far this is exact but intractable. Now we approx-
imate. Consider that, for an isotropic system, the per-
turbed bead must move parallel to the external force af-
ter averaging, 〈δxα〉 = λδf ext with an unknown compli-
ance λ. The philosophy of the MMA is to impose this
form before averaging, i.e. inside the brackets in (3).
In this way the dependency of δxα on the entire initial
configuration {xγ} is subsumed into the single scalar pa-
rameter λ. This is clearly a significant saving in terms of
complexity, although it disallows the transverse motion
of the particle and hence reduces the degrees of freedom;
the consequence of this on the location of the rigidity
transition will be discussed later.

The logical continuation of this approach is to similarly
replace the δxβ by 〈δxβ〉; however, this averaged form
cannot be determined by symmetry considerations alone.
Instead we assume here that the change in the contact
force with α can be treated as an external force on β, so
that δxβ = λδfαβ with the same λ as before. Intuitively,
this corresponds to the statement that the displacement
of β is dominated by the change in contact force with α,
which, for a monotonically decaying force field extending
outwards from α, should at least not be embarrassingly
wrong. These two approximations taken together allows
each contact force δfαβ to be uniquely determined from
δf ext, as found by inserting δxα = λδf ext and δxβ =
λδfαβ into (4) and (5) (with s = 1) and inverting,
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+
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)
(6)

Thus each δfαβ is independent of the others. Note that
the unphysical singularity at λf/r = 1 is avoided by the
stability equation below.
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call this particle α (not to be confused with the force
law exponent). If the system is stable, it will move to a
nearby static configuration in which all particles β have
been displaced to xβ +δxβ with |δx| " r0. Force balance
must again be obeyed, i.e. the changes in contact forces
on β sum to zero for β #= α, and to −δf ext for particle α.
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the system. A wealth of data has shown the mean coor-
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So far this is exact but intractable. Now we approx-
imate. Consider that, for an isotropic system, the per-
turbed bead must move parallel to the external force af-
ter averaging, 〈δxα〉 = λδf ext with an unknown compli-
ance λ. The philosophy of the MMA is to impose this
form before averaging, i.e. inside the brackets in (3).
In this way the dependency of δxα on the entire initial
configuration {xγ} is subsumed into the single scalar pa-
rameter λ. This is clearly a significant saving in terms of
complexity, although it disallows the transverse motion
of the particle and hence reduces the degrees of freedom;
the consequence of this on the location of the rigidity
transition will be discussed later.

The logical continuation of this approach is to similarly
replace the δxβ by 〈δxβ〉; however, this averaged form
cannot be determined by symmetry considerations alone.
Instead we assume here that the change in the contact
force with α can be treated as an external force on β, so
that δxβ = λδfαβ with the same λ as before. Intuitively,
this corresponds to the statement that the displacement
of β is dominated by the change in contact force with α,
which, for a monotonically decaying force field extending
outwards from α, should at least not be embarrassingly
wrong. These two approximations taken together allows
each contact force δfαβ to be uniquely determined from
δf ext, as found by inserting δxα = λδf ext and δxβ =
λδfαβ into (4) and (5) (with s = 1) and inverting,
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Thus each δfαβ is independent of the others. Note that
the unphysical singularity at λf/r = 1 is avoided by the
stability equation below.
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where rγβ =| xβ − xγ | is the distance between particle
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and r0 is the sum of the two particle radii. The prefac-
tor µ > 0 is typically treated as a particle–independent
parameter, although strictly speaking it is a function of
the radii of curvature at the point of contact for Hertzian
interactions [33, 44]. Note that with this sign convention,
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f to tensile ones.

Suppose we are given an initial configuration {xβ} that
is static, i.e. the vector sum of all contact forces on
each particle vanishes. To determine its linear stability,
apply an arbitrarily small external force δf ext onto the
particle lying nearest some arbitrary point in space —
call this particle α (not to be confused with the force
law exponent). If the system is stable, it will move to a
nearby static configuration in which all particles β have
been displaced to xβ +δxβ with |δx| " r0. Force balance
must again be obeyed, i.e. the changes in contact forces
on β sum to zero for β #= α, and to −δf ext for particle α.

The response δxα for a particular configuration {xβ},
even if tractable, would be of no practical interest and
we must instead ensemble average, keeping fixed a set
of parameters that dominate the mechanical response of
the system. A wealth of data has shown the mean coor-
dination number z to be a crucial factor in determining
stability, and Alexander [46] has highlighted the impor-
tance of prestresses, so we also assume that both z and
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assuming f(r) is continuous with a finite first derivative
f ′(r) #= 0 over all r of interest. Here and below the
suffices α, β are dropped whenever the meaning is clear.

B. Derivation of the MMA

So far this is exact but intractable. Now we approx-
imate. Consider that, for an isotropic system, the per-
turbed bead must move parallel to the external force af-
ter averaging, 〈δxα〉 = λδf ext with an unknown compli-
ance λ. The philosophy of the MMA is to impose this
form before averaging, i.e. inside the brackets in (3).
In this way the dependency of δxα on the entire initial
configuration {xγ} is subsumed into the single scalar pa-
rameter λ. This is clearly a significant saving in terms of
complexity, although it disallows the transverse motion
of the particle and hence reduces the degrees of freedom;
the consequence of this on the location of the rigidity
transition will be discussed later.

