2005/5/2 at KITP

Sweeping Pattern by drying process of water-powder mixture

Takuya Iwashita Yumino Hayase (Hokkaido) Ryo Yamamoto Hiizu Nakanishi Kyushu University

Drying Experiment of Water-Cornstarch Mixture

Yamazaki and Mizuguchi, JPSJ 69 (2000) 2387.

Dr. Hiizu Nakanishi, Kyushu University (KITP Granular 5-02-05) Sweeping Pattern by Drying Process of Water-Powder Mixture

d air water water granule

Mechanism of pattern formation

- Volume shrink by evaporation
- Retreat of interface
- Sweeping of granules by interface tension
- Resistance against interface motion by accumulated granules
- Instability of flat interface
- Pinning of large granules by glass plates

Modeling for Sweeping Interface

- Phase Field Model
- Invasion Percolation Model
- Boundary Dynamics

top veiw

Other Interface Dynamics and its Instability

- Viscous Fingering Saffman-Taylor Instability
- Crystal Growth

Mullins-Sekerka Instability

Sweeping Instability

Accumulation along interface

Stuck Interface

sticking out 1-d path

Phase Field Model of Sweeping Dynamics

u: phase field, v: granular density

$$\frac{\partial u}{\partial t} = \nabla^2 u + u(1-u)(u - 0.5 - b(v))$$
$$\frac{\partial v}{\partial t} = -\nabla \cdot \boldsymbol{J}, \quad \boldsymbol{J} = (A(v)\nabla u)v - D(u)\nabla v$$

Interface Motion

Interface Motion

$$\frac{\partial u}{\partial t} = \nabla^2 u + u(1-u)(u - \frac{0.5 - b(v)}{0.5 - b(v)})$$

Granule Motion

$$\frac{\partial v}{\partial t} = -\vec{\nabla} \cdot \boldsymbol{J}, \qquad \boldsymbol{J} = (A(v)\vec{\nabla}u)v - D(u)\vec{\nabla}v$$

Simulation of Phase Model

t=0

Initial wavy interface in u at

 $v_0 = 0.5$ Initial granular density system width W=90 $\lambda = 30$

t=150

for higher initial granular density for longer wave length of interface perturbation.

- Time consuming for simulations
- Local dynamics $\leftarrow \rightarrow$ Experiment: global dyn.
- Pinning effect

evaporation from overall interface interface advance at the weakest

Modeling of Sweeping Dynamics using Invasion Percolation

- Dynamics is analogous to Invasion Percolation --- Global dynamics
- Sweeping of granules
- Randomness and Pinning

Invasion Percolation

Invasion from the bottom

- The 0'th row is initially occupied.
- Strength of each lattice site is represented by a random number assigned to it in advance.
- 1. Occupy the weakest unccupied site adjacent to the occupied sites.
- 2. Repeat the occupation process.

Invasion Percolation Model for Sweeping Dynamics

•Random nun •Invasion •Site strength	nber at each site granular quantity drying process resistance against drying granular quantity
Sweeping	Redistribution of granules at drying site
Leftover	Granules on the sites where accumulation is over a threshold are not redistributed. \rightarrow pattern formation
Surface tension	Site facing more dry sites is easier to dry

• Initial Granular Distribution

upper limit g

width Δg

• Threshold g_M

• Strength of surface tension $\gamma=1$

Summary

- We analyzed *Sweeping Dynamics* that produces complex patterns during the drying process of water-granule mixture.
- Interface instability in the sweeping dynamics is a close analog of Saffman-Taylor instability in viscous fingering and Mullins-Sekerka instability in crystal growth.
- We have tried three type of modeling:
 - Phase field model
 - Invasion percolation
 - Boundary dynamics