Properties of Force Chain Networks

Joshua Socolar
 Brian Tighe
 Physics Department

Center for Nonlinear and Complex Systems
DUKE UNIVERSITY
LMDH, Paris VI
with
P. Claudin
J.P. Bouchaud
D. Schaeffer

Experimental Inspiration:
R. Behringer, E. Clement and their students

Funded by NSF DMR

Grains - - Macroscopic Stress

Dense granular material: Couette Shear

Flow past an obstacle

Junfei Geng

ATheory of Force Chain Networks

- Chains are injected at boundaries.
- Chains are straight and carry only compressive stress
- Chains are characterized by intensity f and direction θ.
- Direction of arrow is determined by boundary conditions.

Schematic -- not to be taken literally.

Variables and Physical Quantities

9. Chain density variables

$$
P(f, \hat{\mathbf{n}}) \equiv \text { = with strength } f
$$

Q Material Properties:

The probability per unit length that a chain will split:

The probability that two intersecting chains will fuse:

"Boltzmann" Equation for Force Chains

$$
\begin{aligned}
& (\hat{\mathbf{n}} \cdot \nabla) P(\mathbf{f})=-\frac{1}{\lambda} P(\mathbf{f})+\frac{2}{\lambda} \int d^{2} \mathbf{f}_{1} d^{2} \mathbf{f}_{2} \phi_{s}\left(\mathbf{f} \mid \mathbf{f}_{1}, \mathbf{f}_{2}\right) P\left(\mathbf{f}_{1}\right) \\
& -Y P(\mathbf{f}) \int d^{2} \mathbf{f}_{1} d^{2} \mathbf{f}_{2} \phi_{f}\left(\mathbf{f}_{1} \mid \mathbf{f}, \mathbf{f}_{2}\right) P\left(\mathbf{f}_{2}\right) \\
& +\frac{Y}{2} \int d^{2} \mathbf{f}_{1} d^{2} \mathbf{f}_{2} \phi_{f}\left(\mathbf{f} \mid \mathbf{f}_{1}, \mathbf{f}_{2}\right) P\left(\mathbf{f}_{1}\right) P\left(\mathbf{f}_{2}\right)
\end{aligned}
$$

For an isotropic material:

$$
\phi\left(\mathbf{f}_{a} \mid \mathbf{f}_{b}, \mathbf{f}_{c}\right)=\delta\left(\mathbf{f}_{a}-\mathbf{f}_{b}-\mathbf{f}_{c}\right) \Theta\left(f_{a}, f_{b}, f_{c}\right) \psi\left(\theta_{b}-\theta_{a}, \theta_{c}-\theta_{a}\right)\left|\sin \left(\theta_{c}-\theta_{b}\right)\right|
$$

Linear theory is divergent! ($P(\mathbf{f})=0$ is unstable.)
Without loss of generality: $Y=\lambda=1$

A Solvable Special Case

Assume all chains are on one of the hexagonal directions and all injected chains have same f.

- Splittings and fusions always form symmetric, 120° vertices.
- $P(f, \theta)$ becomes a discrete set P_{n}

For uniform horizontal loading:

- "Boltzmann" equation \rightarrow set of coupled, nonlinear ODE's.

No x-dependence; Reflection symmetry

$$
\cos \left(\theta_{n}\right) \partial_{z} P_{n}=-P_{n}+P_{n-1}+P_{n+1}+\left(P_{n-1} P_{n+1}-P_{n} P_{n+2}-P_{n} P_{n-2}\right)
$$

Boundary conditions:
Specify P_{1} at top and P_{3} at bottom.

Response Function (for vertical star)

Ordinary elastic response for shallow depths.
Two diffusively broadening peaks at large z. (Hyperbolic!)
Q Propagation direction distinct from star vector directions.

Continuum of Directions

Goal: Find at least one pair of splitting and fusion kernels for which at least one solution of the Boltzmann equation can be found.

- Normalizations of the kernels:

$$
\begin{aligned}
\max \left[\int d^{2} f^{\prime} \phi_{f}\left(\mathbf{f}^{\prime} \mid \mathbf{f}^{\prime \prime}, \mathbf{f}\right)\right] & =1 \\
\int d^{2} f^{\prime} d^{2} f^{\prime \prime}\left|\sin \left(\theta^{\prime}-\theta^{\prime \prime}\right)\right| \phi_{s}\left(\mathbf{f} \mid \mathbf{f}^{\prime}, \mathbf{f}^{\prime \prime}\right) & =2
\end{aligned}
$$

- Assume kernels and solution are isotropic:
- Splitting:

Fusion:

- Sum rule required to avoid divergence in chain density:

$$
2 \lambda Y \int_{0}^{\infty} d f f P(f)=1
$$

Continuum of Directions

Goal: Find at least one pair of splitting and fusion kernels for which at least one solution of the Boltzmann equation can be found.

- Simplified equation for a homogeneous and isotropic network:

$$
\frac{3}{\lambda} P(f)=\frac{4}{\lambda} \int_{f}^{\infty} d f^{\prime} \frac{P\left(f^{\prime}\right)}{f^{\prime}}+Y \int_{0}^{\infty} d f^{\prime} P\left(f^{\prime}\right) \int_{\left|f^{\prime}-f\right|}^{f^{\prime}+f} d f^{\prime \prime} P\left(f^{\prime \prime}\right)
$$

- Asymptotics:

Small forces:

$$
P(f) \sim f^{-4 / 3}
$$

Large forces:

$$
P(f) \sim f^{-3 / 2} e^{-f}
$$

- Full solution: \#*?\$\%*€?!

Some Open Questions

- Are discrete DFCN's generic?
- Does orientational order induce propagation of peaks?
- Does the discreteness of chains intensities cause artifacts?
- Can we do numerical simulations?
- Is there a straightforward algorithm that generates DFCN's with the statistics described in the master equation?
- How are boundary conditions determined in real systems?
- In a 2D experiment, which fixed point is picked out?
- Can we measure $P(\mathbf{f}, \mathbf{r})$ in experiments?
- How can we include gravity?
- 3D models: Icosahedral with tetrahedral vertices

References

J.P. Bouchaud, P. Claudin, D. Levine, and M. Otto,

European Physical Journal E 4, 451 (2001)

- Definition of "double-Y" model
J.E.S. Socolar, D. Schaeffer, and P. Claudin,

European Physical Journal E 7, 353 (2002)

- Nonlinear Boltzmann equation and 6-fold model
M. Otto, P. Claudin, J.P. Bouchaud and J.E.S. Socolar,

Physical Review E 67, 031302 (2003)

- Elasticity of anisotropic materials
J.E.S. Socolar

Discrete and Continuous Dynamical Systems, B3:601 (2003)

- N-fold model and some important formal corrections

The 8-fold Way

Splittings and fusions always at 90°

- Force intensities: $f_{m}=\sqrt{2^{m}}$
- Fixed point (homogeneous) solutions:

$$
P_{n}\left(f_{m}\right)=p^{-f_{m}^{2}+f_{m} \cos \theta_{n}}
$$

Response function: ?!*\&\#\$!

Lots of weird stuff to worry about here ...