The logical continuation of this approach is to similarly
replace the δxβ by 〈δxβ〉; however, this averaged form
cannot be determined by symmetry considerations alone.
Instead we assume here that the change in the contact
force with α can be treated as an external force on β, so
that δxβ = λδfαβ with the same λ as before. Intuitively,
this corresponds to the statement that the displacement
of β is dominated by the change in contact force with α,
which, for a monotonically decaying force field extending
outwards from α, should at least not be embarrassingly
wrong. These two approximations taken together allows
each contact force δfαβ to be uniquely determined from
δf ext, as found by inserting δxα = λδf ext and δxβ =
λδfαβ into (4) and (5) (with s = 1) and inverting,
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Thus each δfαβ is independent of the others. Note that
the unphysical singularity at λf/r = 1 is avoided by the
stability equation below.
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A. Determining the mechanical stability

Given central force interactions, there is no need to
track particle orientations and the static system is fully
specified by the d–dimensional position vectors xβ of all
particles β. The force on β due to γ is denoted by fγβ ,

fγβ = f(rγβ)n̂γβ (1)

where rγβ =| xβ − xγ | is the distance between particle
centres and n̂γβ = (xβ − xγ)/rγβ is the unit vector from
γ to β. In this context the scalar central force f(r) is
usually taken to be of the form

f(r) =

{
µ

(
1− r

r0

)α
: r < r0

0 : otherwise
(2)

with α = 1 (truncated Hookean) or α = 3/2 (Hertzian),
and r0 is the sum of the two particle radii. The prefac-
tor µ > 0 is typically treated as a particle–independent
parameter, although strictly speaking it is a function of
the radii of curvature at the point of contact for Hertzian
interactions [33, 44]. Note that with this sign convention,
positive f corresponds to compressive forces and negative
f to tensile ones.

Suppose we are given an initial configuration {xβ} that
is static, i.e. the vector sum of all contact forces on
each particle vanishes. To determine its linear stability,
apply an arbitrarily small external force δf ext onto the
particle lying nearest some arbitrary point in space —
call this particle α (not to be confused with the force
law exponent). If the system is stable, it will move to a
nearby static configuration in which all particles β have
been displaced to xβ +δxβ with |δx| " r0. Force balance
must again be obeyed, i.e. the changes in contact forces
on β sum to zero for β #= α, and to −δf ext for particle α.

The response δxα for a particular configuration {xβ},
even if tractable, would be of no practical interest and
we must instead ensemble average, keeping fixed a set
of parameters that dominate the mechanical response of
the system. A wealth of data has shown the mean coor-
dination number z to be a crucial factor in determining
stability, and Alexander [46] has highlighted the impor-
tance of prestresses, so we also assume that both z and
some measure of the initial contact force distribution is
kept fixed. Once the ensemble (denoted by the angled
brackets 〈. . .〉 below) has been suitably defined, the re-
quirement of force balance on the perturbed bead α can
be written

δf ext −
〈∑

β∼α

δfαβ

〉
= 0 (3)

where the sum is over all β interacting with α. The
change in contact force δfαβ can be related to the particle
displacements δxα and δxβ by

δfαβ
i = Aαβ

ij

(
δxβ

j − δxα
j

)
(4)

with summation over Roman indices only. The d × d
matrix Aαβ is defined by [45]

Aij =
f(r)

r
(δij − n̂in̂j) + f ′(r)n̂in̂j (5)

assuming f(r) is continuous with a finite first derivative
f ′(r) #= 0 over all r of interest. Here and below the
suffices α, β are dropped whenever the meaning is clear.

B. Derivation of the MMA

So far this is exact but intractable. Now we approx-
imate. Consider that, for an isotropic system, the per-
turbed bead must move parallel to the external force af-
ter averaging, 〈δxα〉 = λδf ext with an unknown compli-
ance λ. The philosophy of the MMA is to impose this
form before averaging, i.e. inside the brackets in (3).
In this way the dependency of δxα on the entire initial
configuration {xγ} is subsumed into the single scalar pa-
rameter λ. This is clearly a significant saving in terms of
complexity, although it disallows the transverse motion
of the particle and hence reduces the degrees of freedom;
the consequence of this on the location of the rigidity
transition will be discussed later.

The logical continuation of this approach is to similarly
replace the δxβ by 〈δxβ〉; however, this averaged form
cannot be determined by symmetry considerations alone.
Instead we assume here that the change in the contact
force with α can be treated as an external force on β, so
that δxβ = λδfαβ with the same λ as before. Intuitively,
this corresponds to the statement that the displacement
of β is dominated by the change in contact force with α,
which, for a monotonically decaying force field extending
outwards from α, should at least not be embarrassingly
wrong. These two approximations taken together allows
each contact force δfαβ to be uniquely determined from
δf ext, as found by inserting δxα = λδf ext and δxβ =
λδfαβ into (4) and (5) (with s = 1) and inverting,

δfαβ
i = Sαβ

ij δf ext
j ,

Sαβ
ij =

[
1 + (λ|f ′(rαβ)|)−1

]−1
n̂αβ

i n̂αβ
j

+

[
1−

(
λf(rαβ)

rαβ

)−1
]−1 (

δij − n̂αβ
i n̂αβ

j

)
(6)

Thus each δfαβ is independent of the others. Note that
the unphysical singularity at λf/r = 1 is avoided by the
stability equation below.
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track particle orientations and the static system is fully
specified by the d–dimensional position vectors xβ of all
particles β. The force on β due to γ is denoted by fγβ ,

fγβ = f(rγβ)n̂γβ (1)

where rγβ =| xβ − xγ | is the distance between particle
centres and n̂γβ = (xβ − xγ)/rγβ is the unit vector from
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usually taken to be of the form
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0 : otherwise
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with α = 1 (truncated Hookean) or α = 3/2 (Hertzian),
and r0 is the sum of the two particle radii. The prefac-
tor µ > 0 is typically treated as a particle–independent
parameter, although strictly speaking it is a function of
the radii of curvature at the point of contact for Hertzian
interactions [33, 44]. Note that with this sign convention,
positive f corresponds to compressive forces and negative
f to tensile ones.

