Experimental studies and continuum modelling of vibro-fluidized granular beds

Jonathan M. Huntley Loughborough University, Wolfson School of Mechanical and Manufacturing Engineering Loughborough, UK

Acknowledgments

Tom Martin Harish Viswanathan Ricky Wildman David Parker Mick Mantle Andy Sederman Jim Jenkins Mark Shattuck

Funding provided by: EPSRC, Royal Society

Page 2

Outline

- 1. Time-averaged 3-D measurements using Positron Emission Particle Tracking (e.g. *PRE* **62** 3826 (2000), *PRE* **63** 061311 (2001), *PRL* **86** 3304 (2001))
- 2. 1-D hydrodynamic model (to appear in JFM)
 - Comparison of heat flux models
- 3. 3-D axisymmetric hydrodynamic model
- 4. Phase-resolved 3-D velocity measurements using dynamic nuclear magnetic resonance
- 5. Summary

x, y, z versus t

Page 3

1-D hydrodynamic model of vibro-fluidized bed

[to appear in J. Fluid Mech.]

Force balance (*z* is vertical):

 $\frac{\mathrm{d}P}{\mathrm{d}z} = -\rho g$

Equation of state:

$$P = \frac{6}{\pi d^3} \frac{\eta (1 + \eta + \eta^2 - \eta^3)}{(1 - \eta)^3} T$$

(Carnahan and Starling 1967)

Energy flux:

$$J = -\kappa \frac{\mathrm{d}T}{\mathrm{d}z} - \mu \frac{\mathrm{d}\eta}{\mathrm{d}z}$$

Energy dissipation:

Hence set of 3 coupled first order ODEs

Energy flux expressions, boundary conditions

Brey J J, Dufty J W, Kim C S, & Santos A Phys. Rev. E 58, 4638-4653 (1998)

$$\kappa = \kappa^*(e)\kappa_0, \qquad \mu = \mu^*(e)\frac{T}{\eta}\kappa_0 \qquad \kappa_0 = \frac{75k_B}{64d^2} \left(\frac{k_BT}{\pi m}\right)^{\frac{1}{2}}$$

Jenkins J T In Physics of Dry Granular Media, Kluwer Academic 353-370 (1999)

$$\kappa = \frac{45}{8} \frac{\eta}{\sqrt{\pi}d^2} \left(\frac{T}{m}\right)^{1/2} \left[\frac{5}{24} \frac{1}{G} + 1 + \frac{6}{5} \left(1 + \frac{32}{9\pi}\right)G\right], \quad \mu = 0, \qquad G = \frac{\eta(2-\eta)}{2(1-\eta)^3}$$

Boundary conditions: require $\eta|_{z=0}, T|_{z=0}, \frac{\mathrm{d}T}{\mathrm{d}z}|_{z=0}$

Know: $J|_{z\to\infty} = 0, \qquad \int_0^\infty \eta dz \propto N$

3rd boundary condition: incorporate model for energy transfer from the vibrating base

Comparison of base energy input rates (1)

- Assumes Maxwellian distribution
- Calculates exact expressions for source and dissipation terms
- Closed form expression not possible in general - lowest order term in series expansion shown above left
- * denotes non-dimensional quantitities, e.g.

$$T^* = \left\langle \left(v_z - \left\langle v_z \right\rangle \right)^2 \right\rangle / gd$$

- d = particle diameter,
- g = acceleration due to gravity
- V^* = peak base velocity
- $e_n =$ grain-base restitution coefficient

Comparison of base energy input rates (2)

NMR experiments – University of Cambridge

Cell

Permanently anti-static co-polymer acetal Glass base insert Internal diameter 18 mm Evacuated to reduce air drag Mustard seed **Restitution coefficients:** Mustard - plastic 0.60 ± 0.03 Mustard - glass 0.58 ± 0.05 Mustard - mustard 0.68 ± 0.10 Diameter: 2.04 ± 0.23 mm Aspect ratio: 1.17 ± 0.09 Mean mass: 5.66 mg Measures vertical velocity Probability Density Functions (PDFs): - 64 velocities (v_z) 128 slices (z)

- 12 phases in driving cycle (α)

Page 8

Phase-resolved velocity PDF (1)

Some interesting features

Page 9

Phase-resolved velocity PDF (2) 120 35 30 100 25 80 20 z / mm 15 60 10 5 40 0 -5 20 -10 f = 38.2 Hz0 $A_0 = 1.84 \text{ mm}$ -0.8 -0.6 -0.4 -0.2 0.4 0.6 0.8 0 0.2 V* = 2.2 v_ / m s⁻¹ $N_{g} = 110$ Phase-resolved velocity PDFs: z = 7.8 mmPhase-resolved Time-averaged Experimental Best-fit Gaussian Experimental Best-fit Gaussian $P(v_z)/m^{-1} s$ $P(v_{z}) / m^{-1} s$ 04 0.2 -0.6 0.4 0.6 -0.6 -0.4 -0.2 0 -0.4 0.4 v_z / m s⁻¹ v / m s⁻¹

 $\overline{T^{*}} = 0.788$

Dr. J. Huntley, Loughborough U (KITP 5-20-05) Experimental Studies and Continuum Modelling of Vibro-Fluidized Granular Beds Page 10

 $\overline{T^*} = 0.972$

Summary

- Experimental time-averaged and through-thickness-averaged 3-D PEPT data agrees reasonably well with 1-D ODE solutions using both Brey and Jenkins heat flux expressions
- 3-D Finite Element model reveals some radial dependence of T, η fields
- Novel NMR technique developed to provide phase-resolved measurements of $P(z,v_z)$ in a 3-D granular bed
- Time-averaged PDFs and temperature distributions mask several interesting phenomena
- When combined with a 1-D dynamic model, such data can be expected to provide a more sensitive test of existing constitutive equations