The onset of
rigidity in simple
particulate systems

David Head, University of Tokyo

ITP Granular Physics program, 2005



Rigidity transition

® Many systems have a rigidity transition at a finite volume fraction
®., when the elastic moduli become non-zero

® At least in some cases, the same point is reached with controlled
pressure P as P—0 or (bond stiffness) p—

® Example: emulsion experiments
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[ Mason et al,, PRL 1995 ]
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‘Bubble’ model for wet foams .15
(d=2, molecular dynamics with o

viscous damping) °°

[ D. Durian, PRL 1995 ]
[ cf. Bolton & Weaire, PRL 1990 ]
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Frictionless and frictional
granular media (g=0) N
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Rigidity percolation
® Disordered lattices constructed by bond dilution

® Transport of vector quantity (force)

® Exhibits rigidity percolation when a rigid
cluster first spans the system

® c.g. d=2 Hookean springs:z. = 3.961(2), Ds =
1.86(2), Dy = 1.80(3) [ Jacobs&Thorpe, PRL 1995 ]

® Typically start from unstressed networks, although
prestresses are important [ Alexander, Phys. Rep. 1998 ] [ C. Moukarzel et al., PRL 1997 ]

(Black - stressed; green - rigid but
unstressed; red - ‘cutting’)

® Dynamics-inspired dilution rules have been

devised [ Thorpe et al,]. Non-Cryst. Sol. 2000; Schwarz et al., cond-
mat/04 10595 ]



Approximation schemes

Effective medium approximation (EMA)

[S. Feng et al., PRB 1985]

Disordered lattice, ) Homogeneous lattice,
known stiffness unknown effective stiffness p°ff

G,
Rigidity transition at z = z.= 2d : /
> Z
Zc
Affine deformation
[K.Walton, ]. Mech. Phys. Solids 1987; - No transition at finite
H. Makse et al., PRL 1999] volume fraction cl)

Impose microscopic

displacement field More complex theories reduce G;

still no clear transition

® [F. Trentadue, Int. . Sol. Struct. 2001;
N. P. Kruyt et al., Int. J. Eng. Sci. 1998]



Maxwell counting

® A cluster is rigid when any non-trivial deformation mode increases
the elastic energy, i.e. the elastic moduli are non-zero

® A system at the onset of rigidity can be called e.g. isostatic,
marginally rigid or at the rigidity percolation threshold.

® (Can determine via constraint counting; in its simplest form :

Contact forces are the Force/torque
d.of. Z
degrees of freedom balance
Particle position/ Geometric
: : . d.of. Zc
orientation are the d.o.f. constraints
S Nz
Frictionless spheres o N -d 2d
e Nz 1!
Frictionless non-spheres el N-Zd(d+1) | d(d+])
Ot Nz 1
Friction (any convex shape) el N - zd(d+1) d+|




® Constraint counting is not exact

® “Rattlers” or other independent subsystems should not be
counted

® Rigid body translation/rotation of the entire cluster should be
subtracted off

® Frictionless sphere systems appear to agree with the predicted value
if the two corrections above are included

[ A. Donev et al., cond-mat/0408550;
C.O’Hern et al., PRE 68,01 1306 (2003) ]

® Not clear if extra corrections are required for transverse forces

® Only considers mechanical equilibrium (i.e. force/torque balance); says
nothing about mechanical stability



. Statics: the MMA

® Determination of mechanical stability by an approximation
scheme (the ‘mean mode approximation’, or MMA) which:

® Requires no mapping to analogous system with known
Green’s function

® Can incorporate prestress

® Has a finite z transition



Start from a static configuration {x"}

of soft spheres B with contact forces B v
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Ensemble average over configurations with
macroscopic quantities fixed; force balance on a:

alf a3 1] o
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(sum over all B in contact with ) [ Tanguy et al., PRB 2002 ]
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Mean mode approximation

® Mean response of & follows from symmetry, 7
o —"Nof2" /
® |mpose this form before averaging
® Further impose an intuitive form on the J:
0xP = \6f*P
® Can now determine each contact
force from the external force: §f” = 576 £,

(@ e — - AXOD ~ X
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® TJo perform final averaging, make simplest choices:

_I_

® z independent of f Can now
® contact angles uniformly, independently
distributed solve for >I\,
G K~N\

® Monodisperse overlaps, so all f, f equal
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Boundary is locally quadratic:
N (2 — 2¢)°
“hdy R (d 1)
Ghdy, Kbdy ~ Agj_y ~ (2 — %

)?¢~1  able
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Af| = (z/d=1)71, ©)
G, K ~ (2/z.— 1)/,

-

Lattice models under tension also show an

extended stable regime; cf. [ Tang&Thorpe,
PRB 1988; Zhou et al., PRE 2003 ]

(z = mean
coordination
number)




lii. Dynamics

One-particle description of dynamical phase as the excited
system relaxes

Overdamped motion (kinetic energy is ignored)

Spontaneous evolution cease when a stable regime has been
reached (coupling to statics)



Energy potential

® Suitable energy potential depends on whether volumeV or pressure
P is being controlled (overdamped limit):

ConstantV Constant P
Internal energy U Enthalpy H=U+PV

® Using same simplifications as for the statics,

Nz r N
Ui (ouw)* Tt PV = Z Toﬂ(aw)a (aw ~ 1 —1/rg)

=
2 a+1 U0

® Simple choice for V: decreasing function of z and W that obeys
V.2
Vi

= s =10

so thatV barely changes with z when particles are ‘just’ overlapping
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Exponents
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Wet foam [9]
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Result for shear modulus shown.
®Only frictionless data shown.

[ c.f. Schwarz et al., cond-mat/04 10595 for a scalar lattice treatment ]



Prospects

® Still many issues:
® Evolution after the first arrest by e.g. shaking/tapping
® Taking the dynamics away from the overdamped limit
® Not yet a model for granular media
® No friction or particle asphericity

® No gravity, or any form of anisotropy (including shear)



Distributed contact forces

® Distribution of overlaps P(0),d =ro - r
® Assume system approaches a (stressless) rigidity transition
® Make the following ansatzes for ¢ = (z — z.) /2. > 0

® A vanishes near transition as A = e ™"

® Distribution scales uniformly, P(§) = ¢ 7¢(e779)

° - d A
® Perform integrationtoget 1-- = (d-— 1)—0M5_V+M @) g(a)
Z To

1
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e (&%)

T q(x)

® Stability boundary corresponds to Ao real

® Self-consistency demands get Y=2, V=2X-1 as in the
monodisperse case



Equation for A

1 1 1
d(Z‘l):(d‘”mr) St e

r

® d:dimension

® 7 :mean coordination number
® A :compliance

® r :interparticle separation

® f{(r) :interparticle potential

® f'(r)<O assumed



Pressure scaling

ey e = o
uw o 2Vy | 4d?(d—-1)

® | :contact stiffness (units of force)
® Vj :volume at transition

® N :Number of particles