Suppose we are given an initial configuration {xβ} that
is static, i.e. the vector sum of all contact forces on
each particle vanishes. To determine its linear stability,
apply an arbitrarily small external force δf ext onto the
particle lying nearest some arbitrary point in space —
call this particle α (not to be confused with the force
law exponent). If the system is stable, it will move to a
nearby static configuration in which all particles β have
been displaced to xβ +δxβ with |δx| " r0. Force balance
must again be obeyed, i.e. the changes in contact forces
on β sum to zero for β #= α, and to −δf ext for particle α.

The response δxα for a particular configuration {xβ},
even if tractable, would be of no practical interest and
we must instead ensemble average, keeping fixed a set
of parameters that dominate the mechanical response of
the system. A wealth of data has shown the mean coor-
dination number z to be a crucial factor in determining
stability, and Alexander [46] has highlighted the impor-
tance of prestresses, so we also assume that both z and
some measure of the initial contact force distribution is
kept fixed. Once the ensemble (denoted by the angled
brackets 〈. . .〉 below) has been suitably defined, the re-
quirement of force balance on the perturbed bead α can
be written

δf ext −
〈∑

β∼α
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= 0 (3)

where the sum is over all β interacting with α. The
change in contact force δfαβ can be related to the particle
displacements δxα and δxβ by
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assuming f(r) is continuous with a finite first derivative
f ′(r) #= 0 over all r of interest. Here and below the
suffices α, β are dropped whenever the meaning is clear.

B. Derivation of the MMA

So far this is exact but intractable. Now we approx-
imate. Consider that, for an isotropic system, the per-
turbed bead must move parallel to the external force af-
ter averaging, 〈δxα〉 = λδf ext with an unknown compli-
ance λ. The philosophy of the MMA is to impose this
form before averaging, i.e. inside the brackets in (3).
In this way the dependency of δxα on the entire initial
configuration {xγ} is subsumed into the single scalar pa-
rameter λ. This is clearly a significant saving in terms of
complexity, although it disallows the transverse motion
of the particle and hence reduces the degrees of freedom;
the consequence of this on the location of the rigidity
transition will be discussed later.

The logical continuation of this approach is to similarly
replace the δxβ by 〈δxβ〉; however, this averaged form
cannot be determined by symmetry considerations alone.
Instead we assume here that the change in the contact
force with α can be treated as an external force on β, so
that δxβ = λδfαβ with the same λ as before. Intuitively,
this corresponds to the statement that the displacement
of β is dominated by the change in contact force with α,
which, for a monotonically decaying force field extending
outwards from α, should at least not be embarrassingly
wrong. These two approximations taken together allows
each contact force δfαβ to be uniquely determined from
δf ext, as found by inserting δxα = λδf ext and δxβ =
λδfαβ into (4) and (5) (with s = 1) and inverting,
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Thus each δfαβ is independent of the others. Note that
the unphysical singularity at λf/r = 1 is avoided by the
stability equation below.
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centres and n̂γβ = (xβ − xγ)/rγβ is the unit vector from
γ to β. In this context the scalar central force f(r) is
usually taken to be of the form

f(r) =

{
µ

(
1− r

r0

)α
: r < r0

0 : otherwise
(2)

with α = 1 (truncated Hookean) or α = 3/2 (Hertzian),
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parameter, although strictly speaking it is a function of
the radii of curvature at the point of contact for Hertzian
interactions [33, 44]. Note that with this sign convention,
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f to tensile ones.

Suppose we are given an initial configuration {xβ} that
is static, i.e. the vector sum of all contact forces on
each particle vanishes. To determine its linear stability,
apply an arbitrarily small external force δf ext onto the
particle lying nearest some arbitrary point in space —
call this particle α (not to be confused with the force
law exponent). If the system is stable, it will move to a
nearby static configuration in which all particles β have
been displaced to xβ +δxβ with |δx| " r0. Force balance
must again be obeyed, i.e. the changes in contact forces
on β sum to zero for β #= α, and to −δf ext for particle α.

The response δxα for a particular configuration {xβ},
even if tractable, would be of no practical interest and
we must instead ensemble average, keeping fixed a set
of parameters that dominate the mechanical response of
the system. A wealth of data has shown the mean coor-
dination number z to be a crucial factor in determining
stability, and Alexander [46] has highlighted the impor-
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be written
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assuming f(r) is continuous with a finite first derivative
f ′(r) #= 0 over all r of interest. Here and below the
suffices α, β are dropped whenever the meaning is clear.

B. Derivation of the MMA

So far this is exact but intractable. Now we approx-
imate. Consider that, for an isotropic system, the per-
turbed bead must move parallel to the external force af-
ter averaging, 〈δxα〉 = λδf ext with an unknown compli-
ance λ. The philosophy of the MMA is to impose this
form before averaging, i.e. inside the brackets in (3).
In this way the dependency of δxα on the entire initial
configuration {xγ} is subsumed into the single scalar pa-
rameter λ. This is clearly a significant saving in terms of
complexity, although it disallows the transverse motion
of the particle and hence reduces the degrees of freedom;
the consequence of this on the location of the rigidity
transition will be discussed later.

The logical continuation of this approach is to similarly
replace the δxβ by 〈δxβ〉; however, this averaged form
cannot be determined by symmetry considerations alone.
Instead we assume here that the change in the contact
force with α can be treated as an external force on β, so
that δxβ = λδfαβ with the same λ as before. Intuitively,
this corresponds to the statement that the displacement
of β is dominated by the change in contact force with α,
which, for a monotonically decaying force field extending
outwards from α, should at least not be embarrassingly
wrong. These two approximations taken together allows
each contact force δfαβ to be uniquely determined from
δf ext, as found by inserting δxα = λδf ext and δxβ =
λδfαβ into (4) and (5) (with s = 1) and inverting,
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C. Stability regimes

Ignoring the trivial d = 1 case, dimensionality only en-
ters via the prefactors and so all d ≥ 2 will be discussed
together. The solutions to (9) can be conveniently ex-
pressed in terms of the two scalars z and ω, where

ω =
f(r)/r

| f ′(r) | (11)

∼ 1
α

(
1− r

r0

)
(12)

is a dimensionless measure of the prestress in the system.
The second form (12) holds for the particulate potentials
(2) in the limit r → r−0 , i.e. close to the rigidity tran-
sition, which is the regime of interest here. A schematic
description of the predictions of the MMA are given in
Fig. 2. Some important features are now discussed.

ω ≡ 0: This is the unstressed case in which all con-
tact forces are initially zero, nullifying use of the par-
ticulate potentials (2), which have no linear response at
r = r0, but still attainable for non–truncated Hookean
springs. The equation for λ gives the single solution
λ|f ′| = (z/d−1)−1, or G, K ∼ (z/zc−1)f with the tran-
sition point zc = d and an exponent f = 1. The effective
medium theory for diluted spring lattices also predicts
f = 1, but at the higher transition point zc = 2d in ac-
cord with the Maxwell counting estimate [41]. The tran-
sition value found here, zc = d, seems anomalous until
one recalls that the basic assumptions of the MMA re-
strict the motion of the particles to mean forms, thereby
reducing their degrees of freedom and hence lowering zc.
Despite this, the MMA still predicts a finite transition,
and can therefore can be used qualitatively. Any unease
over the actual value could be lessened by referring to it
as an effective coordination number zeff if desired.

ω < 0: When all of the bonds are tensile, there is always
one real, positive solution of λ extending from arbitrar-
ily large z down to a lower value zmin = 1. Again this
value is too small; zmin = 2 is more probable, i.e. infinite
chains of particles spanning the system. As ω → 0− with
z > zc fixed, the single root of λ continuously approaches
the unstressed solution given above. Repeating this pro-
cedure for z < zc, however, reveals that λ diverges as
|ω|−1 and hence G, K ∼ |ω| vanishes continuously as the
unstressed axis is reached. Thus just below the ω = 0
line, the elastic moduli are very small and the system is
inherently weak, becoming weaker as z decreases. This
may explain why the few attempts to survey this region
in disordered lattices [24, 25] have observed a rapid but
gradual crossover of the transition from zc to zmin: nu-
merical noise and/or arithmetic precision may incorrectly
attribute zero values to small but finite moduli.

ω > 0: For compressed bonds, the (z,ω) plane is parti-
tioned into a stable region with two distinct real, positive

roots, and an unstable region for which both roots are
either complex or negative. The boundary between the
stable and unstable regions is quadratic near zc,

ωbdy ≈ (z − zc)2

4d2(d− 1)
, z > zc. (13)

Both roots of λ coincide on the boundary,

λbdy ≈ z − zc

2d(z − 1)
r0

µ

(
4d2(d− 1)
α(z − zc)2

)α

(14)

and hence Gbdy,Kbdy ∼ λ−1
bdy ∼ (z − zc)2α−1. Starting

from the stable regime and decreasing ω to zero, one of
the roots diverges as ω−1 while the other continuously ap-
proaches the unstressed solution, crossing over to become
the single root in the tensile regime (where the other root
becomes negative).

The manner in which the compressive system becomes
unstable is noteworthy. On the boundary, r0 − r ∼
(z − zc)2, f ∼ (z − zc)2α and f ′ ∼ (z − zc)2(α−1), which
according the (6) means that the force transfer is predom-
inantly longitudinal. As already noted by Alexander [46],
in such cases the change in energy will be positive, from
which he infers the system should be stable. However,
there are other ways of buckling. An established alterna-
tive is a bifurcation to a different classes of solution [47];
we might also speculate that the energy landscape may
exhibit discontinuities in the limit of infinite system size,
allowing some form of catastrophic buckling. In fact, the
buckling as envisaged by Alexander, which corresponds
to λ < 0 here, does arise within the MMA, but only for
z < zc and small ω > 0. The upper boundary in Fig. 2
rather corresponds to when λ becomes complex.

III. DYNAMICS: ENERGY MINIMISATION

A system not in a shaded region in Fig. 2 will desta-
bilise under any non–zero noise, evolving its contact net-
work according to the dynamical particle interactions and
hence allowing z and ω to vary. It can only come to rest
in a mechanically stable region. Indeed for sufficiently
damped interactions, as assumed here, kinetic arrest can
be identified with the point at which the system first
touches a stable region. Strong damping also means that
the kinetic energy is always small, so that the system will
evolve to minimise some suitably defined energy poten-
tial. For constant volume V , this potential is the internal
energy U , here just the total potential energy stored in
the interparticle bonds. For controlled pressure, the cor-
responding potential is the enthalpy H = U + PV [37].

A crucial problem in integrating the fixed P or V dy-
namics and the (z,ω) stability diagram is writing down
expressions relating V to z and ω. This is likely to be
a subtle issue; under gentle shaking, the particles may
form spatially extended structures that would necessitate
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sition value found here, zc = d, seems anomalous until
one recalls that the basic assumptions of the MMA re-
strict the motion of the particles to mean forms, thereby
reducing their degrees of freedom and hence lowering zc.
Despite this, the MMA still predicts a finite transition,
and can therefore can be used qualitatively. Any unease
over the actual value could be lessened by referring to it
as an effective coordination number zeff if desired.

ω < 0: When all of the bonds are tensile, there is always
one real, positive solution of λ extending from arbitrar-
ily large z down to a lower value zmin = 1. Again this
value is too small; zmin = 2 is more probable, i.e. infinite
chains of particles spanning the system. As ω → 0− with
z > zc fixed, the single root of λ continuously approaches
the unstressed solution given above. Repeating this pro-
cedure for z < zc, however, reveals that λ diverges as
|ω|−1 and hence G, K ∼ |ω| vanishes continuously as the
unstressed axis is reached. Thus just below the ω = 0
line, the elastic moduli are very small and the system is
inherently weak, becoming weaker as z decreases. This
may explain why the few attempts to survey this region
in disordered lattices [24, 25] have observed a rapid but
gradual crossover of the transition from zc to zmin: nu-
merical noise and/or arithmetic precision may incorrectly
attribute zero values to small but finite moduli.

ω > 0: For compressed bonds, the (z,ω) plane is parti-
tioned into a stable region with two distinct real, positive

roots, and an unstable region for which both roots are
either complex or negative. The boundary between the
stable and unstable regions is quadratic near zc,

ωbdy ≈ (z − zc)2

4d2(d− 1)
, z > zc. (13)

Both roots of λ coincide on the boundary,

λbdy ≈ z − zc

2d(z − 1)
r0

µ

(
4d2(d− 1)
α(z − zc)2

)α

(14)

and hence Gbdy,Kbdy ∼ λ−1
bdy ∼ (z − zc)2α−1. Starting

from the stable regime and decreasing ω to zero, one of
the roots diverges as ω−1 while the other continuously ap-
proaches the unstressed solution, crossing over to become
the single root in the tensile regime (where the other root
becomes negative).

The manner in which the compressive system becomes
unstable is noteworthy. On the boundary, r0 − r ∼
(z − zc)2, f ∼ (z − zc)2α and f ′ ∼ (z − zc)2(α−1), which
according the (6) means that the force transfer is predom-
inantly longitudinal. As already noted by Alexander [46],
in such cases the change in energy will be positive, from
which he infers the system should be stable. However,
there are other ways of buckling. An established alterna-
tive is a bifurcation to a different classes of solution [47];
we might also speculate that the energy landscape may
exhibit discontinuities in the limit of infinite system size,
allowing some form of catastrophic buckling. In fact, the
buckling as envisaged by Alexander, which corresponds
to λ < 0 here, does arise within the MMA, but only for
z < zc and small ω > 0. The upper boundary in Fig. 2
rather corresponds to when λ becomes complex.

III. DYNAMICS: ENERGY MINIMISATION

A system not in a shaded region in Fig. 2 will desta-
bilise under any non–zero noise, evolving its contact net-
work according to the dynamical particle interactions and
hence allowing z and ω to vary. It can only come to rest
in a mechanically stable region. Indeed for sufficiently
damped interactions, as assumed here, kinetic arrest can
be identified with the point at which the system first
touches a stable region. Strong damping also means that
the kinetic energy is always small, so that the system will
evolve to minimise some suitably defined energy poten-
tial. For constant volume V , this potential is the internal
energy U , here just the total potential energy stored in
the interparticle bonds. For controlled pressure, the cor-
responding potential is the enthalpy H = U + PV [37].

A crucial problem in integrating the fixed P or V dy-
namics and the (z,ω) stability diagram is writing down
expressions relating V to z and ω. This is likely to be
a subtle issue; under gentle shaking, the particles may
form spatially extended structures that would necessitate

Lattice models under tension also show an 
extended stable regime; cf. [ Tang&Thorpe, 

PRB 1988; Zhou et al., PRE 2003 ]
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so that V barely changes with z when particles are ‘just’ overlapping
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many–particle variables to calculate V [6, 7, 48], which
is clearly beyond the one–particle closure of the MMA
equations. For now we ignore such potential pitfalls, and
instead assume the following, one–particle description, in
the expectation that it will hold in the initial dynamic
phase from a highly excited initial state. Simply assume
that V is a decreasing function of both z and ω, as might
be expected for uniform, global changes of these vari-
ables. The precise choice of V (z,ω) should incorporate
the large changes in z that are possible for small changes
in r when the particles are barely touching, i.e. when
ω ! 1. This can be written as

V,z
V,ω

= Dωb as ω → 0 (15)

where the unknown exponent b is assumed here to obey
b ≥ 1 (b < 1 alters the scaling behaviour of V with z
described later, but not of P , G or K). The dimensionless
constant D > 0 is some material–dependent parameter.

It is straightforward to derive the internal energy U by
employing the same approximations as used to perform
the integration of the MMA equations, namely a constant
ω = 1

α (1− r/r0) and isotropic bond orientations n̂,

U =
Nz

2
r0µ

α + 1
(αω)α+1 (16)

which is the total number of contacts Nz/2 multiplied
by the bond potential. Similarly, the isotropic pressure
P δij is the sum of the rifj for each bond, divided by the
volume V , or (for r ≈ r0)

PV =
Nz

2
r0µ

d
(αω)α (17)

where the identity 〈n̂in̂j〉 = 1
dδij has been used.

Performing the minimisation for both cases reveals
broadly the same behaviour; the system will evolve in
the direction of increasing z and decreasing ω, as schema-
tised in Fig. 1 and already discussed in the introduction.
For example, for fixed V , the extremum of U (which we
assume is the minimum) is found by solving dU = 0 si-
multaneously with dV = 0, where the latter gives the
constraint of constant volume. This can be rearranged
to give U,ω V,z = U,z V,ω and hence from (16),

zωaV,z =
ωα+1

α + 1
V,ω (18)

This admits the single solution ω = 0 in the small–ω
regime of interest here, so U is minimised when all parti-
cles are at the limits of their interaction potentials (or
at their natural lengths for Hookean springs). Given
that the system is constrained to move on lines of con-
stant V (15), the minimum corresponds to a divergent z,
clearly unobtainable in a real system. Excluded volume

and ordering effects must be incorporated into the theory
before any large–z treatment can be attempted. Repeat-
ing the enthalpy minimisation at fixed P gives essentially
the same behaviour.

A. Kinetic arrest and scaling behaviour

Given the system is arrested at the stability boundary
in Fig. 1, the same scaling near zc should be observed for
fixed V or P . The elastic moduli G, K can be written in
terms of z−zc using the expression already derived (14),

G, K ∼ (z − zc)c (19)

with c = 2α − 1. Note that both diverge as α → 1
2

+,
signifying the breakdown of linear response in this ad-
mittedly atypical class of pair potentials. At the transi-
tion point (z,ω) = (zc, 0), the pressure P is zero with a
finite volume V0, so PV ≈ PV0 to first order and scaling
relations involving P can be found independently of the
choice of V (15). From (17),

P ∼ (z − zc)e (20)

with e = 2α. Finally, for relations involving V , and hence
the volume fraction φ ∼ V −1, we find

V0 − V ∼ (z − zc)g (21)

with g = 2 when b ≥ 1 (g = 2b for b < 1). These results
are summarised in Table I, where they are compared to
simulation results on various central force systems.

The agreement between theory and simulations pre-
sented is good, although note that the MMA predicts
identical exponents for all elastic moduli (10), whereas
some simulations claim different scaling for G and K [29,
33]. This would be unusual, as it would give a divergent
Poisson ratio and hence a breakdown of continuum elas-
ticity with a finite neighbourhood of the transition, when
the correlation lengths are still finite [49] and coarse–
graining should be achievable. It also counters the con-
sensus of lattice models [20–23]. Furthermore the sim-
ulations also find an affine deformation field when mea-
suring K. It is possible that low–noise numerical envi-
ronment has resulted in a marginally stable, affine de-
formation mode being observed in this case, when real-
istic experimental noise would destabilise the system to
a non–affine solution. In any case, we are forced to con-
clude that the MMA predictions only apply to non–affine
deformations.

The similarity of the MMA exponents and those of
simulations is noteworthy, as the theory relied on a lo-
cal closure of equations and hence cannot incorporate
long wavelength modes. By contrast, the simulations
also suggest a diverging correlation length near the tran-
sition [49], which should modify the exponents until they
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(αω ∼ 1 − r/r0)
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TABLE I: Table of the scaling relations between ∆z = z− zc,
K, P and ∆V = V0−V ∼ (φ−φ0)

−1 (with φ0 the critical vol-
ume fraction) as predicted by the MMA theory, where α is the
force law exponent (2), d dimension. For comparison, results
from simulations of central force systems are also shown.

Model G, K ∼ ∆zc P ∼ ∆ze ∆V ∼ ∆zg

MMA

α > 0, d ≥ 2 2α− 1 2α 2

Wet foam [9]

α = 1, d = 2 ≈ 1a 2± 0.4 2± 0.4

O’Hern et al. [29]

α = 1, d = 2, 3 1.01± 0.1a 2.1± 0.2 2.04± 0.1

α = 3/2, d = 2, 3 2.08± 0.1a 3.15± 0.3 2.08± 0.1

Zhang et al. [12]

α = 1.28, d = 3 - ≈ 2.45 ≈ 1.96

Makse et al. [32]b

α = 3/2, d = 3 - 3.3± 0.5 2.1± 0.6

aResult for shear modulus shown.
bOnly frictionless data shown.

IV. DISCUSSION

A central feature of this class of problem is the in-
trinsic interweaving between the dissipative dynamics
as the system cools, with the mechanical response of
the arrested state. In this paper, a minimal coupling
has been presented, namely that the dynamics proceeds
in an independent–particle manner until a mechanically
stable region is reached, Fig. 1. This is highly sim-
plified, and a more elaborate theory is desirable, per-
haps along the lines of the bootstrap percolation model
approach [35]. Intuitively, we expect that, during the

dynamic phase, transient overconstrained, rigid clusters
will become stressed by interparticle collisions, and re-
lieve this stress by becoming non–rigid, i.e. expanding
into neighbouring, underconstrained regions. Kinetic ar-
rest occurs when a spanning rigid cluster forms. Note
that this argument suggests a dynamic homogenisation
process, perhaps explaining the apparent appearance of
mean field exponents in d = 2 and 3 simulations in ta-
ble I.

This first application of the mean mode approxima-
tion has been applied to arguably the simplest par-
ticulate problem, namely repulsive central forces in an
isotropic system. The simplicity of its results suggests
that additional features could be included while remain-
ing tractable. For instance, friction and gravity would be
needed before any sensible comparison with real granu-
lar media could be made. A problem that may emerge is
closing the equations; the averaged force balance equa-
tion (3) only gives one scalar equation, which is why the
proposed displacement modes were parameterised by sin-
gle scalar λ. If a future application had too few equations,
one possible approach would be to assume the response
will minimise the increase in elastic energy, converting it
to a minimisation problem with any known equations as
constraints. In principle, displacement modes with any
number of unknown parameters could be introduced by
this approach.

– Nature of the buckling transition?
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Prospects

• Still many issues:

• Evolution after the first arrest by e.g. shaking/tapping

• Taking the dynamics away from the overdamped limit

• Not yet a model for granular media

• No friction or particle asphericity

• No gravity, or any form of anisotropy (including shear)



• Distribution of overlaps P(δ), δ = r0 - r

• Assume system approaches a (stressless) rigidity transition

• Make the following ansatzes for                    

• λ vanishes near transition as

• Distribution scales uniformly, 

• Perform integration to get

• Stability boundary corresponds to λ0 real

• Self-consistency demands get γ=2, ν=2α-1 as in the 
monodisperse case

Distributed contact forces 7

take some non–trivial value. It is not clear if this is due to
uncontrolled finite size effects in the simulations, or if the
aggregation of rigid clusters in the particulate dynamic
phase somehow homogenises the system and produces
mean–field exponents at low dimension.

A brief survey of other simulations not shown in the
table indicate what new features will alter the scaling be-
haviour and hence represent relevant perturbations. Fric-
tion is an obvious candidate, and indeed recent simula-
tions of Zhang et al. [12] demonstrate that infinite friction
will alter the exponents. They also show that finite fric-
tion introduces history dependency, suggesting a more
advanced description of the dynamical phase will be re-
quired for a full theory. Also, the molecular dynamics
simulations of Kasahara and Nakanishi [4, 5] appear to
find exponents consistent with simple rationals that are
nonetheless different to those predicted here. This may
be because their system has gravity, and hence the con-
tact network is anisotropic and the force balance equa-
tions couple directly to an external field, either of which
may be a relevant perturbation.

B. Distributed contact forces

Of all the enhancements to the MMA theory that could
be incorporated, perhaps the most pressing is to relax the
assumption that every contact force f , or equivalently
every particle overlap δ = r0 − r, is the same. Simula-
tions have demonstrated that these distributions are in
fact continuously distributed right down to zero forces
or overlaps [50–52]. Below we present some calculations
that probe the effect of polydisperse δ within the MMA
framework. Our conclusion is that it in fact makes very
little difference to the overall behaviour of the system,
and does not change the exponents already quoted. We
are also able to confirm the scaling of the overlap distri-
bution as observed in simulations [29].

The simplest way to incorporate distributed overlaps
is to retain the approximations leading to (8), namely
independent isotropic bond orientations n̂ and a local
coordination number independent of the contact forces,
and perform the integral over a known, fixed distribu-
tion P (δ). This can be performed explicitly for a con-
venient choice of parameters, for instance Hookean in-
teractions α = 1 with a uniform overlap distribution
P (δ) = 1/δ0 for 0 ≤ δ ≤ δ0. This then produces an
equation for λ that collapses into the form already stud-
ied (9) in the limit δ0 → 0, with the separation r replaced
by a mean overlap r0 − δ0/2. Given the volume function
(15) still holds, we see that δ being distributed uniformly
down to δ = 0 does not significantly alter the statics or
dynamics of the system in this case, but merely modifies
the prefactors.

More general distributions can be considered by as-
suming that the behaviour observed for the monodisperse
case still broadly applies. Specifically, we assume that a
unique stressless rigidity transition exists at some point

z = zc, and a boundary between stable and unstable
compressive regimes extends continuously from this point
into the region z > zc, similar to Fig. 2. Furthermore,
we assume that the system becomes kinetically arrested
on this boundary under energy minimisation. Therefore
the averaged compliance λ is expected to scale with the
distance from the transition ε = (z − zc)/zc > 0 as

λ = λ0ε
−ν (22)

for small ε, with ν an unknown positive exponent. Then
we make the following scaling ansatz for the distribution
of overlaps P (δ),

P (δ) = ε−γq(ε−γδ) (23)

where q(x) is a fixed distribution. (23) states that the
distribution of overlaps will uniformly contract as the
transition is approached, with a width s that vanishes as
s ∼ εγ with γ > 0.

Inserting (22) and (23) into (8) allows the integration
to be performed. Different results occur for different com-
binations of exponents, but only the form of solution for
αγ > ν and γ(α − 1) < ν admits a stressless rigidity
transition. The equation for λ0 in this case is

1− d

z
= (d− 1)

λ0µ

r0
ε−ν+αγ 〈xα〉q(x)

+
1

λ0µα
εν−γ(α−1)

〈
x1−α

〉
q(x)

(24)

where the angled brackets here denote averaging over the
fixed distribution q(x). (24) admits a solution ε = 0 at
z = zc = d given the exponent inequalities just quoted
and 〈xα〉q(x) > 0,

〈
x1−α

〉
q(x)

> 0.
Stable solutions of (24) correspond to λ0 real and pos-

itive, and so the boundary between the stable and un-
stable regions can be found using the familiar quadratic
equation formulae. For consistency with the earlier as-
sumption that the stability boundary is continuously con-
nected to the point z = zc, ε = 0, we find it is necessary
to impose γ = 2. This means that the width of the
overlap distribution scales as s ∼ (z− zc)2 near the tran-
sition. The simulations of O’Hern et al. have shown that
s ∼ (φ−φc)∆ with ∆ close to 1 for Hookean interactions
α = 1 in d = 3 [29]. According to Table I, this corre-
sponds to s ∼ (z − zc)2∆, in agreement with the predic-
tion γ = 2∆ = 2 found here. A second consistency check
is that λ0 = O(1), which allows the second exponent to
be fixed, ν = 2α− 1. Note that both of these exponents
are equal to their counterparts in the monodisperse–δ
case, i.e. (13) for γ and (14) for ν. Although this analysis
in non–rigourous, it strongly suggests that polydisperse
contacts does not alter the scaling picture presented ear-
lier.
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Equation for λ

4

It is apparent from (6) that the MMA has reduced the
global problem to a local one, in which the response of
each contact δfαβ depends only on the interparticle sepa-
ration rαβ (through which f(r) and f ′(r) are found), the
unit vector n̂αβ , and the coordination number for this
bead zα, implicit in the summation (3). Before the av-
eraging can be completed, it is necessary to specify how
these quantities vary. Here we will deliberately take sim-
ple forms to facilitate transparent interpretation of the
results. Firstly, zα is taken to be independent of the con-
tact forces and orientations, allowing the zα–averaging
to be performed and the the force balance equation (3)
rewritten as

δf ext
j

{
δij − z

〈
Sαβ

ij

〉
αβ

}
= 0 (7)

where z is the mean coordination number, and the aver-
aging is now over nαβ and rαβ . Since δf ext is arbitrary,
the quantity inside the brackets in (7) must vanish.

We further assume that the bond orientations are in-
dependent of the contact forces. The n̂αβ are taken to
be independent, identically distributed random variables,
uniformly distributed over the d−1 dimensional unit hy-
persphere. This neglects any correlations in the topology
of the network. It also ignores excluded volume effects, as
it allows the same particle to have bonds arbitrarily close
together (so the contacting particles would significantly
overlap); this should not be crucial near the transition,
which is determined by stability requirements rather than
excluded volume, but will be relevant at higher z. Per-
forming the average gives

z

〈
d− 1

d

[
1−

(
λf

r

)−1
]−1

+
1
d

[
1− (λf ′)−1

]−1

〉
= 1 (8)

where the identity 〈n̂in̂j〉 = 1
dδij has been used.

It remains to specify how the contact forces are dis-
tributed. In principle only configurations consistent with
force balance should be allowed, but this complication
becomes redundant given the approximations leading
to (6), which allows the response from each contact to
be calculated independently. A natural choice is then
to assume that each contact force f(r), or equivalently
each interparticle separation r, are identically and inde-
pendently distributed according to some given distribu-
tion. Clearly this neglects any correlations in the initial
force network, but force balance is ensured on average
by virtue of the uniform distribution of contact angles
already employed. Some calculations for general force
distributions will be described later. For now, the sim-
plest choice possible is made, namely a delta–function
distribution corresponding to a monodisperse separation
r, force f(r) and gradient f ′(r) $= 0 for each contact. It
is then possible to insert (6) into (8) and integrate; the
result is finally
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FIG. 2: Stable regimes of (z, ω) space in the MMA model,
for d = 3. The black disc at (d, 0) is the (unstressed) rigidity
percolation transition. All points z < d, ω = 0 are unstable.
For ω < 0, corresponding to tensile bonds, the system is al-
ways stable (light grey region). For ω > 0, corresponding to
compression, only the dark grey shaded region is stable.

d

(
1
z
− 1

)
= (d− 1)

1
λf(r)

r − 1
− 1

1 + λ | f ′ | (9)

This is a quadratic equation in λ, which is easily solved.
Although λ is in principle a measurable quantity, it is

more useful to specify results in terms of the shear mod-
ulus G or bulk modulus K. These can be related to the
compliance λ by specifying some suitable closed surface
S and applying an external force to each particle it cuts,
i.e. forces parallel to S for G and normal for K. Given
the displacement of each particle is ∝ λ−1 according to
the MMA, it is straightforward to see that

G ∼ BGλ−1, K ∼ BKλ−1, (10)

where the prefactors B have dimension (length)2−d. The
relevant length scales are the characteristic length of the
enclosing surface L ∼ d−1

√
S and the particle radius r0/2,

but the local closure of the MMA equations means we
are unable to determine their weighting in BG and BK.
However, if λ diverges with L, as is trivially true for a
d = 1 system with fixed boundaries, then B ∼ Lr1−d

0 to
ensure finite moduli for arbitrarily large systems. Some
form of divergence of λ with L is also expected from linear
continuum elasticity [44]. This subtlety is sidestepped
below, where L is assumed to be fixed and finite.

• d : dimension

• z : mean coordination number

• λ : compliance

• r : interparticle separation

• f(r) : interparticle potential

• f´(r)<0 assumed



Pressure scaling

• μ : contact stiffness (units of force)

• V0 : volume at transition

• N : Number of particles

P

µ
∼

Nr0

2V0

{
α(z − zc)2

4d2(d − 1)

}α


